CITY UNIVERSITY OF HONG KONG
香港城市大学

The Performance and Mechanism of Removal of Heavy Metals from Water by Water Hyacinth Roots as a Biosorbent Material
利用水葫芦根系去除水中重金属的效率和机理研究

Submitted to
Department of Biology and Chemistry
生物及化学系
in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy
哲学博士学位

by

Zheng Jia Chuan
郑家传

August 2010
二零一零年八月
Abstract of Thesis Entitled

The Performance and Mechanism of Removal of Heavy Metals from Water by Water Hyacinth Roots as a Biosorbent Material

Submitted by Zheng Jia Chuan

For the Degree of Doctor of Philosophy at City University of Hong Kong & University of Science and Technology of China

May 2010

Abstract

Water hyacinth roots was evaluated as a biosorbent material for the removal of Cu(II), Cd(II), and Cr(VI) in aqueous media. N2 adsorption analysis revealed that the biosorbent possesses a small surface area of 4.5 m² g⁻¹. Water hyacinth roots have a \(\text{pH}_{\text{PZC}} \) of 6.6.

Mono-metal biosorption was carried out for Cu(II), Cd(II), and Cr(VI), respectively. The data demonstrated a considerable sorption capacity of Cu(II) and Cd(II) with sorption amount up to 22.7 and 27.6 mg g⁻¹, respectively. However, water hyacinth roots had no attractive sorption capacity of Cr(VI). The equilibrium experimental data was modeled by Langmuir and Freundlich equation, and results revealed that Langmuir model fitted Cu(II) biosorption isotherm much better than Freundlich model; however, both Langmuir and Freundlich model fitted Cd(II) biosorption rate well. The fitted parameters also revealed that the water hyacinth
roots have a high affinity and large sorption capacity for Cu(II) and Cd(II). The pseudo-second-order kinetics model revealed a rapid biosorption rate for both Cu(II) and Cd(II) biosorption, which increased with increasing temperature. This suggests the endothermic characteristics of the Cu(II) biosorption, which was consist with evaluated thermodynamic parameters. The activation energy of biosorption of Cu(II) and Cd(II) was calculated to be 28.35 and 23.45 kJ mol\(^{-1}\) respectively, which are comparable to chemisorption processes and is consistent with the \(S_{\text{BET}}\).

The pH effect on extent of adsorption, pH reduction and calcium release during sorption suggest that ion exchange is involved in the removal of Cu(II) and Cd(II) by water hyacinth roots. The changes of relative content of oxygen and shifts of carbon and oxygen binding energy are consistent with the formation of complex between Cu(II) and surface functional groups on the biosorbent. This is further supported by the shift of the FTIR peaks of the –OH and C=O functionalities in the water hyacinth roots after Cu(II) adsorption. Our findings suggest that ion exchange and complex formation are the major mechanisms for the activated chemisorption of Cu(II) and Cd(II) by the biosorbent.

Binary-metal biosorption was carried out in Cd(II) – Cu(II) and Cr(VI) – Cu(II) system respectively. Although water hyacinth roots possess high sorption capacity for both cadmium and copper ions, the biosorption of Cd(II) was found to be strongly inhibited by the co-exist Cu(II) ions in the pH range of 3 - 5. The release of light metal ions such as Ca\(^{2+}\), Mg\(^{2+}\), K\(^+\) and H\(^+\) confirmed the ion exchange mechanism of the binary-metal biosorption processes and the difference in binding
active site. Revealed by XPS analysis, chelation with amine and oxygen-containing functionalities was also found to contribute to the sorption of Cd(II) and Cu(II). Binding sites taken up by Cd(II) were snatched by copper ions. This confirms that water hyacinth roots possess a higher affinity for copper ions than cadmium ions even at high temperature.

When temperature increases, the increased fold in sorption rate of Cd(II) is larger than that of Cu(II), which is attributed to the larger activation energy of Cd(II) biosorption (28.35 vs. 23.45 kJ mol\(^{-1}\)), and this can abate the inhibition effect posed by Cu(II) in some sort. However, the higher affinity of water hyacinth roots to Cu(II) ensures the strong inhibition on Cd(II) removal. Moreover, sorption of Cu(II) not only occurred on neat roots but also on Cd-sorbed roots.

Our study calls for special consideration of the presence of copper ions in the application of live water hyacinth roots for remediation of cadmium contaminated water, as it can significantly inhibit cadmium uptake.

Contrary to Cd(II) – Cu(II) system, synergic biosorption effect was found in Cr(II) – Cu(II) system. Cu(II) was found to exert cooperative effect on Cr(VI) uptake by water hyacinth roots at pH 3.5-5.5 without diminishment in copper ions uptake. Additionally, this cooperative effect became stronger as temperature increases, resulting in an increase in chromium uptake rate.

XPS high resolution spectra of N1s and O1s of water hyacinth roots with and without metal uptake have shown significant differences. Uptake of metal caused a shift of binding energy, which confirms the main contribution of electrostatic
attraction between hydrogen chromate and protonated amine groups to the removal of chromium. In the single Cr(VI) system, peak corresponding to C-O in carboxyl groups disappeared due to the oxidation by Cr(VI), and the increase in the amide groups induced a decline of protonated amine groups.

In the presence of Cu(II), the rapid occupation of amine and carboxyl groups by copper ions hindered the transformation of amine to amide groups and the consumption of carboxyl groups by Cr(VI) reduction, which extend the contribution of direct electrostatic attraction to chromium removal.
Table of contents

Declaration .. i

Acknowledgements .. ii

Abstract ... iii

Table of contents ... vii

List of Figures ... xii

List of Tables .. xv

Chapter 1 Background and Research Review .. 1
 1.1 Overview of heavy metal pollution in aqueous environment ... 1
 1.1.1 Copper ... 3
 1.1.2 Cadmium .. 4
 1.1.3 Chromium ... 5
 1.2 Conventional methods for heavy metal removal from wastewater 6
 1.3 Phytoremediation ... 8
 1.4 Biosorption ... 9
 1.4.1 Biosorption and its advantages in water remediation ... 9
 1.4.2 Factors affecting biosorption .. 13
 1.4.2.1 Chemistry of metal ions .. 13
 1.4.2.2 Effect of pH .. 13
 1.4.2.3 The influence of other ions ... 14
 1.4.2.4 Effect of temperature ... 15
1.4.2.5 Other factors ... 16

1.5 Equilibrium of heavy metal biosorption .. 16

1.6 Kinetic biosorption of heavy metals .. 20

1.6.1 Pseudo-first-order kinetic ... 21

1.6.2 Pseudo-second-order kinetics ... 22

1.7 Mechanism of biosorption .. 22

1.7.1 Physical adsorption (Van der Waals attraction) 23

1.7.2 Chemisorption ... 23

1.7.2.1 Ion exchange ... 26

1.7.2.2 Coordination, chelation/complexation .. 26

1.8 Objective and scope of this study .. 27

1.8.1 Water hyacinth .. 27

1.8.2 Aim of this study ... 28

Chapter 2 Removal of Cu(II) in Aqueous Media by Biosorption Using Water Hyacinth Roots as a Biosorbent Material ... 30

2.1 Introduction ... 30

2.2 Materials and methods .. 31

2.2.1 Preparation of the biosorption materials .. 31

2.2.2 Characterization of the biosorbent .. 32

2.2.3 Biosorption study ... 33

2.3 Results and discussion .. 34

2.3.1 Surface properties of water hyacinth roots 34
2.3.2 Adsorption isotherms ... 36
2.3.3 Adsorption kinetics .. 39
2.3.4 Activation energy of adsorption .. 42
2.3.5 Thermodynamics ... 42
2.3.6 Sorption mechanism ... 45
2.3.6.1 Cation effect ... 45
2.3.6.2 XPS spectroscopy ... 50
2.3.6.3 FTIR analysis .. 52

2.4 Conclusions ... 54

Chapter 3 Inhibition of Cd(II) Sorption on Water Hyacinth Roots by Cu(II) 56

3.1 Introduction ... 56

3.2 Materials and methods ... 57
3.2.1 Preparation of water hyacinth roots .. 57
3.2.2 Characterization of the water hyacinth roots 58
3.2.3 Experimental section .. 58

3.3 Results and discussion ... 60
3.3.1 Biosorption of Cd(II) in single metal system 60
3.3.1.1 Biosorption isotherms ... 60
3.3.1.2 Thermodynamics .. 62
3.3.1.3 Biosorption kinetics ... 64
3.3.2 Inhibition of Cd(II) biosorption .. 68
3.3.2.1 Inhibition effect of Cu(II) on Cd(II) biosorption 68
Chapter 3 Impact of Metal Ions on the Adsorption of Cd(II) in Aqueous Media

3.3.2 Effect of co-exist metal ions concentration

3.3.2.2 Effect of co-exist metal ions concentration

3.3.2.3 Effect pH on inhibition of Cd(II)

3.3.3 Mechanisms

3.3.3.1 Difference in kinetics

3.3.3.2 Difference in active sorption sites

3.3.3.3 Desorption of Cd(II)

3.3.3.4 XPS analysis

3.4 Conclusions

Chapter 4 Cooperate-sorption of Cr(VI) in Aqueous Media by Water Hyacinth

Roots with the Presence of Cu(II)

4.1 Introduction

4.2 Material and methods

4.2.1 Materials

4.2.2 X-ray photoelectron spectroscopy

4.2.3 Biosorption experiments

4.3 Results and discussion

4.3.1 Effect of pH

4.3.2 Effect of Cu(II)

4.3.3 Sorption mechanism investigation

4.3.3.1 Adsorption isotherms

4.3.3.2 Thermodynamic study

4.3.3.3 Adsorption kinetics
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.3.4 Fourier transform infrared spectroscopy</td>
<td>100</td>
</tr>
<tr>
<td>4.3.3.5 XPS analysis</td>
<td>102</td>
</tr>
<tr>
<td>4.4 Conclusions</td>
<td>108</td>
</tr>
<tr>
<td>Chapter 5 Conclusions and Future Work</td>
<td>109</td>
</tr>
<tr>
<td>5.1 Conclusions</td>
<td>109</td>
</tr>
<tr>
<td>5.2 Future work</td>
<td>112</td>
</tr>
<tr>
<td>References</td>
<td>113</td>
</tr>
<tr>
<td>Appendix. Publications</td>
<td>137</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure 2.1</th>
<th>Determination of pH_{PZC} of water hyacinth roots.</th>
<th>35</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.2</td>
<td>Copper ions sorption isotherms by water hyacinth roots at 298 K.</td>
<td>37</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Biosorption kinetics of Cu(II) by water hyacinth roots: (a) Fitting of kinetics data by the pseudo-second-order kinetics model; (b) Arrhenius plot for adsorption of Cu by water hyacinth roots.</td>
<td>40</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Van’t Hoff plot for the biosorption of Cu(II) by water hyacinth roots.</td>
<td>44</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Effect of initial solution pH: (a) amount of adsorbed Cu(II); (b) distributions (%) of various Cu species.</td>
<td>46</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>Variation of solution pH as a function of reaction time at 298 K.</td>
<td>48</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>Sorption amount of Cu(II) and calcium changes in solutions as a function of reaction time at 298 K.</td>
<td>48</td>
</tr>
<tr>
<td>Figure 2.8</td>
<td>XPS survey scanning spectrum of biosorbents: (a) Before sorption; and (b) After sorption.</td>
<td>50</td>
</tr>
<tr>
<td>Figure 2.9</td>
<td>XPS spectra of biosorbents: (a) C1s before sorption; (b) C1s after sorption; (c) O1s before sorption; and (d) O1s after sorption.</td>
<td>51</td>
</tr>
<tr>
<td>Figure 2.10</td>
<td>FTIR spectra of biosorbents before and after sorption of Cu(II).</td>
<td>53</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Cadmium ions sorption isotherms by water hyacinth roots at 298 K.</td>
<td>61</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Van’t Hoff plot for the biosorption of Cd(II) by water hyacinth roots in single metal system.</td>
<td>63</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Biosorption kinetics of Cd(II) in single metal system: (a) biosorption amount as a function of time; (b) pseudo-second-order modeling and calculation of rate</td>
<td>65</td>
</tr>
</tbody>
</table>
Figure 3.4 Arrhenius plot for biosorption of Cd(II) in single metal system by water hyacinth roots.

Figure 3.5 Adsorption kinetics in single system (solid symbol) and binary system (open symbol). The concentration of Cu(II) in both single and dual metal systems was 30 mg L\(^{-1}\), and so was the concentration of Cd(II).

Figure 3.6 Uptake of heavy metals in a Cd – Cu dual metal system with pH 5.50 ± 0.05. (a) fixed Cu(II) concentration (30 mg L\(^{-1}\)); and (b) fixed Cd(II) concentration (30 mg L\(^{-1}\)).

Figure 3.7 Effect of solution pH on adsorption in binary system, concentrations of Cd(II) and Cu(II) were both 30 mg L\(^{-1}\).

Figure 3.8 Kinetics comparison of Arrhenius plot of Cu(II) and Cd(II) biosorption in corresponding single metal system.

Figure 3.9 Inhibition effect on Cd(II) biosorption by water hyacinth roots at different temperatures.

Figure 3.10 Changes in solution pH and concentration of Ca\(^{2+}\), Mg\(^{2+}\) and K\(^{+}\) during the course of biosorption: -□- Cd-only system; -○- Cu-only system; -△- blank (distilled water). The concentration of Cu(II) was 30 mg L\(^{-1}\), and so was the concentration of Cd(II).

Figure 3.11 Desorption of Cd\(^{2+}\) in distilled water and Cu\(^{2+}\) solution (30 mg L\(^{-1}\)).

Figure 3.12 Sorption of Cu(II) on Cd-sorbed water hyacinth roots. (a) Sorption amount of Cu(II); (b) Ca\(^{2+}\) and (c) pH of solution.

Figure 3.13 High resolution XPS spectra of O1s and N1s: (a) and (d) neat roots; (b) and (e) Cd-sorbed roots; (c) and (f) Cu-sorbed roots.

Figure 4.1 Solution pH effect on metal biosorption: (a) pH effect on the biosorption of Cr(VI) with and without the presence of Cu(II) (concentration of Cr(VI) and Cu(II) was 11 and 33 mg L\(^{-1}\)); (b) Cr(VI) species distribution as a function of solution pH.

Figure 4.2 Competitive biosorption of metal ions on water hyacinth roots.
at a solution pH of 5.5: (a) fixed Cr(VI) concentration at 10 mg L$^{-1}$; (b) fixed Cu(II) concentration at 30 mg L$^{-1}$.

Figure 4.3 Adsorption isotherms of Cr(VI) on water hyacinth roots. In binary system, the concentration of Cu(II) was fixed at 33 mg L$^{-1}$.

Figure 4.4 Van’t Hoff plot for the adsorption of Cr from binary metal system.

Figure 4.5 Adsorption kinetics of Cr(VI) onto the water hyacinth roots in the presence of Cu(II). Concentrations of Cr(VI) and Cu(II) were 11 mg L$^{-1}$ and 33 mg L$^{-1}$, respectively, pH = 5.5.

Figure 4.6 Arrhenius plot for adsorption of Cr from binary metal system.

Figure 4.7 FTIR spectra of the water hyacinth roots biosorbent before and after sorption of metal ions.

Figure 4.8 XPS spectra of O1s and N1s of water hyacinth roots: (a) and (d) virgin biosorbent; (b) and (e) Cu loaded biosorbent; (c) and (f) Cr and Cu loaded biosorbent.

Figure 4.9 Relative contents of N1s and O1s species in the water hyacinth roots biosorbent.
List of Tables

<table>
<thead>
<tr>
<th>Table 1.1</th>
<th>Major target industrial sectors containing metal-bearing effluent discharge problems.</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.2</td>
<td>Ranking of metals for environmental risk.</td>
<td>3</td>
</tr>
<tr>
<td>Table 1.3</td>
<td>Conventional metal remediation technologies.</td>
<td>7</td>
</tr>
<tr>
<td>Table 1.4</td>
<td>Types of native biomass that have been explored as biosorbents.</td>
<td>11</td>
</tr>
<tr>
<td>Table 1.5</td>
<td>Frequently used adsorption models.</td>
<td>18</td>
</tr>
<tr>
<td>Table 1.6</td>
<td>Major binding groups for biosorption.</td>
<td>25</td>
</tr>
<tr>
<td>Table 2.1</td>
<td>Comparison of the Langmuir and Freundlich constants for Cu(II) adsorption on different sorbents.</td>
<td>38</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Pseudo-second order kinetics model parameters for the adsorption of Cu(II) by the water hyacinth roots biosorbent.</td>
<td>41</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>Thermodynamic parameters of Cu(II) biosorption by water hyacinth roots.</td>
<td>45</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Isotherm parameters of Cd(II) biosorption on water hyacinth roots.</td>
<td>62</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Thermodynamic parameters of Cd(II) biosorption by water hyacinth roots in single metal system.</td>
<td>64</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Kinetic parameters of Cd(II) biosorption by water hyacinth roots in single metal system.</td>
<td>66</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Isotherm parameters of Cr biosorption by water hyacinth roots.</td>
<td>95</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Thermodynamic parameters of Cr adsorbed by water hyacinth roots from binary system.</td>
<td>97</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Kinetics parameters of biosorption of Cr(VI) in the presence of Cu(II) at different temperatures.</td>
<td>99</td>
</tr>
</tbody>
</table>