CITY UNIVERSITY OF HONG KONG

Study on Innovative Integrated Power Amplifier/Low Noise Amplifier/Switch for Wireless Application

Submitted to
Department of Electronic Engineering
for the Degree of Doctor of Philosophy

by

Lee Tze Kiu

August 2005
Abstract

The front-end transmit/receive switch circuit is one of the essential elements in modern wireless handsets. The main function of the transmit/receive switch is switch the antenna either to the transmitter or the receiver. It must have high isolation in order to avoid the RF-power of the transmitter (PA) turning on the receiver (LNA), resulting in high loss or in the worst case damage. Low insertion loss is also necessary to maintain efficiency for the transmit power amplifier and low noise for the receive low noise amplifier. The RF switch circuits either uses PIN-Diodes or FET based mmics. Normally, silicon PIN-Diode based switches are suited for low cost or narrow band applications, while FET based mmic switches are suited more for higher performance/cost wide band application. For many handsets PIN-diodes and λ/4 transmission line topology is used to form a low cost, single supply switch. However, the main disadvantages of this low cost PIN-diode switch are its large size and narrow bandwidth. So, the research work performed here is to study a new RF switch circuit topology that is low in cost, small in size, and while maintaining a single positive control voltage. The method proposed here eliminates the RF switch in the RF-front end entirely by directly connecting the Power Amplifier with the Low Noise Amplifier. When connected to the antenna it forms a single pole double throw RF-Switch, herein
called the Power Amplifier/ Low Noise Amplifier/Switch or PA/LNA/SW for short. This switch can reduce the board size and cost, and if properly designed can even enhance the performance when compared with traditional switches. In addition, the PA/LNA/SW can provide a wider bandwidth, because it does not have the $\lambda/4$ transmission line which is frequency dependence component. The bandwidth limitation of the PA/LNA/SW is entirely limited by the matching network in the amplifier design. Although the PA/LNA/SW can provide a dual band application, such as 3G and Bluetooth, it still can not fulfill the requirement for future software defined radios (SDRs). Future SDRs requires the use of broadband front-ends and the use of such switches will require low cost and high performance. In such circumstances, the FET-Distributed MMIC switches would be used, but the cost can be high. For low cost broadband applications we propose a distributed form of the same idea as in the PA/LNA/SW to form a Distributed Integrated Power Amplifier/ Low Noise Amplifier/ Switch or DI-PA/LNA/SW for short. The DI-PA/LNA/SW proposed achieved the wideband objective and at a reduced cost. The bandwidth performance of the DI-PA/LNA/SW is limited by the gain cell within the distributed amplifier. The novel Darlington gain cell have was also studied to extend the bandwidth of the distributed amplifier. This novel Darlington gain cell solved the current variation problem of the traditional Darlington gain cell, and still maintained the high gain and wide bandwidth.
The novel Darlington gain cell was also applied to the distributed amplifier, called DI-NDA. Finally, the DI-NDA was applied to the DI-PA/LNA/SW to form a Novel Distributed Integrated Darlington Cell-Power Amplifier/Low Noise Amplifier/Switch or NDI-DC-PA/LNA/SW for short.
Contents

Chapter 1:
Introduction

1.1 Basic RF-front-end .. p.1
1.2 Principle of traditional PIN-diode RF-switch p.3
 1.2.1 Basic principle behind the Traditional PIN-diode Switch ... p.4
 1.2.2 The basic principle behind the simple PIN-diodes Transmit/Receive switch ... p.5
 1.2.3 The basic principle behind the Dual-Band PIN-diodes Transmit/Receive switch ... p.6
 1.2.4 The basic principle of PIN-diodes Transmit/Receive switch employs the lump components to emulate the $\lambda/4$ transmission line ... p.8
1.3 Comparison between the PIN-Diode switch in difference configurations .. p.11
1.4 Broadband switches .. p.11
1.5 Novel switching configuration introduced p.15
1.6 Reference .. p.16

Chapter 2:
Basic principle behind the Power-Amplifier/Low-Noise-Amplifier/RF-Switch

2.1 Introduction .. p.18
2.2 Basic Principle of the PA/LNA/SW p.19
2.3 Study the power loss of the integrated PA/LNA/SW p.21
2.4 Study the Noise factor of the PA/LNA/SW p.29
2.5 Measurement of the Radio Frequency Time Division Duplex Switch p.32
 2.5.1 Small Signal S parameter measurement p.33
 2.5.2 1dB compression point and power handling measurement p.35
 2.5.3 Noise Figure measurement p.37
 2.5.4 Switching Time/Speed measurement p.38
2.6 Verification of the PA/LNA/SW p.41
2.7 Conclusion p.43
2.8 Reference p.44

Chapter 3:

Integrated Broadband PA/LNA/SW for TDD

3.1 Introduction p.45
3.2 Basic principle behind the Integrated Broadband PA/LNA/SW p.46
3.3 Design Procedures p.47
 3.3.1 RF Transistor Amplifier p.48
 3.3.2 Basic Principles of the BJT transistor amplifier p.48
 3.3.3 Scattering Parameters of Transistors p.48
 3.3.4 Amplifier Power Gain p.49
 3.3.4.1 Transducer Power Gain p.51
 3.3.4.2 Available Power Gain Ga p.51
 3.3.4.3 Operating Power Gain Gp p.52
 3.3.5 Stability Considerations p.52
3.3.5.1 Stability Circles p.53
3.3.6 Power Amplifiers Design p.62
3.3.7 Low Noise Amplifier Design p.64
3.3.8 Interstage Matching Network p.68
 3.3.8.1 Case study of the Interstage matching network p.71
3.3.9 Summary of design the Integrated Broadband PA/LNA/SW p.72
3.4 Examples of the Integrated Broadband PA/LNA/SW: p.74
 3.4.1 Circuit p.74
 3.4.2 Experimental results p.75
 3.4.3 Conclusion of the example p.78
3.5 Conclusion p.79
3.6 Reference p.79

Chapter 4:

Distributed Integrated

Power-Amplifier/Low-Noise-Amplifier/Switch

4.1 Introduction p.81
4.2 BJT Distributed Amplifier p.82
 4.2.1 Equivalent model of the BJT distributed amplifier p.83
 4.2.2 Measured results for the BJT distributed amplifier p.86
4.3 Distributed integrated PA/LNA/SW p.87
 4.3.1 Equivalent circuit of the DI-PA/LNA/SW p.88
 4.3.2 Simulation and Experimental results for the DI-PA/LNA/SW p.90
4.4 Conclusion p.92
4.5 Reference p.93
Chapter 5:

Novel Darlington Feedback Amplifier with Good Bias Stability Under Large Signal Conditions

5.1 Introduction p.96
5.2 Basic theory of the traditional Darlington Feedback Amplifier p.97
5.3 Darlington CE cell p.100
5.4 Basic theory of the novel Darlington Feedback Amplifier p.101
5.5 Comparison of experimental results p.102
5.6 Conclusion p.108
5.7 Reference p.108

Chapter 6:

Novel Distributed Integrated-Darlington Cell-Power Amplifier/Low Noise Amplifier/Switch

6.1 Introduction p.110
6.2 Novel Distributed Integrated-Darlington Cell-Power Amplifier/Low Noise Amplifier/Switch p.111
6.3 Distributed Integrated-Novel Darlington-Amplifier p.112
6.4 Experiment results of the Distributed Integrated-Novel Darlington-Amplifier p.114
6.5 Experiment results of the Novel Distributed Integrated-Darlington Cell- Power Amplifier/Low Noise Amplifier/Switch p.116
6.6 Conclusion p.119
6.7 Reference p.119
Chapter 7:

Discussion and Conclusions

7.1 Innovative idea p.122
7.2 Performance of the proposed PA/LNA/SW switches p.123
7.3 Suggestions for future work p.124

Appendix A:

Special cases of transducer power gain

A.1 Matched Transducer Power Gain G_{tn} ($\Gamma_S=\Gamma_L=0$) p.126
A.2 Unilateral Power Gain G_{tu} p.126
A.3 Maximum Unilateral Gain G_{tumax} p.127

Appendix B:

Discussion for the constant gain circles

B.1 Constant Gain Circles p.128
B.2 Unilateral Case ($|S12|=0$) p.128
B.3 Simultaneous Conjugate Match – Bilateral Case ($S12 \neq 0$) p.129
B.4 Constant Gain Circles in Bilateral Case p.130

Appendix C:

Publication List

C.1 Journal Article p.132
C.2 Conference p.133