MULTI-AGENT COLLECTIVE BEHAVIORS ANALYSIS AND APPLICATIONS IN COMPLEX NETWORKS AND SYSTEMS

YU WENWU

DOCTOR OF PHILOSOPHY
CITY UNIVERSITY OF HONG KONG
SEPTEMBER 2010
Multi-agent Collective Behaviors Analysis and Applications in Complex Networks and Systems

submitted to
Department of Electronic Engineering
in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

By

Yu Wenwu
虞文武

September 2010
二零一零年九月
Abstract

Cooperative and collective behaviors in networks of multiple autonomous agents have received considerable attention in recent years due to the growing interest in understanding intriguing animal group behaviors, such as flocking and swarming, and also due to their emerging broad applications in sensor networks, UAV (Unmanned Air Vehicles) formations, robotic teams, to name just a few. To coordinate with other agents in a network, every agent needs to share information with its adjacent peers so that all can agree on a common goal of interest. Recently, some progress has been made in analyzing collective behaviors in dynamical networks for which some closely related focal topics are synchronization, consensus, swarming and flocking.

In this thesis, the multi-agent collective behaviors (specifically, synchronization, consensus, swarming, and flocking) and some of their potential applications are investigated. In particular, following issues are studied in detail: (a) first-order consensus in multi-agent systems with nonlinear dynamics; (b) second-order consensus in multi-agent systems with time delays and linear or nonlinear dynamics; (c) higher-order consensus in linear multi-agent dynamical systems; (d) stability analysis of a swarming behavioral model with hybrid nonlinear profiles; (e) distributed leader-follower flocking control for multi-agent dynamical systems with time-varying velocities; (f) adaptive and pinning network controls in complex dynamical systems; (g) applications in estimating uncertain delayed genetic regulatory networks and distributed consensus filtering in sensor networks.

The main contributions of this thesis are summarized as follows: (a) a generalized algebraic connectivity framework is proposed to describe the consensus
ability in multi-agent systems; (b) some necessary and sufficient conditions for second-order consensus in linear multi-agent dynamical systems are derived which show that both the real and imaginary parts of the eigenvalues of the Laplacian matrix of the corresponding network play key roles in reaching consensus and the allowable maximum communication delay is explicitly calculated; (c) some necessary and sufficient conditions are derived for higher-order consensus and it is theoretically proved that for the mth-order consensus, there are at most ⌈\frac{m+1}{2}⌉ disconnected stable and unstable consensus regions; (d) stability analysis of a swarming behavioral model with stochastic noise, switching nonlinear profiles, time-varying communication topologies, and unbounded repulsive interactions, is investigated; (e) a distributed leader-follower flocking algorithm for multi-agent dynamical systems with time-varying velocities is developed, where each informed agent only needs partial information about the leader; (f) an effective distributed adaptive strategy to tune the coupling weights of a network is designed based on local information of nodes’ dynamics, and it is found that synchronization can be reached if the subgraph consisting of the edges and nodes corresponding to the updated coupling weights contains a spanning tree; in addition, some new pinning schemes for complex networks are designed; (g) uncertain delayed genetic regulatory networks are investigated from an adaptive filtering approach based on an adaptive synchronization setting, where the designed adaptive laws are independent of the unknown system states and parameters, requiring only the output and the structure of the underlying network; furthermore, a new type of distributed consensus filters is designed, where each sensor can communicate with the neighboring sensors and only a small fraction of sensors need to measure some partial target information.

This thesis provides a thorough review of the state-of-the-art progress of the field and summarizes the author’s research work and academic contributions completed during the PhD studies at the City University of Hong Kong.
Contents

Abstract i
Acknowledgement iii

1 Introduction 1
 1.1 Background ... 1
 1.1.1 Complex networks and systems 1
 1.1.2 Collective behaviors in complex networks and systems ... 2
 1.1.3 Network control in complex dynamical systems 5
 1.1.4 Applications 6
 1.2 Motivation and Contribution 8
 1.3 Organization .. 14

2 Consensus in Multi-agent Systems with Nonlinear Dynamics 18
 2.1 Preliminaries .. 19
 2.2 Local consensus of multi-agent systems 21
 2.3 Global consensus of multi-agent systems in general networks ... 25
 2.4 Global consensus of multi-agent systems in virtual networks ... 34
 2.5 A Simulation Example 39
 2.6 Conclusions .. 39

3 Second-order Consensus in Multi-agent Dynamical Systems 41
 3.1 Second-order Consensus in Linear Multi-agent Systems 42
 3.1.1 Model formulation 42
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.2</td>
<td>Second-order consensus in directed networks</td>
<td>43</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Second-order consensus in delayed directed networks</td>
<td>48</td>
</tr>
<tr>
<td>3.1.4</td>
<td>Simulation examples</td>
<td>53</td>
</tr>
<tr>
<td>3.1.5</td>
<td>Conclusions</td>
<td>57</td>
</tr>
<tr>
<td>3.2</td>
<td>Second-order Consensus in Nonlinear Multi-agent Systems</td>
<td>58</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Preliminaries</td>
<td>58</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Second-order consensus in strongly connected networks</td>
<td>60</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Second-order consensus in rooted networks</td>
<td>67</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Simulation examples</td>
<td>71</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Conclusions</td>
<td>71</td>
</tr>
<tr>
<td>4</td>
<td>Higher-order Consensus in Multi-agent Dynamical Systems</td>
<td>73</td>
</tr>
<tr>
<td>4.1</td>
<td>Preliminaries</td>
<td>74</td>
</tr>
<tr>
<td>4.2</td>
<td>The mth-order Consensus in a General Form</td>
<td>75</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Synchronization in complex networks</td>
<td>75</td>
</tr>
<tr>
<td>4.2.2</td>
<td>The mth-order consensus in a general form</td>
<td>77</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Consensus region in the mth-order consensus</td>
<td>79</td>
</tr>
<tr>
<td>4.3</td>
<td>Leader-follower Control in Multi-agent Systems</td>
<td>84</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Leader-follower control with full-state feedback</td>
<td>84</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Leader-follower control with observers</td>
<td>87</td>
</tr>
<tr>
<td>4.4</td>
<td>Simulation Examples</td>
<td>90</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Consensus regions</td>
<td>90</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Leader-follower control with full-state feedback</td>
<td>91</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Leader-follower control with observers</td>
<td>92</td>
</tr>
<tr>
<td>4.5</td>
<td>Conclusions</td>
<td>93</td>
</tr>
<tr>
<td>5</td>
<td>Stability Analysis of Swarming Behaviors</td>
<td>94</td>
</tr>
<tr>
<td>5.1</td>
<td>Preliminaries</td>
<td>95</td>
</tr>
<tr>
<td>5.2</td>
<td>Analysis of Swarm Cohesion</td>
<td>99</td>
</tr>
<tr>
<td>5.3</td>
<td>Analysis of Swarm Cohesion in a Noisy Environment</td>
<td>102</td>
</tr>
<tr>
<td>5.4</td>
<td>Analysis of Cohesion in Swarms with Switched Topologies</td>
<td>105</td>
</tr>
</tbody>
</table>
5.5 Analysis of Cohesion in Swarms with Changing Topologies 106
5.6 Simulation Examples . 116
5.7 Conclusions . 118

6 Distributed Leader-follower Flocking Control 119
6.1 Preliminaries . 120
 6.1.1 Model formulation . 120
 6.1.2 Nonsmooth analysis . 123
6.2 Distributed Leader-follower Control with Pinning Observer . . 128
6.3 Simulation Examples . 135
6.4 Conclusions . 139

7 Network Control in Complex Dynamical Systems 141
7.1 Distributed Adaptive Control in Complex Networks 142
 7.1.1 Preliminaries . 142
 7.1.2 Distributed adaptive control in complex networks 143
 7.1.3 Pinning edges control . 146
 7.1.4 Simulation examples . 149
 7.1.5 Conclusions . 153
7.2 Pinning Control in Complex Networks 154
 7.2.1 Preliminaries . 154
 7.2.2 Pinning synchronization criteria for complex networks . . . 156
 7.2.3 Simulation examples . 164
 7.2.4 Conclusions . 167

8 Applications to Collective Behaviors in Multi-agent Systems 168
8.1 Estimating Uncertain Delayed Genetic Regulatory Networks . . . 168
 8.1.1 Model formulation and preliminaries 168
 8.1.2 Adaptive filter design . 171
 8.1.3 A simulation example . 176
 8.1.4 Conclusions . 178
Contents

8.2 Distributed Consensus Filtering in Sensor Networks 179
 8.2.1 Preliminaries ... 179
 8.2.2 Distributed consensus filter design with full controllers 181
 8.2.3 Distributed consensus filter design with pinning controllers 186
 8.2.4 Distributed consensus filter design with pinning observers 188
 8.2.5 Simulation examples .. 192
 8.2.6 Conclusions ... 195

9 Conclusion and Future Work .. 197
 9.1 Conclusion ... 197
 9.2 Future Work ... 199

Bibliography ... 201

Selected Journal Publications ... 213