OPTIMIZED STATIC HEDGING STRATEGY AND HEDGING ERROR ANALYSIS FOR BARRIER OPTIONS

ZHUANG ZI YIN

MASTER OF PHILOSOPHY
CITY UNIVERSITY OF HONG KONG
AUGUST 2008
CITY UNIVERSITY OF HONG KONG
香港城市大學

Optimized Static Hedging Strategy and Hedging Error Analysis for Barrier Options
障礙期權靜態對沖的優化策略及對沖誤差分析

Submitted to
Department of Economics and Finance
經濟與金融系
in Partial Fulfillment of the Requirements for the Degree of Master of Philosophy
哲學碩士學位

by

Zhuang Zi Yin
莊子寅

August 2008
二零零八年八月
The aim of this thesis is to improve on the static hedging of barrier options based on the work of Carr and Chou (1997b). We propose a practical optimization scheme for the hedging strategy and demonstrate the application of the optimized static hedging to vanilla barrier options. We then compare the theoretical performance of the optimized static hedging with that of naïve static hedging and dynamic hedging. Finally we test the performance of the optimized static hedging for barrier options using market data of S&P500 call/put options traded on CBOE.
TABLE OF CONTENTS

LIST OF FIGURES

I. **INTRODUCTION** 1

II. **CARR AND CHOU METHOD** 7

A. **THEORETICAL BASIS** 7
B. **REPLICATION PROCEDURE** 18
 1. **DOWN-AND-OUT CALL** 19
 2. **UP-AND-OUT CALL** 24

III. **OPTIMIZED STATIC HEDGING** 27

A. **AN OPTIMIZATION APPROACH** 27
 1. **DOWN-AND-OUT CALL** 28
 2. **UP-AND-OUT CALL** 31
B. **OPTIMIZING THE HEDGING PORTFOLIO** 33
 1. **DOWN-AND-OUT CALL** $K < H$ 38
 2. **DOWN-AND-OUT CALL** $K \geq H$ 42
 3. **UP-AND-OUT CALL** 46

IV. **HEDGING ERROR ANALYSIS** 51

A. **SIMULATION RESULTS** 51
B. **ANALYSIS ON EMPIRICAL DATA** 53
 1. **DATA DESCRIPTION** 54
 2. **EMPIRICAL DESIGN** 55
 3. **EMPIRICAL RESULTS** 60

V. **CONCLUSION** 70

VI. **REFERENCE** 71

VII. **APPENDIX** 73

A. **DELTA OF KNOCK-OUT CALLS** 73
B. **DERMAN-KANI IMPLIED BINOMIAL TREE MODEL** 77
C. **ENHANCED NUMERICAL METHOD FOR BARRIER OPTIONS** 83
LIST OF FIGURES

Figure 1: Replication of the equivalent payoff of a down-and-out call
\(K < H \) with a single long position in a call option and position
\(\varphi_i \) in auxiliary put options, \(i = 1,2,3 \) ... 22
Figure 2: Replication of the equivalent payoff of a down-and-out call
\(K \geq H \) with a single long position in a call option and position
\(\varphi_i \) in auxiliary put options, \(i = 1,2,3 \) ... 23
Figure 3: Replication of the equivalent payoff of an up-and-out call
with a single long position in a call option and position \(\varphi_i \) in
auxiliary call options, \(i = 1,2,3 \) .. 26
Figure 4: Surface of the exact value of the down-and-out call \(K < H \)
with \(K = 70 \), \(H = 80 \), \(T = 1 \), \(r = 6\% \), \(q = 2\% \) and
\(\sigma = 20\% \).. 35
Figure 5: Surface of the exact value of the down-and-out call \(K \geq H \)
with \(K = 90 \), \(H = 80 \), \(T = 1 \), \(r = 6\% \), \(q = 2\% \) and
\(\sigma = 20\% \).. 35
Figure 6: Surface of the exact value of the up-and-out call \(K < H \)
with \(K = 90 \), \(H = 120 \), \(T = 1 \), \(r = 6\% \), \(q = 2\% \) and
\(\sigma = 20\% \).. 36
Figure 7: Payoff function of the down-and-out call \(K < H \) and the
optimized hedging portfolio for \(S_T < H \) under both weighting
schemes... 39
Figure 8: Hedging error as a percentage of the exact value of the
down-and-out call \(K < H \) under both weighting schemes................................. 40
Figure 9: Pricing error as a percentage of the exact value of the
down-and-out call \(K < H \) for varying times to maturity and
share prices under the equally weighted scheme... 41
Figure 10: Pricing error as a percentage of the exact value of the
down-and-out call \(K < H \) for varying times to maturity and
share prices under the probability weighted scheme... 41
Figure 11: Payoff function of the down-and-out call \(K \geq H \) and the
optimized hedging portfolio for \(S_T < H \) under both weighting
schemes... 44
Figure 12: Hedging error as a percentage of the exact value of the
down-and-out call \(K \geq H \) under both weighting schemes................................. 44
Figure 13: Pricing error as a percentage of the exact value of the
down-and-out call \(K \geq H \) for varying times to maturity and
share prices under the equally weighted scheme... 45
Figure 14: Pricing error as a percentage of the exact value of the
down-and-out call \(K \geq H \) for varying times to maturity and
share prices under the probability weighted scheme... 45
Figure 15: Payoff function of the up-and-out call and the optimized
hedging portfolio for \(S_T > H \) under both weighting schemes......................... 48
Figure 16: Hedging error as a percentage of the exact value of the up-and-out call under both weighting schemes...48
Figure 17: Pricing error as a percentage of the exact value of the up-and-out call for varying times to maturity and share prices under the equally weighted scheme...49
Figure 18: Pricing error as a percentage of the exact value of the up-and-out call for varying times to maturity and share prices under the probability weighted scheme...49
Figure 19: Hedging error from three hedging strategies of 36 down-and-out calls $K < H$ based on Black-Scholes model prices and ATM volatilities...65
Figure 20: Hedging error from three hedging strategies of 35 down-and-out calls $K \geq H$ based on Black-Scholes model prices and ATM volatilities...65
Figure 21: Hedging error from three hedging strategies of 25 up-and-out calls based on Black-Scholes model prices and ATM volatilities...66
Figure 22: Constructing the $(n + 1)$th Level of the Implied Tree...79
Figure 23: The modified barrier for the up-and-out call option..84
Figure 24: The modified barrier algorithm...85
Table 1: Parameter specification of the Down-and-out Call $K < H$... 21
Table 2: Parameter specification of the Down-and-out Call $K \geq H$... 23
Table 3: Parameter specification of the up-and-out Call ... 25
Table 4: Parameter values set for running the optimization algorithm ... 34
Table 5: Strike prices of auxiliary options .. 37
Table 6: Solution to the optimized hedging portfolio of the down-and-out call $K < H$ under the equally weighted scheme ... 38
Table 7: Solution to the optimized hedging portfolio of the down-and-out call $K < H$ under the probability weighted scheme .. 38
Table 8: Minimum values of the equally weighted target function $h_e(x_i, K_i, i = 1,2,3)$ and the probability weighted target function $h_p(x_i, K_i, i = 1,2,3)$ for the down-and-out call $K < H$... 39
Table 9: Solution to the optimized hedging portfolio of the down-and-out call $K < H$ under the equally weighted scheme ... 42
Table 10: Solution to the optimized hedging portfolio of the down-and-out call $K < H$ under the probability weighted scheme .. 42
Table 11: Minimum values of the equally weighted target function $h_e(x_i, K_i, i = 1,2,3)$ and the probability weighted target function $h_p(x_i, K_i, i = 1,2,3)$ for the down-and-out call $K \geq H$... 43
Table 12: Solution to the optimized hedging portfolio of the up-and-out call under the equally weighted scheme ... 46
Table 13: Solution to the optimized hedging portfolio of the up-and-out call under the probability weighted scheme ... 46
Table 14: Minimum values of the equally weighted target function $h_e(x_i, K_i, i = 1,2,3)$ and the probability weighted target function $h_p(x_i, K_i, i = 1,2,3)$ for the up-and-out call .. 47
Table 15: Values of x_i set for naïve static hedging .. 52
Table 16: Simulation results based on three hedging strategies ... 53
Table 17: Data sample .. 55
Table 18: Hedging error mean and standard deviation of 36 down-and-out calls $K < H$ based on three hedging strategies, two option pricing models and seven volatility assumptions ... 62
Table 19: Best/worst hedging performance count amongst 36 down-and-out calls $K < H$ based on three hedging strategies, two option pricing models and seven volatility assumptions ... 62
Table 20: Hedging error mean and standard deviation of 35 down-and-out calls $K \geq H$ based on three hedging strategies, two option pricing models and seven volatility assumptions ... 63
Table 21: Best/worst hedging performance count amongst 35
down-and-out calls $K \geq H$ based on three hedging strategies,
two option pricing models and seven volatility assumptions.63

Table 22: Hedging error mean and standard deviation of 25
up-and-out calls based on three hedging strategies, two option
pricing models and seven volatility assumptions.64

Table 23: Best/worst hedging performance count amongst 25
up-and-out calls based on three hedging strategies, two option
pricing models and seven volatility assumptions.64