CITY UNIVERSITY OF HONG KONG

香港城市大學

Molecular and Pharmacological Effects of

Schisandrol A and Gomisin A on Multidrug

Resistant Cancer Cells

五味子醇甲與五味子醇乙作用於多藥耐性

癌細胞的分子機理

Submitted to Department of Biology and Chemistry 生物及化學系 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy 哲學博士學位

by

Wan Chi Keung 尹志強

January 2007 二零零七年一月

ABSTRACT

Multidrug resistance (MDR) is defined as the chemotherapeutic resistant of cancer cells to a broad spectrum of structurally unrelated drugs. Overexpression of membrane transporter P-glycoprotein (P-gp) is the most extensively studied MDR pathway. P-gp modulator screening program in our laboratory has shown that Fructus Schisandrae (the dried fruit of *Schisandra chinensis* (Turcz.) Baill.) modulates P-gp-mediated MDR. Through bioassay guided fractionation two dibenzocyclooctadiene lignans schisandrol A (SCH) and gomisin A (GOM) were identified and we studied their modulatory mechanisms on P-gp-mediated MDR.

In P-gp overexpressing subline HepG2-DR cells SCH or GOM was relatively non-toxic (IC₅₀ > 150 μ M after 72 h incubation) but without altering P-gp expression they restored the cytotoxic actions of anticancer drugs such as vinblastine and doxorubicin that are P-gp substrates. The toxicity of SCH or GOM itself was not altered by P-gp competitive modulator verapamil suggesting that they are P-gp modulators rather than substrates. Although SCH and GOM share similar chemical structure their P-gp modulatory mechanisms are not exactly the same. They showed differential effects on the P-gp-associated ATPase activity. SCH activated while GOM inhibited the P-gp-associated ATPase activity suggesting that SCH contained some substrate-like properties but GOM acted as pure P-gp inhibitor. Consistent with this observation SCH showed a mixed-type inhibition while GOM showed an uncompetitive inhibition on progesterone- or verapamil-stimulated P-gp-associated ATPase activity. In HepG2-DR cells both SCH and GOM were able to increase cellular retention of the P-gp substrate rhodamine 123 (Rh-123) and GOM showed more effective than SCH. The combined effect of verapamil with SCH or GOM was basically additive, implying that SCH or GOM might simultaneously bind on P-gp with verapamil. Moreover, binding of transport substrates with P-gp would result in a P-gp conformational change favoring UIC-2 antibody reactivity but SCH or GOM impeded UIC-2 binding, suggesting that binding of SCH or GOM altered P-gp conformation in a manner distinct from P-gp-substrate binding. These results suggested that SCH or GOM modulates the P-gp-dependent MDR in HepG2-DR cells possibly by simultaneously binding with substrates onto P-gp and altering the P-gp-substrate interaction. We also investigated the effect of SCH or GOM on the drug metabolizing activity of CYP3A4, which usually show cross substrate/inhibitor specificity with P-gp. SCH or GOM inhibited CYP3A4 activity and GOM (IC₅₀ = 1.39μ M) showed higher potency than SCH (IC₅₀ = 32.02μ M). Therefore the pharmacokinetic interaction of SCH or GOM with chemotherapeutic agents should be carefully considered when combined use *in vivo*.

Apart from their modulation on P-gp-mediated MDR SCH or GOM showed vincristine sensitizing effect on both 2008 ovarian cancer cells and its MRP1-transfected subline. Addition of GSH could not reverse this effect suggesting that it was unrelated to the modulation of MRP1-mediated MDR. No sensitizing effect was observed when SCH or GOM was combined with doxorubicin or taxol indicating that the action mechanism was P-gp-independent. We studied the mechanism for this vincristine sensitizing effect. SCH or GOM enhanced vincristine-induced mitosis arrest, apoptosis and Cdc2 dephosphorylation/activation. Combined drug treatments regulated Wee1 and Cdc25C through phosphorylation/dephosphorylation and nuclear/cytoplasmic translocation in favor of Cdc2 activation. Olomoucine inhibited phosphorylation of Weel and Cdc25C suggesting the presence of a Cdc2-mediated positive feedback loop. The enhanced apoptosis was associated with increases of caspases 8 activation. The actions of SCH or GOM were independent from p53 as shown firstly that SCH or GOM suppressed vincristine-stimulated p53 up-regulation. Direct inhibitory interaction of p53/Cdc2 was not detected and SCH or GOM did not affect the expression levels of p53 transactivation targets. Lastly transient transfection and expression of wild-type and dominant negative p53 had no effect on SCH- or GOM-mediated vincristine sensitizing effect. Taken together, our results suggested that besides their modulatory effect on P-gp-mediated MDR, SCH or GOM is able to potentiate vincristine-mediated mitotic arrest, Cdc2 activation and apoptosis in a P-gp- and p53-independet manner.

TABLE OF CONTENTS

	Page
ABSTRACT	i
ACKNOWLEDGEMENTS	iv
TABLE OF CONTENTS	V
LIST OF FIGURES	xi
LIST OF TABLES	XV
LIST OF ABBREVIATIONS	xvi

CHAPTER 1 INTRODUCTION

1.1	Cancer chemotherapy and drug resistance 1	
1.2	MDR phenotype by overexpression of ATP-dependent transporters	3
1.3	Physiological roles of MDR transporters	5
	1.3.1 Protection of central nervous	6
	1.3.2 Protection of testicular tissue and the fetus development	6
	1.3.3 Protection of the entire body towards toxins and xenobiotics	6
1.4	MDR transporters in human cancers	7
1.5	Structure and domain organization of P-gp	8
	1.5.1 Putative arrangement pattern of TMD	11
	1.5.2 Characterization of NBD	13
1.6	Structural characteristics of P-gp substrates	14
1.7	Identifying the sites of interaction between P-gp and its substrates	14

1

1.7.1 Multiple binding sites model	15
1.7.2 "Substrate-induced fit" model	18
1.8 The catalytic cycle of ATP hydrolysis by P-gp	18
1.8.1 The alternating ATP hydrolysis model	19
1.8.2 The ATP-switch model	20
1.9 Transcriptional regulation of mdr1 gene (encode for P-gp)	22
1.9.1 Y-Box element	23
1.9.2 AP-1 element	23
1.9.3 Steroid and xenobiotic receptor (SXR) element	23
1.10 Modulation of P-gp-mediated MDR	24
1.10.1 First and second generation modulators	24
1.10.2 Third generation modulators	26
1.11 MDR mediated by other transporters	
1.11.1 The MRP family transporters	27
1.11.2 BCRP	29
1.12 Cross substrate specificity of P-gp and CYP3A	29
1.13 Modulation of P-gp-dependent MDR by medicinal herbs	
1.14 Efficacy enhancement of cell cycle-specific chemotherapeutic	30
agents	
1.15 Effects microtubule-interfering agents (MIAs) in cancer cells	31
1.16 G ₂ /M transition	32
1.17 Regulation of the G ₂ /M transition by p53	33
1.18 p53-dependent resistant to MIAs	35
1.19 Synergistic effects of MIAs with other compounds	36
1.20 Pharmacological properties of Fructus Schisandrae	36
1.21 Objectives	37

CHAPTER 2 MATERIALS AND METHODS

2.1	Cell Cultures	39
2.2	Bioassay guided isolation of schisandrol A and gomisin A	39
2.3	In vitro growth inhibition assay	42
	2.3.1 Sulforhodamine B (SRB) assay	42
	2.3.2 Soft-agar colony formation assay	42
2.4	Cell cycle analysis	43
2.5	Estimation of cellular rhodamine 123 by flow cytometry	43
2.6	Isolation of membrane vesicle	43
2.7	Determination of P-gp-associated ATPase activity	44
2.8	UIC-2 reactivity shift assay	45
2.9	Isolation of cellular proteins	45
2.10) Western blot analysis	46
2.11	Lowry assay for protein quantification	47
2.12	2 RNA isolation and reverse transcription-polymerase chain	47
	reaction (RT-PCR)	
2.13	Measurement of CYP3A4 activity	50
2.14	Measurement of intracellular reduced glutathione (rGSH)	50
2.15	Morphological determination by confocal microscopy	51
2.16	Annexin V staining for the detection of early apoptotic cells	51
2.17	Measurement of Cdc2 kinase activity	51
2.18	3 Transient transfections	52
2.19	Co-immunoprecipitation (Co-IP) and Western blot analysis	52

39

CHAPTER 3 ISOLATION AND CHARACTERISTICATION OF 54 SCHISANDROL A AND GOMISIN A, AND THEIR MODULATORY EFFECTS ON P-GP-MEDIATED MDR

3.1 Identifications of SCH and GOM	54
3.2 Modulation of drug resistance in HepG2-DR cells	57
3.3 Effects of SCH or GOM on vinblastine-induced mitotic arrest	62
3.4 Effects of SCH or GOM on P-gp expression	64
3.5 Effects of SCH or GOM on P-gp-dependent ATPase activity	66
3.6 Effects of SCH or GOM on rhodamine 123 (Rh-123) retention	71
3.7 SCH or GOM induced conformational change of P-gp	74
3.8 Combined effects of GOM and vanadate on Rh-123 retention	76
3.9 The involvement of MRP-mediated MDR in HepG2-DR cells	78
3.10 Inhibitory effects of SCH or GOM on CYP3A4 activity	
3.11 Ovarian cancer cells stably transfected with MRP1 gene	
3.12 Effects of SCH or GOM on 2008 and 2008/MRP1 ovarian cancer	
cells	
3.13 Addition of GSH did not affect the vincristine sensitizing effect of	
SCH or GOM	
Discussion	92

CHAPTER 4 VINCRISTINE SENSITAIZING EFFECT OF99SCHISANDROL A AND GOMISIN A ON 20080VARIAN CANCER CELLS

4.1	Vincristine sensitizing effect in other cancer cell lines	99
4.2	Effects of SCH or GOM on vincristine-induced cell cycle arrest	100
	and apoptosis	
4.3	Vincristine sensitizing effect by p53 inhibitor pifithrin- α	105
4.4	Effects of combined drug treatments on the regulations of p53	107
	and proteins responsible for G ₂ /M transition	
4.5	Effects of combined drug treatments on the nuclear	110
	translocation of p53 and G_2/M regulatory proteins	
4.6	Combined drug treatments enhanced Cdc2 kinase activity	110
4.7	Effects of olomoucine on the phosphorylation of Cdc25C and	114
	Wee1 induced by drug treatments	
4.8	Effects of combined drug treatments on caspase activation	116
4.9	Expression of p53 transactivation targets upon drug treatments	118
4.10	Determination of the protein-protein interaction of p53 and	119
	Cdc2	
4.11	Effects of transiently transfected of p53 on Cdc2 kinase activity	123
	in drug treated cells	
Disc	pussion	125

CHAPTER 5 CONCLUSION REMARKS

REFERNECES 133

[¹²⁵I]iodoarylazidoprazosin ([¹²⁵I]IAAP)

photo-crosslinking of P-gp

131

LIST OF FIGURES

		Page
Fig. 1.1	Cellular factors that cause drug resistance.	2
Fig. 1.2	Structures of MDR conferring ATP-dependent transports and	4
	their substrate specificities.	
Fig. 1.3	Domain organization of P-gp, predicted from its primary	10
	sequence.	
Fig. 1.4	Putative three-dimensional structure of P-gp.	12
Fig. 1.5	The multiple binding sites model of P-gp.	17
Fig. 1.6	ATP-switch model for the catalytic cycle of ATP hydrolysis.	21
Fig. 1.7	Untranslated 5' regulatory region of the human mdr1 gene	22
	showing promoter elements.	
Fig. 1.8	Interrelation between MRP and GSH.	28
Fig. 1.9	Participation of p53 in regulating Cdc2-cyclin B kinase activity	34
	and G_2/M transition.	
Fig. 2.1	Procedures for the isolation of schisandrol A and gomisin A	41
Fig. 3.1	Structures of schisandrol A (SCH) and gomisin A (GOM), their	56
	purities and molecular weight determinations.	
Fig. 3.2	Combined effects of SCH with various P-gp substrates.	58
Fig. 3.3	Combined effects of GOM with various P-gp substrates.	59
Fig. 3.4	Combined effects of SCH or GOM with verapamil in	60
	HepG2-DR cells.	
Fig. 3.5	Effects of SCH or GOM on colony-formation ability of	61
	HepG2-DR cells.	
Fig. 3.6	Effects of SCH or GOM on vinblastine-induced cell cycle arrest.	63

Fig.	3.7	Effects of SCH or GOM on P-gp mRNA and protein	65
		expressions.	
Fig.	3.8	Effects of SCH or GOM on the basal P-gp-ATPase activity.	67
Fig.	3.9	Effects of SCH on drug-stimulated ATPase activity of P-gp.	69
Fig.	3.10	Effects of GOM on drug-stimulated ATPase activity of P-gp.	70
Fig.	3.11	Effects of SCH or GOM on Rh-123 retention.	72
Fig.	3.12	Combined effects of SCH or GOM with verapamil on Rh-123	73
		retention.	
Fig.	3.13	Monoclonal antibody UIC-2 reactivity with P-gp in HepG2-DR	75
		cells.	
Fig.	3.14	Combined effects of GOM and vanadate on Rh-123 efflux.	77
Fig.	3.15	mRNA expressions of MDR relating transporters in HepG2 and	79
		HepG2-DR cells.	
Fig.	3.16	Effects of SCH or GOM on intracellular GSH level.	80
Fig.	3.17	Inhibitory effects of various compounds on CYP3A4 activity.	82
Fig.	3.18	mRNA expressions of P-gp and MRP1 in 2008 ovarian cancer	84
		cells.	
Fig.	3.19	Growth inhibitory effects of doxorubicin or vincristine in 2008	85
		and 2008/MRP1 cells.	
Fig.	3.20	Combined effects of SCH or GOM with doxorubicin or	87
		vincristine in 2008 and 2008/MRP1 cells.	
Fig.	3.21	Combined effects of SCH or GOM with 5-fluorouracil or taxol	88
		in 2008 and 2008/MRP1 cells.	
Fig.	3.22	Effects of BSO in vincristine-mediated growth inhibitory effect	90
		on 2008 and 2008/MRP1 cells.	

xii

Fig. 3.23	Effects of GSH on the vincristine sensitizing effect of SCH or	91
	GOM in 2008 and 2008/MRP1 cells.	
Fig. 4.1	Vincristine sensitizing effect of SCH or GOM on HepG2 and	101
	HeLa cells.	
Fig. 4.2	Effect of SCH or GOM on vincristine-induced cell cycle arrest.	102
Fig. 4.3	Morphological study of 2008 cells upon drug treatments.	103
Fig. 4.4	Combined drug treatments enhanced apoptotic response in 2008	104
	cells.	
Fig. 4.5	Vincristine sensitizing effect of p53 inhibitor pifithrin- α alone	106
	and combined with SCH or GOM.	
Fig. 4.6	Effects of combined drug treatments on the expression of p53	109
	and G ₂ /M regulatory proteins.	
Fig. 4.7	Effects of combined drug treatments on the nuclear translocation	111
	of p53 and G ₂ /M regulatory proteins.	
Fig. 4.8	Effects of combined drug treatments on Cdc2 kinase activity.	113
Fig. 4.9	Effects of Cdc2 kinase inhibitor olomoucine on the	115
	phosphorylation of Cdc25C and Wee1 induced by drug	
	treatments.	
Fig. 4.10	Effects of combined drug treatments on caspase activation.	117
Fig. 4.11	RT-PCR analyses of p53 and its downstream targets in	120
	drug-treated 2008 cells	
Fig. 4.12	Effects of combined drug treatments on the expression of p53	121
	downstream targets involved in G ₂ phase arrest.	
Fig. 4.13	Determination of the protein-protein interaction between p53	122
	and Cdc2.	

Fig. 4.14 Effects of the transfection of p53 on Cdc2 kinase 124 activity in drug-treated cells.

Page

Table 1.1	Tissue localization of MDR conferring transporters.	5
Table 2.1	Antibodies used for Western blot analysis	48
Table 2.2	Primers used for RT-PCR analysis	48

LIST OF ABBREVIATIONS

Å	angstrom unit
AML	acute myelogenous leukaemia
BBB	blood-brain barrier
BCRP	breast cancer resistance protein
BSO	DL-buthionine (S,R)-sulfoximine
CDKI	cyclin-dependent kinase inhibitor
CNS	central nervous system
CO-IP	co-immunoprecipitation
CSF	cerebrospinal fluid
СҮР	cytochrome P-450
EA	ethyl acetate
FBS	fetal bovine serum
G6PD	glucose-6-phosphas dehydrogenase
GI	gastrointestinal
GOM	gomisin A
GSH	glutathione
GST	glutathione S-transferase
HPLC	high performance liquid chromatography
IAAP	iodoarylazidoprazosin
kD	kilodalton
JNK1	c-jun N-terminal kinase 1
LC-MS	liquid chromatography-mass spectroscopy
МАРК	mitogen-activated protein kinase
MDR	multidrug resistance

MIA	microtubule-interfering agent
MRP	multidrug resistance-related protein
MTS	methanethiosulfonate
MTX	methotrexate
NBD	nucleotide binding domain
NFAT	nuclear factor of activated T cells
NMR	nuclear magnetic resonance
PBS	phosphate buffered saline
PE	petroleum ether
P-gp	p-glycoprotein
Plk	polo-like kinase
QSAR	quantitative structure-activity relationship
rGSH	reduced glutathione
Rh-123	rhodamine 123
RT-PCR	reverse transcription-polymerase chain reaction
SRB	sulforhodamine B
SCH	schisandrol A
SDS-PAGE	SDS-polyacrylamide gel
SXR	steroid xenobiotic receptor
TBS	tris buffered saline
TCA	trichloroacetic acid
TMD	transmembrane biding domain
Y15	tyrosine 15