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Abstract  

Sequence coding is essential for sensory processing. Encoding information about the 

probability of a given stimulus being presented, and about the probability of stimuli 

forming repeated segments, are two critical aspects to abstract the information from the 

sequences. It is thought that the mammalian auditory system is highly sensitive to the 

regularities of the sound sequence and able to use predictive processing in order to 

automatically detect unexpected (deviant) stimuli and segment sound streams. This 

thesis investigates the predictive processing of sound sequences in the cortex of rodents 

and humans based on complex sequence regularities. 

 

The first study tests whether neural activity in the rat auditory cortex is modulated by 

previous segment experience. We recorded subdural responses using 

electrocorticography from the auditory cortex of 11 anesthetized rats. Prior to recording, 

four rats were trained to detect familiar triplets of acoustic stimuli (artificial syllables), 

three were passively exposed to the triplets, and another four rats had no training 

experience. While low-frequency neural activity was found to entrain (synchronize) to 

single stimuli, we did not find evidence for entrainment of neural activity to segments 

(triplets). However, in trained rats (but not in passively exposed and naïve rats), familiar 
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triplets could be decoded more accurately than unfamiliar triplets based on distributed 

neural activity in the auditory cortex. These results suggest that rats process acoustic 

sequences and that the training experience modulates their cortical activity even under 

subsequent anesthesia.  

 

In the second study, we tested whether the auditory cortical activity in awake mice 

shows sensitivity to violations of sequences based on local stimulus probability only or 

whether it is also sensitive to more complex violations based on stimulus order. We 

employed an auditory oddball paradigm, while recording wide-field calcium imaging 

from the auditory cortex of awake mice (N=8). During recording, mice were exposed 

to a series of standard pairs of artificial vowels and several types of deviant pairs. Prior 

to the oddball condition, we recorded the frequency response areas by presenting pure 

syllables at different sound levels, which enabled us to dissociate different auditory 

fields (A1, AAF, and A2). We found that mice could encode both the local probabilities 

and the more global stimulus patterns and elicited mismatch signals to the substitution 

deviants (pairs containing novel elements) and transposition deviants (pairs containing 

familiar elements in the wrong order), but not to omission deviants (pairs with elements 

missing). Notably, the A2 area elicited larger MMRs to those deviants than A1, which 

suggests a hierarchical gradient of prediction error signaling in the auditory system. 
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In the third study, we disambiguate neural correlates of “what” and “when” predictions 

by independently manipulating the predictability of temporal onset and acoustic 

contents at two hierarchical levels (single stimuli and stimulus pairs). Healthy 

volunteers (N=20) performed a repetition detection task while we recorded their neural 

activity using electroencephalogram. The results reveal that “what” and “when” 

predictions interactively modulated stimulus-evoked response amplitude in a 

hierarchically congruent manner, such that faster “when” predictions modulated the 

amplitude of mismatch responses to unexpected single stimuli, while slower “when” 

predictions modulated the amplitude of mismatch responses to unexpected stimulus 

pairs. We also find that the neural effects of these modulations were shared between the 

two hierarchical levels of prediction signalling in terms of the spatiotemporal 

distribution of EEG signals. Furthermore, by analyzing the entrainment of low-

frequency neural activity to stimulus stream, we found evidence for a gradual increase 

of entrainment to slow temporal predictions (regarding the timing of stimulus pairs).  

 

In conclusion, the thesis shows that rodents can encode both local probability and more 

complex and global patterns, such as perceiving as a chunk if they are highly trained. 

Besides, both rodents and humans can encode transitions and timing knowledge. Our 
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results suggested that these potential mechanisms for sequence coding (i.e., transitions 

and timing, chunking) might be evolutionarily conserved in animals and humans. 
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Chapter 1. General Introduction 

Detecting the unexpected change of patterns from the dynamic environment is vital for 

sensory processing, as it is essential to survival for humans and animals. For instance, 

a small animal looking for food needs to pay attention to surprising sounds in the 

environment, such as unexpected rustling sounds in the tall grass, to avoid predators, 

while ignoring ongoing background sounds, like the gurgling water sounds of a nearby 

stream. At the level of neural mechanisms, this deviance detection process can be 

indexed by the mismatch response (MMR), which is evoked by unexpected events. In 

a laboratory setting this is often produced by employing a classical oddball paradigm, 

when repetitive “standard” stimuli are presented in a sequence, but occasionally 

interrupted by unexpected “oddball” stimuli, which trigger the MMR (Näätänen et al., 

1978). The MMR has been reported across species, including in rodents, cats, and non-

human primates, and converging evidence suggests that, rather than reflecting mere 

neural adaptation to expected stimuli, the MMR reflects an active deviance detection 

process. which may provide information about higher-order processing in the auditory 

system (Nelken & Ulanovsky, 2007).  

 

Deviance detection is a prominent example of a more general function of the auditory 
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system - namely to encode the statistical regularities in its auditory inputs and discover 

the appropriate rules for segmenting sound streams (Dehaene et al., 2015). The 

sequencing, parsing, or chunking of auditory input streams is an essential aspect of 

auditory perception for human and non-human listeners alike. A particularly 

sophisticated example of auditory processing that owes much to this ability to chunk 

auditory inputs is the perception of human speech, which is characterized by the ability 

to generate countless and arbitrarily long sequences (i.e. sentences) using limited and 

shorter sequences (i.e. syllables and words). Noninvasive recordings of neural activity 

in humans have identified plausible correlates of chunking. For instance, an earlier 

electroencephalography (EEG) study (Sanders et al., 2002) suggested that a larger N100 

amplitude at the word-onset after training is a neural signature of sequence 

segmentation and chunking. 

 

Both deviant processing and chunking are thought to be hierarchically organized in the 

auditory system. Studies to date suggest that, in the case of MMR, the earliest station 

for predictive processing is found in the non-lemniscal inferior colliculus (Parras et al., 

2017). Conversely, the auditory cortex is the earliest region in which predictive 

processing has been observed for both mismatch responses and for more complex 

operations such as chunking. Downstream cortical regions, including the right inferior 
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frontal gyrus (rIFG) and anterior cingulate cortex (ACC), were also reported to involve 

the higher-order predictive processing (Hofmann-Shen et al., 2020).  

 

The organization of the subcortical and cortical auditory systems are similar across 

many mammals, including the hierarchy of different regions, their topography, and the 

laminar distribution of six cortical layers. These structural similarities underlie a 

functional homology of auditory processing and allow us to use animal models, with 

various techniques (including invasive electrophysiological and neuroimaging methods 

as well as genetic tools) typically unavailable in humans, in order to obtain more direct 

evidence for the neural mechanisms subserving auditory perception, including deviance 

detection and sequence segmentation. In contrast, non-invasive recording techniques 

typically used in humans (e.g., electroencephalography; EEG) offer whole-brain 

coverage and access to more complex cognitive functions which are difficult to 

operationalize in animal models. 

 

Hence, there are three main sections of related background material in this general 

introduction chapter. The first section describes the auditory pathway from the 

peripheral auditory system (including the ear and auditory nerves) to the central 

auditory system (ascending from the cochlear nucleus complex to the auditory cortex). 
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The second section of this chapter, dedicated to the significance of sequence coding, 

reviews two relevant mechanisms: (1) transitions and timing, and (2) chunking. The 

third section introduces the main recording methods used in this thesis. Following these 

three background sections, I provide an overview of my thesis and briefly describe each 

chapter focusing on empirical data. 

The Auditory Pathway 

Sound, a mechanical wave, which is emitted from the surface of vibrating objects, 

propagates through the transmission medium such as air or water. In mammals, there 

are three sequential stages along the pathway for the hearing process: the outer ear 

(including pinna and ear canal), the middle ear (including eardrum, tympanic cavity, 

and ossicles), and the inner ear (mainly including the cochlea) (Figure 1). 

The peripheral auditory system 

Besides being the first station to receive the sound wave, the pinna of the outer ear may 

also help localize the sounds (Batteau, 1967). Subsequently, the sound reaches the outer 

ear canal and pushes against the eardrum (tympanic membrane) of the middle ear. The 

sound pressure may be selectively gained in the ear canal due to the resonant cavity 

comprising the outer ear and eardrum (Aibara et al., 2001; Kurokawa & Goode, 1995). 

Then the pressure on the eardrum triggers the movement of auditory ossicles, which 
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acts as an impedance matching of sound traveling in the air-filled ear canal to traveling 

in the fluid-filled cochlea. The decline of sound pressure during the travel from air to 

the inner ear could be compensated at this stage. Another function of the middle ear can 

reduce sound conduction and protect the inner ear if the sound is too loud by the reflex 

contraction of the middle-ear muscles (Borg & Counter, 1989). The movement of the 

hair cells on the Corti’s organ, which is located on the basilar membrane, releases ion 

channels which cause changes in membrane voltage gradients and allow the conversion 

of initial mechanical vibration into electrical signals. These, in turn, stimulate synapses 

which trigger the excitation of auditory (Ⅷ nerve) fibers (Schnupp et al., 2011). 

Figure 1 

 

Figure 1. A cross-section of the side of the head, showing structures of the outer, middle, 

and inner ear. Reprinted from (Schnupp et al., 2011). 
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The central auditory system 

 

 

 

 

 

 

 

Figure 2. Schematic of ascending auditory pathway of the rat/mouse. CNC: cochlear 

nucleus complex; SO: superior olivary complex; IC: inferior colliculus; MGN: medial 

geniculate body; AC: auditory cortex.  

Cochlear nucleus complex  

The cochlear nucleus complex (CNC) is the first relay center of the ascending central 

auditory pathway in mammals, consisting of a dorsal cochlear nucleus (DCN) and a 

ventral cochlear nucleus (VCN). CNC majorly preserves the order of input from 

auditory nerves according to the topographic organization of frequency encoding (Cant 

& Benson, 2003; Osen, 1969). Most of the efferent pathways from the CNC terminate 

in the nuclei of the auditory brainstem. Part of the CNC output directly projects 

information toward nuclei in the superior olivary complex. Other ascending fibers go 

Figure 2 
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to the lateral lemniscus (Brawer et al., 1974) and the inferior colliculus. 

 

Superior Olivary Complex  

The superior olivary complex (SOC) is the second relay of ascending auditory pathway, 

which receives afferent projections from the CNC. SOC is a combination of large and 

small nuclei, and it is the first primary site to encode the binaural differences for spatial 

hearing (Goldberg & Brown, 1969; Joris et al., 2004). There are three main nuclei in 

the SOC, including the lateral superior olive (LSO), the medial superior olive (MSO), 

and the medial nucleus of the trapezoid body (MNTB). The LSO projects bilaterally to 

the central nucleus of the IC (Shneiderman & Henkel, 1987). The efferent projection 

from the MSO is mainly toward the inferior colliculus (IC), bypassing the ipsilateral 

lateral lemniscus (Henkel & Spangler, 1983; Shneiderman & Oliver, 1989). The MNTB 

is the source of projections to the dorsal portion of the central complex of the lateral 

lemniscus (Banks & Smith, 1992). The mammalian SOC shows a distinction among 

species (Malmierca et al., 2003) compared with mammalian CNC. compared with the 

mammalian CNC. For instance, both the LSO and MNTB in non-primate animals are 

larger, while those in humans are relatively small (Moore & Moore, 1971). 

 

Inferior Colliculus  



8 

The inferior colliculus (IC) in the midbrain is a mandatory auditory relay that converges 

all direct and indirect inputs from lower auditory centers (Irvine, 1992; Malmierca et 

al., 2003; Waitzman & Oliver, 2002). There are three major subdivisions in the rat IC 

(Faye-Lund & Osen, 1985), including the central nucleus (CIC), the dorsal cortex of 

the IC (DCIC), and (laterally) the external cortex of the IC (ECIC). The CIC mostly 

receives inputs from the ascending auditory pathway and keeps the tonotopic 

representation of the sound. The DCIC tends to be most strongly influenced by the top-

down projections from the cerebral cortex (Winer et al., 1995). The ECIC receives 

projections from the cerebral cortex, which is similar to the DCIC. However, the ECIC 

also receives projections from other non-auditory structures (Coleman & Clerici, 1987; 

Gruters & Groh, 2012; Yasui et al., 1990). As it is the beginning station of the auditory 

non-lemniscal pathway, the IC is thought to be the earliest station of predictive 

processing (Parras et al., 2017). 

 

The Medial Geniculate Body (auditory thalamus) 

The medial geniculate body (MGB), auditory thalamus, is the ‘gateway’ to the cortex 

in the ascending auditory pathway (Hubel & Wiesel, 1961; Sherman & Guillery, 2002). 

It can be divided into three subdivisions anatomically. The ventral division of the MGB 

(MGV) is the “core” area for auditory information transmission, and the MGV neurons 
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can be sharply tuned to frequency response. The dorsal division of the MGB (MGD) is 

thought to be an integrative area, and the auditory responses in this area can be affected 

by other non-auditory participations. The MGV and MGD mainly project to the 

auditory cortex (de la Mothe et al., 2006), while the MGM projects to the auditory 

cortex and amygdala (Doron & Ledoux, 2000). 

 

Auditory cortex 

The auditory cortex (AC) is the last relay of the central auditory pathway. All auditory 

inputs from lower auditory centers converge in the AC which subserves more complex 

auditory and perceptual processing. The AC can be divided into primary-like areas and 

secondary areas in most mammals. In rats, there are five main distinct areas of the 

auditory cortex, including the primary auditory cortex (A1), the anterior auditory field 

(AAF, also usually considered a “primary” field given its strong, direct thalamic input), 

and three secondary areas: the ventral auditory field (VAF), the posterior auditory field 

(PAF), and the suprarenal auditory field (SRAF) (Polley et al., 2007). The most 

significant distinction of the human and primate cortex is that it is folded (Figure 3) 

compared with rodents. In the human temporal lobe, the primary auditory cortex (A1) 

is located along Heschl's gyrus. A1 is tonotopically organized, such that neurons in the 

anterior area of A1 respond best to low frequencies while the posterior area responds 
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best to higher frequencies. The surrounding belt area of A1 is the secondary auditory 

cortex (A2), including the superior temporal gyrus (STG). 

 

Anatomists distinguish two distinct pathways projecting from IC to AC of rodents: the 

lemniscal auditory pathway and the non-lemniscal pathway. The lemniscal auditory 

pathway, carrying tonotopically organized and auditory specific information, includes 

the tonotopically-organized subcortical regions CIC, MGV and the tonotopically-

organized areas of the auditory cortex(A1, AAF and VAF). In contrast, the non-

lemniscal pathway, the non-tonotopically pathway, includes the DIC, MGD, MGM and 

the non-tonotopic organized auditory cortex (PAF and SRAF), which plays an 

important role in sensory integration, temporal pattern recognition, and certain forms 

of learning (Hu, 2003). Recent reviews (Carbajal & Malmierca, 2017, 2018) suggested 

that the non-lemniscal pathway constitutes a secondary system capable of encoding 

more complex auditory information and tracking the past auditory events, and accounts 

for generating deviance-detection activity and prediction error signals. 

 

Differences in sensitivity of different cortical regions to different components of 

predictive processing have been shown across species. For instance, a human EEG 

study (Hofmann-Shen et al., 2020) suggested that the primary auditory cortex and left 
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inferior frontal gyrus (IFG) are accounting for the “first-order” predictive processing 

(MMR), which reflect the processing of simple deviant features (such as frequency), 

while the rIFG and ACC was associated with the “higher-order” processing of novelty, 

such as the processing of unexpected auditory inputs and regularity violation of known 

patterns. In rats, the PAF (Parras et al., 2021) is more engaged in context-dependent 

predictive processing underlying deviance-detection than the other AC fields, 

suggesting that PAF may function as the chief generator of prediction error signals in 

the auditory cortex of rats. 

Figure 3 

 

Figure 3. Schematic of the ascending auditory pathway of human, from cochlea to 

cortex. Figure adapted from (Butler & Lomber, 2013). 
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The significance of sequence coding 

The mammalian auditory system can encode various types of regularities in the auditory 

sequence. For sequence coding, (Dehaene et al., 2015) proposed five distinct levels of 

sequence representation, possibly mediated by different neural mechanisms: (1) 

transitions and timing knowledge, or the extraction of information about the transitions 

from one stimulus to the subsequent stimulus; (2) chunking, that is,the grouping of 

several elements into a single unit; (3) ordinal knowledge, meaning the extraction of 

information about the sequential order of the stimuli; (4) algebraic patterns, or a 

formation of abstract schemas that capture the sequential regularities underlying a 

sequence of stimuli; and (5) nested tree structures, or a representation of suprasegmental 

(e.g., syntactic) structures characteristic of human languages. To facilitate a 

comparative perspective, this thesis mainly focuses on the first two mechanisms: 

transitions and timing knowledge, and chunking (Figure 4), both of which have been 

previously demonstrated in animal models. Furthermore, to limit the scope of cross-

species comparisons, in the thesis I will mainly discuss the neural mechanisms of these 

functions in rodents and humans. 
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Figure 4 

 

Figure 4. Illustration of the Proposed Taxonomy of Sequence Knowledge. Adapted 

from (Dehaene et al., 2015). 

 

Transitions and timing 

An influential integrative theory of perceptual inference, the predictive coding 

framework (Auksztulewicz & Friston, 2015; Friston, 2005; Friston & Kiebel, 2009), 

posits that when the brain processes the information about acoustic stimuli presented in 

a sequence, neurons in the auditory processing pathway are constantly generating and 

updating the predictions of an internal model of the environment. From this perspective, 

the primary role of auditory processing is to accurately predict the incoming input and 

to minimize the discrepancy between the sensory input and the predictive model, 

conserving energy. However, since the environment is inherently noisy, such 

discrepancies inevitably arise resulting in prediction errors. These prediction error 

signals in turn contribute to model updates. Importantly for this thesis, converging 
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evidence suggests that MMR activity reflects such prediction error signalling 

(Auksztulewicz & Friston, 2016; May & Tiitinen, 2010). 

 

MMR is modulated not only by the objective probability (high or low) of an entire 

stimulus, but also by an unexpected change of single acoustic features of the otherwise 

predicted stimuli. For example, a previous study (Giard et al., 1995) found that the 

auditory cortex and the prefrontal cortex in humans elicit MMRs to violations of pitch, 

spectral characteristics, intensity, or duration of the expected stimulus (pure tones). 

Similar results were also found in animals. In a recent animal study (An et al., 2020), 

MMR to violations of different acoustic features, including pitch, duration, location, 

and fine spectral features of the auditory stimuli, were observed using 

electrocorticographic (ECoG) recordings from the auditory cortex of rats. 

 

Predictions can be formed not only about acoustic features of stimuli, but also about 

the timing of these stimuli in a sequence. A recent human ECoG study (Auksztulewicz 

et al., 2018) found that cortical responses to target stimuli were modulated both by the 

stimulus content expectation, based on past stimulation (75% or 50% transition 

probability between the previous and current stimuli), and by the onset expectation 
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based on sequence timing (rhythmic/isochronous or random/jittered). Content and 

timing predictability modulated activity in dissociable regions and time windows. The 

“what” predictability (content) increased ECoG response amplitudes over IFG and 

middle frontal gyri at late latencies (420 – 460 ms), and the “when” predictions 

selectively enhanced the amplitude of the ECoG response over the precentral gyrus, the 

supramarginal gyrus, and the rostral middle frontal gyrus both at early (180 ms) and 

late (430 –450 ms) latencies. Besides, an interaction between “what” and “when” 

predictability over the posterior STG was observed at an early window. Computational 

modeling of ECoG data showed that the predictability of content and timing was best 

explained by dissociable gain control mechanisms in the higher-order auditory regions 

(STG). Thus, these results suggested that what (content) and when (time) predictions 

engage complementary neural mechanisms in different cortical regions. 

 

Animal studies also suggest that regularity-based predictive processing is hierarchically 

organized in the auditory system. (Parras et al., 2017) recorded single-unit activity and 

local field potentials from anesthetized mice, and found that prediction error signals 

were present in the major stations of the non-lemniscal auditory pathway of mice and 

increased along the ascending auditory pathway, which added evidence in support of  

that the prediction error signals were higher in the non-lemniscal pathway than in the 
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lemniscal pathway, suggesting that the non-lemniscal pathway works as a higher-order 

pathway for complex auditory processing (Carbajal & Malmierca, 2018). Using a 

similar oddball paradigm, in turn, (Lesicko et al., 2021) tested whether inactivation of 

the auditory cortex can modulate the prediction error in the IC by using optogenetic 

tools in awake mice and recordings of single neuron activity in the IC. The results show 

that inactivation of the auditory cortex led to a decrease in prediction error signalling 

in the IC, which provides more evidence for the top-down effects of predictive 

processing in the auditory pathway. 

 

Predictive processing is not limited to the auditory modality. A two-photon calcium 

imaging study (Hamm et al., 2021) identified mismatch responses in calcium activity 

in the primary visual cortex (V1) of mice, and provided more evidence for 

hierarchical predictive processing in other modalities. By combining the visual 

oddball paradigm with calcium imaging in different layers of the primary visual 

cortex from awake mice, the study found that deviance processing was stronger in 

supragranular layers (2/3) compared with the deeper layers. Importantly, this study 

also reported that inactivation of the prefrontal cortex decreased the neural correlates 

of predictive processing in V1, suggesting that the modulation of predictive 
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processing in the primary sensory cortex by the higher cortical regions is a modality-

general principle. 

Chunking 

In the mammalian neural system, when a series of contiguous items is frequently 

presented and repeated in sequence, then these items can be grouped as a coherent 

segment based on statistical regularities (transition probabilities between stimuli). 

Studies across species and stimulus domains suggest that neurons in the auditory cortex 

can encode these groups of items as a ‘chunk’, which may render the processing of 

sequences more efficient (Perruchet, 2006). Psycholinguists have proposed that this 

type of sequence learning ability may play an important part in human language 

acquisition, especially for linguistic word segmentation. This ability arises quite early 

in development, as eight-month infants are believed to be able to quickly learn to 

discriminate novel syllables based on statistical regularities; for instance, infants can 

detect the difference between novel “part-words” (e.g. tudaro) and “words” (e.g. daropi) 

after two-hour passive exposure to nonsense syllable streams in which these novel 

words are embedded (e.g. daropipabikugolatudaropitibudodaropigolatu…) (Saffran et 

al., 1996). This suggests that chunking might be a relatively automatic process, and a 

likely precursor of language acquisition (Romberg & Saffran, 2010; Wilson et al., 

2017).  
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More recently, (Ding et al., 2016) found that human subjects’ cortical activity is 

entrained (phase-synchronized) to distinct time scales of speech streams across 

different linguistic hierarchical levels. Crucially, the entrainment of neural activity to 

speech streams was modulated by the participants’ familiarity with the language in 

which speech streams are presented. For example, low-frequency neural responses of 

Chinese listeners exposed to Mandarin speech entrained to the syllable presentation rate 

as well as to the sentence presentation rate, since they could meaningfully chunk the 

continuous speech stream into discrete sentences. However, the neural responses of 

English speakers only entrained to the syllable level but not to the sentence level while 

listening to Mandarin speech. In a source localization based on ECoG data, results 

showed that stronger neural entrainment at the sentence level and phrase level were 

found in the STG, the IFG, and the temporoparietal junction, whereas neural 

entrainment at the syllable level was stronger in broad cortical areas, including temporal 

and frontal lobes, as compared with the acoustic control sequences.  

 

A recent ECoG study (Henin et al., 2021) in humans found that neural entrainment 

arises quickly in both auditory and visual modalities. Neural entrainment to both 

syllable level and word level were found in STG, motor cortex and pars opercularis of 

the IFG, while the neural entrainment to words alone was found in IFG and the anterior 
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temporal lobe. The authors also used multidimensional scaling to infer the types of 

neural representations based on recordings in the hippocampus, and found that the 

hippocampal electrodes contained signals related to word identity, whereas the cortical 

electrodes reflecting the neural entrainment to both words and syllables contained 

signals related to transitional probability. These results suggested there are multiple 

parallel computing systems for sequence learning across the cortical-hippocampal 

circuit. While this result provides a robust neural correlate of the human ability to 

segment speech streams, it remains an open question whether rodents could use similar 

chunking mechanisms and/or represent sequences at levels that are hierarchically 

higher than single elements and their probabilities.  

 

In rodents, an earlier study suggested that rats are sensitive to the statistical co-

occurrence of elements in the sequence (Toro & Trobalón, 2005). Artificial grammars 

were used in this experiment, and two groups of rats were required to learn two 

grammars respectively. Both grammars consisted of words, part-words and non-words. 

“Words” were formed as triplets of syllables (e.g. tupiro), and “part-words” were 

formed by using the first two syllables of a word and the last syllable of another word 

(e.g. tupidu). “Non-words” were formed by using three syllables which never appeared 

together in one word. The rats were exposed to a 20-minute syllable stream consisting 
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only of words before the test sessions. The authors found that the rats could not 

discriminate part-words from nonwords, but that they could discriminate words from 

part-words and nonwords, demonstrating that the rat could segment a speech stream by 

using the overall frequency of the elements (syllables). 

 

The results reported in another study (Murphy et al., 2008) suggested that rodents might 

have the ability to learn and transfer more abstract rules. In this study, three groups of 

rats were trained with two visual cues: a bright light (A) and darkness (B), subject to 

three rules: XYX (e.g., ABA or BAB, presented in a sequential order), XXY, and YXX , 

respectively. In each group, the rats could get food reinforcement following one 

stimulus sequence only (e.g. ABA=food, BAB=no food). Results showed that rats in 

all groups significantly differentiated the reinforced stimulus sequence from the 

unreinforced stimulus sequence in the last block. As there is no difference between 

groups, in a second experiment, they trained all rats only on rule 1 (XYX) using three 

pure tones (ABA, A=3.2 KHz, B=9KHz) and then tested the rats with three novel pure 

tones with the same rule (low-high-low tone frequency). The rats showed a preference 

for sounds that were consistent with the rule. These results suggested that rodents can 

learn and transfer simple rules from stimulus sequences. This study provided direct 

evidence for sequence learning by rats and suggested rats could transfer their 
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knowledge from learning experience, like humans. However, until now, there is no 

consensus regarding the degree to which rodents can learn sequences due to statistical 

contingencies or explicit rules, and what kinds of neural mechanisms could mediate 

processing rule-based sequences in rodents. 

Recording techniques 

Electrical activities of the neuron or neural population can be recorded through various 

techniques. For example, when the membrane potential of a neuron is over a certain 

threshold and elicits an action potential (also called the 'spike'), this high frequency 

activity can be recorded by the extracellular or intracellular recording. Furthermore, the 

sub-threshold membrane potential can also be measured by more versatile equipment 

like patch clamp. However, the brain typically encodes information (i.e., related to 

complex features of auditory inputs) in the neuronal activity of groups of neurons 

(Quiroga & Panzeri, 2009). The studies presented in this thesis focus accordingly on 

recording neuronal populations in different cortical areas by using EEG in humans, as 

well as electrocorticography (ECoG), and wide-field (WF) calcium imaging in rodents. 

Figure 5 shows the corresponding temporal and spatial resolution of these techniques.  
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Figure 5 

 

Figure 5. Temporal and spatial resolution of EEG, ECoG and calcium imaging. The 

horizontal and vertical solid lines denote resolution in temporal and spatial scale, 

whereas the rectangular color window characterizes the spatiotemporal span of each 

recording technique. Adapted from (Hong & Lieber, 2019) 

 

EEG 

EEG is a widely used method for studying brain electrical activity, especially in human 

experiments, because of its low cost and non-invasiveness. EEG signals mainly reflect 

the post-synaptic activity generated by the synchronized activation of large populations 

of pyramidal neurons in superficial cortical layers (da Silva, 2013). EEG electrodes are 

usually located on the scalp. However, before the neuronal signals reach the scalp, they 

must pass through multiple layers of tissues with different electrical properties and 

complex structures, such as the cerebrospinal fluid, dura mater, skull, and skin. This 
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means that EEG signals typically have a much lower amplitude and signal-to-noise ratio 

than intracranial signals (such as those based on ECoG recordings).  

 

In our EEG experiment (Chapter 4), we used an ANT Neuro EEGo Sports 64 channel 

EEG system which follows the 10-20 system of locating electrodes on the scalp. The 

electrodes are grounded at the nasion and referenced to the Cpz electrode. EEG signals 

can be analysed in at least two ways, tapping into complementary kinds of neural 

activity. In the time domain, EEG signals can be averaged across multiple repeats of 

the same stimuli to obtain event related potentials (ERP). In humans, ERPs to sensory 

deviants and standards are commonly contrasted against each other to quantify the so-

called mismatch negativity (MMN), a typical example of an MMR linked to signalling 

prediction errors or rule violations. In the frequency domain, EEG signals can be 

decomposed into different frequency components to quantify the power and phase 

consistency of neural oscillations in different frequency bands. Here, we used 

frequency-domain analyses to calculate the intertrial phase coherence (ITPC) of the 

EEG signal, in order to reveal the neural entrainment to the spectral peaks of tone 

sequences at different time scales. Data can also be analysed in a (mass-)univariate 

manner - i.e., treating each electrode and time point as an independent source of data, 

performing separate statistical tests for each data point, and accounting for the 
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correlation between neighbouring electrodes and time points using cluster-based 

correction for multiple comparisons - as well as in a multivariate manner - i.e., pooling 

data from multiple electrodes and channels to perform a single statistical test. In 

particular, multivariate decoding is a useful technique of testing whether the entire 

pattern of neural activity contains information about e.g. stimulus features. Both 

univariate and multivariate methods will be used in this thesis. 

 

 

 

 

 

 

 

 

Figure 6. The figure shows the default electrode positions of the international 10-20 

system used for EEG recording.  

 

ECoG 

ECoG is a popular experimental technique for studying various cortical functions in 

human clinical research and in animal experiments due to its high spatial and temporal 

Figure 6 
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resolution. ECoG records electrical activity directly on the surface of the cortex, and 

the signal mainly stems from the neuronal activity in the superficial layers of the cortex. 

In the cortex, electrical potentials can be measured when spatially aligned pyramidal 

neurons receive excitatory postsynaptic potentials and then are depolarized in a 

synchronized way. Similar to EEG signals, the local field potentials in superficial layers 

constitute the building block of ECoG signals (Buzsáki et al., 2012). Since the neural 

signals are homologous between EEG and ECoG, data analysis techniques are largely 

shared between the two data modalities, including time-domain estimation of ERPs and 

frequency-domain estimation of ITPC, as well as univariate and multivariate analyses. 

 

We employed a flexible 61-channel ECoG array (Insanally et al., 2016) and used it to 

record electrical activity over the auditory cortex of rats. The ECoG array is arranged 

on an 8 × 8 square grid (including 3 reference electrodes in the corners of the grid), 

covering an area of 10.6 mm2. The diameter of the electrode contacts is 203 μm, and 

the distance between the contacts is 406 μm. Each electrode contact is separately 

connected with 25 μm wire and spaced at 25 μm, which greatly reduces the width of 

the entire electrode array. The average electrode impedance is 26.4±1.7 kΩ at 1 kHz, 

which enables the recording of neural activity at a high signal-noise ratio.  
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WF calcium imaging 

Calcium is an essential intracellular messenger in the mammalian neural system 

(Grienberger & Konnerth, 2012). Calcium imaging is a widely used technique in 

neuroscience, based on optical measurements of fluorescence associated with the 

expression of calcium indicators in the cortex. This allows for measurements of calcium 

ion concentration, correlated with changes in neuronal activity. There are two different 

types of calcium indicators: chemical indicators and genetically encoded indicators 

(GCaMP), and both are commonly applied in rodents, but also in some non-human 

primate models such as macaques (Li et al., 2017). Calcium imaging is typically 

characterised by high spatial and temporal resolution.  

 

Calcium ions are an important intracellular messenger in all mammalian cells. Neurons 

will keep their intracellular Ca++ concentrations very low. Neural activity (action 

potentials) can lead to the opening of voltage gated Ca++ channels, which triggers rapid 

changes in intracellular free calcium (Baker et al., 1971; Tank et al., 1988) from a 

concentration of approx. 100 nM to approx. 10000 nM (Berridge et al., 2000). Most 

action potentials can be detected at the single neuron level with the newest indicators 

(GCaMP6s) (Chen et al., 2013) by using two-photon imaging and simultaneous 

electrophysiology recordings. However, two-photon imaging has a restricted spatial 
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field of view, limiting the recording to relatively small portions of the cortex. In contrast, 

wide-field imaging can be used to record from multiple regions simultaneously. While 

the sensitivity to single action potentials is lower than in two-photon imaging, wide-

field imaging nevertheless allows for a recording of approximately 20-30% of all action 

potentials occurring in a much larger portion of the cortex (Huang et al., 2021). Factors 

like the sampling rate, resolution of the microscopy, recording duration (causing tissue 

bleaching), and cranial window size may affect the calcium imaging quality.  

 

Here, we used GCaMP to express green-fluorescent calcium indicators in the brain of 

mice, specifically in subsets of excitatory neurons. GCaMP is a genetically engineered 

protein assembled from a cyclically permutated green fluorescent protein subunit, 

(cpGFP), the calcium-binding protein calmodulin (CaM), and the CaM-interacting M13 

peptide [56]. The expression of green-fluorescent calcium indicators (GCaMP6s) is driven 

by the mouse Thy1 promoter. The transgenic (Thy1-GCaMP6s) mice can be used for 

calcium imaging to record neuronal activity. GCaMP6s is widely used in research as 

the expression levels of the indicator in the cortex are quite stable and sufficient for in-

vivo imaging (Dana et al., 2014).  

Thesis Overview 
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This thesis investigates the predictive processing of sound sequences in the cortex of 

rodents and humans based on complex sequence regularities. In this introductory 

chapter, I have provided a general introduction of the background, including an 

overview of the auditory pathways, relevant literature on predictive processing, and 

recording techniques. 

 

The second chapter covers the first empirical study of my thesis (Ref). In the study, we 

tested whether neural activity in the rat auditory cortex is modulated by previous 

experience with stimulus sequences. We trained 4 female Wistar rats to be familiarized 

with syllable triplets using two alternative forced choice tasks (2AFC) tasks, and 

recorded ECoG signals from the auditory cortex of 11 animals in total (the 4 trained 

rats, as well as 4 passively exposed rats and 3 naïve rats). We found that low-frequency 

neural activity peaks of ECoG in the auditory cortex were observed both at the syllable 

level and triplet level (consistent with human studies) but did not robustly differentiate 

between trained and naïve animals. However, in trained rats, but not in passively 

exposed or naïve rats, could familiar triplets be decoded more accurately than 

unfamiliar triplets based on the spatial pattern of neural activity in the auditory cortex.  

 

In the third chapter, I examine whether the auditory cortical activity in awake mice 

shows sensitivity to violations of sequences based on local stimulus probability only or 
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whether it is also sensitive to more complex violations based on stimulus order. To this 

end, we recorded wide-field calcium imaging from the auditory cortex of Thy1-

GCamp6s transgenic mice exposed to a series of standard pairs of artificial vowels (‘bi 

pe’) as well as several types of deviant pairs. We found that auditory cortical activity 

encoded both the local probabilities and the more global stimulus patterns, and elicited 

mismatch signals to the substitution deviants (‘pe da’ and ‘da bi’) and transposition (‘pe 

bi’) deviants, but not to omission deviants (‘pe _’). Interestingly, the A2 area elicited 

more pronounced MMRs to those deviants than A1, which suggests a hierarchical 

gradient of prediction error signaling.  

 

In Chapter 4, I investigate the neural connection between "what" and "when" 

predictions by independently manipulating the contents and timing of auditory 

sequences at two hierarchical levels. Human EEG were recorded while participants 

were exposed to stimulus sequences containing acoustic oddballs at a hierarchically 

lower level (unexpected single tones) and a hierarchically higher level (unexpected tone 

pairs). In an ERP analysis, we quantified the effects of “what” and “when” prediction 

mechanisms at both the faster and slower time scales. We found an interaction effect 

between “what” and “when” predictions in terms of their modulation of the MMN 

amplitude at both time scales, indicating a congruency effect in predictive processing 

between so-called “what” and “when” events in the auditory system. ITPC analysis 
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showed that entrainment to stimuli at the slower temporal scale gradually increased 

over the course of the experiment and was mostly expressed over the right hemisphere, 

which is consistent with existing research on hemispheric asymmetries between 

processing at slower and faster time scales (Moser et al., 2021). 

 

Finally, the last chapter summarizes the main findings of my studies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.zotero.org/google-docs/?8dE8Xr
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Chapter 2. Learning Boosts the Decoding of Sound 

Sequences in Rat Auditory Cortex 

Abstract 

Continuous acoustic streams, such as speech signals, can be chunked into segments 

containing reoccurring patterns (e.g., words). Noninvasive recordings of neural activity 

in humans suggest that chunking is underpinned by low-frequency cortical entrainment 

to the segment presentation rate, and modulated by prior segment experience (e.g., 

words belonging to a familiar language). Interestingly, previous studies suggest that 

also primates and rodents may be able to chunk acoustic streams. Here, we test whether 

neural activity in the rat auditory cortex is modulated by previous segment experience. 

We recorded subdural responses using electrocorticography (ECoG) from the auditory 

cortex of 11 anesthetized rats. Prior to recording, four rats were trained to detect familiar 

triplets of acoustic stimuli (artificial syllables), three were passively exposed to the 

triplets, while another four rats had no training experience. While low-frequency neural 

activity peaks were observed at the syllable level, no triplet-rate peaks were observed. 

Notably, in trained rats (but not in passively exposed and naïve rats), familiar triplets 

could be decoded more accurately than unfamiliar triplets based on neural activity in 

the auditory cortex. These results suggest that rats process acoustic sequences, and that 
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their cortical activity is modulated by the training experience even under subsequent 

anesthesia.  

Introduction 

Chunking of auditory input streams is an essential aspect of auditory perception for 

human and non-human listeners alike. It is thought that the mammalian auditory system 

discovers the appropriate rules for segmenting sound streams from observing statistical 

regularities in its auditory inputs (Dehaene et al., 2015). Developmental studies in 

humans have shown that infants could discriminate transitional probabilities in auditory 

sequences after brief passive exposure to statistically regular stimulus streams (Saffran 

et al., 1996), which suggests that chunking might be a relatively automatic process and 

a likely precursor of language acquisition (Romberg & Saffran, 2010; Wilson et al., 

2017). Noninvasive recordings of neural activity in humans (Ding et al., 2015; 2017) 

have identified plausible correlates of auditory chunking, relying on the entrainment 

(phase-synchronization) of cortical activity to distinct time scales of speech streams 

(monosyllabic words, two-word syntactic phrases, and longer sentences). Crucially, the 

neural entrainment to speech streams was modulated by the participants’ familiarity 

with the language in which speech was presented. While these results provide a robust 

neural correlate of the human ability to segment speech streams, it is unknown whether 
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animals could use similar chunking mechanisms to process familiar stimulus sequences. 

 

In nonhuman primate models, sequence processing has typically been studied using 

artificial grammar paradigms and focused on cross-species comparisons. In the auditory 

domain, neural oscillatory signatures of sequence learning in the auditory cortex have 

been shown to be largely conserved between macaques and humans (Kikuchi et al., 

2017), although unlike in the human studies (Batterink & Paller, 2019; Ding et al., 

2015), the low-frequency entrainment effects were not frequency-specific to the 

stimulus presentation rates used in the artificial grammar sequences. Behavioral studies 

identified differences between species. For instance, Jiang et al. (2018) demonstrated 

that macaques could learn center-embedded relationships, such as ABC|CBA, in 

visuospatial sequences after extensive training, while human infants were sensitive to 

such artificial grammar structures after only brief exposure. In an earlier study (Wilson 

et al., 2013), which showed that macaques could differentiate more complex auditory 

artificial grammar structures relative to marmosets, which could detect only simple 

structure violations, e.g., based on the first position in a sequence.  

 

In rodents, the evidence for learning temporal regularities based on stimulus sequences 

is mixed. While one earlier study suggested that rats cannot extract abstract rules from 
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stimulus sequences but are sensitive to the statistical co-occurrence of elements within 

the sequence (Toro & Trobalón, 2005), another study (Murphy et al., 2008) found that 

rodents can be trained to learn abstract rules from stimulus sequences and transfer them 

to new stimuli. Moreover, Bale et al. (2017) found that mice could be trained to 

discriminate tactile temporal sequences based on stimulus order only. Another study 

(Gavornik & Bear, 2014) provided electrophysiological evidence of sequence learning 

in awake mice, namely that the primary visual cortex of trained (but not naïve) animals 

showed larger evoked responses and higher peak firing rates for familiar vs. unfamiliar 

visual sequences. These results suggest that cortical neural activity of rodents could be 

shaped by previous experience of (visual) sequences. However, whether similar effects 

generalize to the auditory modality, and to what extent animals need to be trained to 

show sensitivity to sequences, remains unclear.  

 

Here, we recorded neural activity in response to auditory sequences in anesthetized rats 

(N = 11). Prior to recording, the animals were split into three groups: a trained group 

was familiarized with syllable sequences using operant conditioning; a passive group 

received passive exposure to the same sequences; finally, a naïve group did not receive 

any exposure to these sequences. Using ECoG recordings from the auditory cortex, we 

quantified neural entrainment to segments of different lengths (syllables and triplets), 
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tested whether entrained signals can be found in cortical responses of anesthetized rats, 

and whether they can be modulated by either active or passive auditory experience. 

Finally, using multivariate decoding of acoustic segments based on spatiotemporal 

patterns of neural activity, we tested whether stimulus decoding is modulated by prior 

experience. In this manner, we were able to identify a new neural signature of acoustic 

stream segmentation in anesthetized rodents. 

Materials and Methods 

Eleven female Wistar rats were used in this study. The hearing threshold of all rats was 

normal, as confirmed by auditory brainstem response (ABR) recordings. Rats in the 

training group (n = 4) started behavioral training at 8 weeks of age, and once they 

finished training, they were subject to ECoG recordings. Another, passive group of rats 

(n = 3) was exposed to prolonged continuous acoustic stimulation prior to ECoG 

recordings, without any additional training. Finally, a group of naive rats (n = 4) without 

any training experience were only subject to ECoG recordings. The mean age (± SD) 

at the time of ECoG recordings was 28.58 ± 7.83 weeks, and the weight 306.36 ± 43.36 

g. All experimental procedures were approved by the Animal Research Ethics Sub-

Committee of the City University of Hong Kong under the animal license No. (17-76) 

in DH/SHS/8/2/5 Pt.1.  
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Artificial acoustic syllables selected from a database of Consonant-Vowel syllables 

(Ives et al., 2005) were used in behavioral training and subsequent recordings (see Fig. 

7A). The speech syllables were analyzed and resynthesized by an open-source vocoder, 

STRAIGHT (Kawahara, 2006) for MATLAB R2018b (MathWorks), to match the 

stimulus onset and duration of all syllables (531 ms) and shift the fundamental 

frequency and formant scalar of each Consonant-Vowel (CV) syllable upward 1 octave 

to match the optimal rat hearing range (Kelly & Masterton, 1977).  

 

Animals in the trained group performed two-alternative-forced-choice behavior tasks 

using drinking water as a positive reinforcer. The equipment and task were adapted 

from (Li et al., 2019). Behavioral training consisted of three separate training stages: a 

syllable learning stage (training rats to discriminate entire syllables and scrambled 

syllables), a triplet learning stage (to discriminate entire triplets and scrambled triplets), 

and a triplet discrimination training stage (to discriminate familiar triplets and novel 

unfamiliar triplets). In the first two stages (Fig. 7B), we used four syllable triplets as 

“familiar” stimuli (/pisore/, /gusima/, /dazolu/, /pekina/) and scrambled stimuli as 

“unfamiliar” stimuli (generated by epoching the waveform of each syllable into 10 

segments of equal length, and shuffling the segments; Fig. 7A). In the third and final 

training stage, we used the same four syllable triplets as “familiar” stimuli and other 
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syllable triplets (e.g., /gukewo/) as “unfamiliar stimuli”. Once the performance of 

animals in a particular training stage approached 75% accuracy, they progressed to the 

next stage. Rats performed approximately 300 trials per session and one session per day. 

The total duration of training was 33.15 ± 0.52 weeks (mean ± SD). To test whether this 

ability could transfer to novel stimuli, three animals were tested in a behavioral session 

using familiar stimuli and previously unheard unfamiliar stimuli.  

 

Animals in the passive group were exposed to continuous presentation of “familiar” 

triplets (/pisore/, /gusima/, /dazolu/, /pekina/) for 24 hours immediately prior to the 

electrophysiological recordings. Triplets were presented in a random order through 

loudspeakers at 80-85 dB in a sound-attenuated box. No further behavior or task was 

required.  

 

In this manner we created three cohorts of rats. The trained group had experienced the 

target syllable triplets as reinforced stimuli, the passive exposure group had been 

exposed to the target triplets for 24 hours, and the naïve group had no experience at all 

of the target triplets. All three groups were then subjected to identical 

electrophysiological recordings. There were two conditions in the ECoG experiment, 

delivered in separate trials. The order of the trials was randomized across rats. In the 
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first (familiar) condition, each trial contained a 35 s long auditory stimulus, composed 

of 20 familiar triplets (4 triplets, each with 5 repeats, presented in a random order) with 

no gap between triplets, padded with a 1.5 s silence at the onset and offset of each trial. 

In the second (unfamiliar) condition, triplets were modified to form unfamiliar 

sequences the rats had never heard before. Unfamiliar triplets were generated by (1) 

replacing the middle syllable with another familiar syllable (taken from another triplet), 

or (2) replacing the middle syllable with an unfamiliar syllable (never heard before), or 

(3) switching the order of the middle and final syllables, or combinations thereof. Each 

rat was exposed to 60 familiar stimulus trials and 60 unfamiliar stimulus trials.  

 

After anesthetic induction and ABR recordings, a 4 x 5 mm craniotomy was performed, 

extending from 0 to 4 mm ventral from the temporal edge and 0 to 5 mm posterior from 

the Bregma, to expose the right temporal lobe, and the dura matter was carefully 

removed. Electrophysiological data were recorded by an 8 x 8 rodent ECoG electrode 

grid at a sampling rate of 24,414 Hz, acquired and amplified by Tucker-Davis 

Technologies (TDT) RZ2 Bioamp Processor and TDT PZ5 NeuroDigitizer, and 

controlled by the BrainWare software. While in the present study we recorded responses 

from both primary and secondary auditory cortical fields, we did not acquire data 

allowing for channel mapping into separate regions. Auditory stimuli were delivered by 
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a TDT RZ6 multiprocessor sampling at 48,828 Hz and presented by a custom-made 

earphone with a flat frequency response (calibrated by a G.R.A.S 46DP-1 microphone). 

Continuous ECoG data were first band-pass filtered between 0.1-48 Hz using a 6th 

order two-pass Butterworth filter, and then downsampled to 150 Hz. To emphasize 

signal components which increase neural response repeatability across stimuli, we 

epoched the data into segments corresponding to a single triplet presentation and 

denoised the epoched data using the Dynamic Separation of Sources toolbox (de 

Cheveigné & Simon, 2008). 

Results and Discussion 

First, over multiple training sessions, the performance of all trained animals (n = 4), 

quantified as the sensitivity index d’, was significantly above chance level (see Fig. 7C 

and Table 1, one sample t-test, all p < 0.05). This result indicates that all trained animals 

could differentiate the familiar triplet stimuli from the unfamiliar control stimuli during 

the training sessions. The test result showed that the performance (d’) of all tested 

animals (n = 3) was above chance (bootstrap, p < 0.001), implying that animals did 

learn the familiar triplets in one context, and could recognize them when presented 

among different, unfamiliar triplets in another context. One remaining trained rat was 

not tested as it did not achieve 70% accuracy in the triplet training sessions which we 
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had set as a criterion for concluding the training, but the performance during training 

was still above chance (see Table 1). In the present study, to maintain the novelty of the 

unfamiliar triplet stimuli used in subsequent electrophysiological recordings, we did 

not expose rats to the same unfamiliar triplets during the training. While rats could only 

respond after sound sequence offset, we cannot exclude the possibility that they 

performed the task by memorizing parts of the triplets, instead of learning entire triplets. 

However, for the purpose of this study it was sufficient to ensure that the trained and 

the passive exposure group had extensive opportunity to become familiar with the 

sound sequences used in subsequent recordings. 

 

To test whether previous findings in humans – namely that familiarity with sound 

sequences yields spectral peaks in neural activity at rates specific to the duration of 

those sequences (Ding et al., 2015) – generalize to animal models, we analyzed the 

ECoG signals in the frequency domain (Fig. 8A). We calculated the Fourier power 

spectrum values of the continuous ECoG signals and normalized each power spectrum 

by dividing the power estimate for each frequency point within the 0.25-2.5 Hz range 

by the sum of all power estimates in this range. We observed that, across all rats, the 

spectral peaks for both the syllable rate (1.88 Hz) were significantly higher than for the 

neighboring frequencies (Fig. 8AB; Wilcoxon sign rank tests; Z familiar = 2.934, P familiar 
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= 0.003; Z unfamiliar = 2.934, P unfamiliar = 0.003). While triplet rate peaks were nominally 

higher relative to neighboring frequencies, reflecting minor peaks in the stimulus 

spectrum (Fig. 8C), this effect was weak and did not survive Bonferroni correction for 

multiple comparisons across the four tests (Z familiar = 2.045, P familiar = 0.041, Z unfamiliar 

= 2.401, P unfamiliar = 0.016). Furthermore, no differences in the triplet rate peak were 

observed between groups (pairwise Wilcoxon rank sum tests between trained, naïve, 

and passive groups: all p > 0.2), suggesting that there were no training-specific spectral 

signatures in our sample of anesthetized rats. It should be noted that while some earlier 

studies in humans (Batterink & Paller, 2019) suggested that low-frequency spectral 

peaks can be observed without attention, other studies demonstrated that diverted 

attention (Ding et al., 2018) and sleep (Makov et al., 2017) disrupt the neural correlates 

of acoustic chunking. Therefore, it cannot be ruled out that the animals’ state might 

have influenced the amplitude of spectral peaks, and future studies should test whether 

performing neural recordings in awake animals could uncover stronger signatures of 

neural entrainment to the sequence presentation rate.  

 

Next, we turned to the analysis of neural signals in the time domain. We applied a 

principal component analysis to the denoised data after concatenating data across all 

animals and trials, and retained the first component (explaining 52.96% of the variance). 
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Then, we segmented the data into epochs, separately for each animal, trial, and triplet. 

Based on the segmented data, we calculated the average root-mean-square (RMS) 

amplitude over 20 triplets, separately for each trial and time point. Here we found that 

the response waveforms of ECoG responses were quite diverse across rats, and there 

was no consistent difference in responses to familiar and novel stimuli between trained, 

passive, and naïve animals. Specifically, a repeated-measures ANOVA was conducted 

to compare the single-trial RMS values of time courses between conditions (familiar vs. 

unfamiliar) and groups (trained vs. naïve). In the ANOVA, neither the main effect of 

condition (all p > 0.05, FDR-corrected across time points) nor a significant interaction 

between group and condition was observed (all p > 0.05, FDR-corrected). However, we 

observed a significant main group effect at all three syllables (all F2,1298 > 10.826, all p 

< 0.05, FDR-corrected), indicating that acoustic training had modulated the overall 

neural responses to sound stimuli. Furthermore, we compared the RMS amplitude 

curves separately for each animal between the two conditions (familiar vs. unfamiliar; 

Fig. 9) and found significant differences at the second and third syllable positions in all 

animals except one (t-test, all p < 0.05, FDR-corrected across time points). Still, the 

direction of these differences was not consistent across syllables and rats (as evident 

from the lack of the main effect of condition in the repeated-measures ANOVA), 

indicating that average neural responses to familiar and unfamiliar stimuli were 
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heterogeneous in our sample (An et al., 2021). Thus, unlike previous findings (Sanders 

et al., 2002, 2009), showing that a larger N1 amplitude of the EEG response at the first-

syllable position in human subjects after familiarization may be a neural correlate of 

auditory chunking, in the present study we did not observe consistent amplitude 

differences or peaks in the time course analysis. While this suggests that the neural 

responses averaged over the entire AC region are not a sensitive measure of prior 

experience with familiar sequences, it does raise the possibility that sequence 

familiarity might instead affect more fine-grained population responses, accessible 

through multivariate analyses.  

 

To determine whether stimuli can be decoded from neural activity, and whether 

stimulus familiarity affects decoding, we quantified the relative multivariate 

Mahalanobis distance (dissimilarity; (Ledoit & Wolf, 2004)) between spatial patterns 

of neural responses to different familiar and unfamiliar stimuli. In the first step, we 

calculated the RMS over time points of the ECoG amplitude for each channel, stimulus 

(i.e., each triplet), syllable, and rat. Then, per stimulus type (familiar vs. unfamiliar), 

syllable, and rat, we used a leave-one-out cross-validation method to calculate the 

single-trial Mahalanobis distance values between the vector of RMS amplitudes 

concatenated across channels for a particular trial, and four vectors of average RMS 
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amplitudes (averaged across the remaining trials, separately for each of the four triplets) 

concatenated across channels. The single-trial decoding estimate was calculated as a 

difference between (1) the dissimilarity between RMS amplitudes observed in this trial 

vs. other trials of the same stimulus, and (2) the average dissimilarity between RMS 

amplitudes observed in this trial vs. other stimuli. These single-trial decoding estimates 

were averaged across trials, separately for each stimulus type (familiar vs. unfamiliar), 

syllable, and rat. Finally, per syllable and rat, we calculated a ratio between the averaged 

decoding estimates for familiar vs. unfamiliar stimuli. These ratios were compared 

between trained, passive, and naïve rats, separately for each syllable.  

 

As expected, no difference between trained, passive, and naïve animals was observed 

for the first syllable (permutation tests; trained vs. naïve: p = 0.301; trained vs. passive: 

p = 0.192; passive v. naïve: p = 0.337; Fig. 10), since the first syllables were physically 

identical in both types of triplets. At the second syllable, while we did not find evidence 

for a consistent, significant difference between groups (trained vs. naïve: p = 0.190; 

trained vs. passive: p = 0.300; passive v. naïve: p = 0.080; Fig. 10), one of the four 

trained rats showed robust improvement in decoding for familiar vs. unfamiliar stimuli. 

Crucially, we found a robust difference between groups at the third syllable position, 

where the decoding values in the trained group were significantly higher than in the 
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remaining groups group (trained vs. naïve: p = 0.010; trained vs. passive: p = 0.002; 

passive v. naïve: p = 0.240; Fig. 10).  

 

Consistent with our hypothesis and with previous studies in the visual modality 

(Gavornik & Bear, 2014), all trained animals were more sensitive to the familiar stimuli 

than to the unfamiliar stimuli (decoding ratio, including 95% confidence intervals, 

above 1 for all trained animals; Fig. 10). Our results are also consistent with a previous 

study in humans (Batterink et al., 2015), in which familiarity effects were strongest on 

the late/final sequence elements, and were specifically improved by previous extensive 

training, but not by passive exposure. Importantly, in our study the decoding boost was 

observed in neural activity recorded during post-training anesthesia. While one 

previous study in cats has identified rapid effects of passive exposure to visual 

sequences (movies with natural scenes) on cortical activity under anesthesia (Yao et al., 

2007), most studies in animal models used extensive behavioral training and recordings 

in awake animals to identify the behavioral and/or neural correlates of sequence 

processing (Bale et al., 2017; Gavornik & Bear, 2014; Homann et al., 2017; Murphy et 

al., 2008). However, given a recent study based on single-neuron recordings in the 

auditory cortex of awake mice (Libby & Buschman, 2021), in which neural signatures 

of passive sequence learning were shown to gradually increase over several days, it 
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cannot be ruled out that decoding would also have been observed in our passive group 

after more extensive exposure. Nevertheless, the effect of prior training on shaping the 

neural responses to familiar stimuli under anesthesia is consistent with earlier findings 

in rats that training-induced receptive field plasticity shifts the sensitivity of neuronal 

populations in the auditory cortex toward the reinforced sound frequency (David et al., 

2012; Fritz et al., 2005). Here, we show that learning experience boosts the ability to 

decode stimulus information from neural activity also in the context of learning 

temporally extended sequences.  

 

In summary, we show that training experience can improve the neural sensitivity to 

sequences in rodents, although the neural correlates typically observed in humans (low-

frequency entrainment to sequence presentation rate) are not detectable in the neural 

activity of anesthetized rodents. Instead, we show that behavioral training leads to 

improvements in decoding stimulus-related information from the spatial pattern of 

neural activity in the auditory cortex, even under anesthesia. Future studies should test 

the behavioral relevance of these signals by relating the neural activity to behavioral 

responses in awake and behaving animals.  
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Figure 7 

 

 

Figure 7. Behavioral stimuli and training paradigm. (A) Spectrograms of two 

example stimuli (/pisore/ and its scrambled equivalent). (B) Two-alternative forced 

choice training paradigm. There were three training stages in total. In training stage 1, 
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there was an additional spatial cue for helping rats to recognize the syllables. This 

spatial cue was gradually removed as rats reached a threshold of 75% accuracy in 

discriminating familiar (i.e. /ba/→lick left side) and unfamiliar stimuli (i.e. /ba/-

scrambled → lick right side). In training stages 2 and 3, rats were conditioned to 

discriminate familiar (i.e. /pisore/ → lick left side) and unfamiliar (i.e. /pisore/-

scrambled or /gukewo/ → lick right side) triplets rather than single syllables. (C) 

Behavioral performance of individual rats during training. The grey dots denote the 

training results of each training session (d-prime values) and the pink dots represent the 

test results (d-prime values) in the testing session. Performance of all rats was above 

chance level (bootstrapped, all p<0.05), and three out of four rats which approached 

70% accuracy in the triplet learning stage also performed significantly above-chance in 

the test session (chance level: d’=0, bootstrapped, p<0.05). 
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Figure 8 

 

 

Figure 8. Frequency-domain neural activity. (A) Normalized power spectrum values 

calculated for familiar triplets in the trained group (n=4; blue), passive group (n=3, 

orange) and naïve group (n=4, red), showing a robust peak at the syllable rate but no 

robust peak at the triplet rate. No significant differences were observed between groups. 

Shaded areas denote SEM across rats. (B) Average power spectra for unfamiliar triplets. 

Legend as in (A). (C) Average power spectra based on stimulus envelope. Black: 

familiar stimuli; grey: unfamiliar stimuli; shaded areas denote SEM across trials.  
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Figure 9 

 

 

Figure 9. Time-domain neural activity. (A-C) Blue/red lines denote the (RMS) 

amplitude over triplets of the ECoG response to familiar/unfamiliar sequences for each 

individual rat from the trained group (A), naïve group (B), and passive group (C). Grey 

dots show the significance of the main effect of stimulus familiarity per time point of 

the RMS amplitude (t-test, P<0.05, FDR corrected). (D) RMS time courses averaged 

across individual rats, per group. Grey dots show a significant main effect of group 

(ANOVA, P<0.05, FDR corrected). 
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Figure 10 

 

 

Figure 10. Multivariate analysis. The blue bars show the decoding index (the ratio of 

decoding familiar stimuli to decoding unfamiliar stimuli) for trained rats whereas the 

orange/red bars indicate the decoding index for the passive/naïve groups respectively. 

Thick blue/orange/red lines indicate the 95% confidence interval (CI) range of decoding 

indices at the group level. Each black dot represents the respective decoding index per 

rat, and each black line stands for the 95% CI of individual rats’ decoding indices. 

Asterisks denote significant differences between groups (p < 0.05).  
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Table 1 

 

Table 1. Statistical information. Behavioral training information and results of all 

animals.  
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Chapter 3. Deviant Processing of Complex Sounds in 

Mouse Auditory Cortex 

Introduction  

Deviance detection is a fundamental building block of cognition as it allows for learning 

and optimizing internal models of the world (Auksztulewicz & Friston, 2016). The 

mammalian auditory system encodes the same stimuli differently, depending on the 

context in which they are presented, such as the order of the stimulus in a sequence 

(Herrmann et al., 2015; Perez-Gonzalez et al., 2005; Yaron et al., 2012), or whether the 

stimulus is expected or unexpected based on the statistical regularities in the auditory 

inputs (Dehaene et al., 2015). The classical oddball paradigm has been extensively used 

for studying the neural mechanisms of deviance detection (Naatanen et al., 2007; 

Ulanovsky et al., 2003). It involves presenting a sequence of identical repeating stimuli 

(‘standards’), which as a result have a high probability, and oddball stimuli (‘deviants’), 

which have a low probability (Cowan et al., 1993). The difference between neural 

responses to the deviant stimulus and standard stimulus is known as a mismatch 

response, and accumulating evidence suggests that MMRs can reflect prediction error 

signals, rather than mere release from adaptation to the standard (Auksztulewicz & 

Friston, 2015; Carbajal & Malmierca, 2018; Friston, 2005; Garrido et al., 2009; May & 
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Tiitinen, 2010). 

 

Both humans (Chennu et al., 2016; Wacongne et al., 2011) and macaques (Uhrig et al., 

2014) (Wang et al., 2015) can detect deviants not only based on local probabilities of 

single stimuli (i.e., in sequences of the type A|B, where a particular standard stimulus 

A has a high probability and deviant stimulus B has lower probability), but also based 

on more complex patterns multiple elements, which may be “chunked” or grouped 

perceptually according to observed transition probabilities, (consider phonemes 

grouped into syllables and syllables grouped into streams of vocalizations as an 

example). In such contexts, whether individual sounds are expected or not may depend 

either on their “local” or their “global” context (Chao et al., 2018). Similarly, in humans, 

the auditory cortex elicits MMR also based on unexpected repetitions (AB|AA) and 

unexpected omissions (AB|A_), which suggests that humans chunk the standard pair 

(AB) and encode the prediction error to chunk violations (Chouiter et al., 2015; 

Todorovic & de Lange, 2012; Todorovic et al., 2011). While rodents can detect single 

deviants (Ulanovsky et al., 2003; Yaron et al., 2012) and change in acoustic features 

(An et al., 2021; Yang et al., 2021), to the best of our knowledge there is no direct 

evidence for MMR signaling in complex sound sequences, although rats can perform 

sequence chunking if extensively trained (Luo et al., 2021) or if the sequences are 
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repetitive enough (Cappotto et al., 2021). 

 

In rodents, an extensive literature on mismatch responses to single stimuli suggests a 

hierarchy of regions, such that secondary areas encode deviance detection to a larger 

extent than primary areas (Parras et al., 2021; Parras et al., 2017). In addition, an earlier 

study (Chen et al., 2015) using two-photon guided patch recording in the primary 

auditory cortex of anesthetized mice suggested that the early component (0-100 ms after 

tone onset) of the neural response to a deviant sound may reflect neural adaptation, 

while the late component (200 – 400 ms after onset) may reflect deviance 

detection. However, it remains elusive whether the primary auditory cortex, or higher 

order regions, can also encode deviance in more complex stimulus patterns. 

 

In this study, we used continuous, repetitive trains of syllable pairs consisting of 

artificial syllables (‘pe bi’) as high probability standard stimuli, and manipulated the 

elements of the pair to obtain three different types of low probability deviants: (1) 

substitution deviants (‘pe bi’→‘pe da’ or ‘pe bi’→’da bi’), (2) transposition deviants 

(‘pe bi’→‘bi pe’), and (3) omission deviants (‘pe bi’→‘pe _’). Note that the silent 

interval within a syllable pair (0.145 s) was much shorter than the interval between 

syllable pairs (2.35 s), which encourages perceptual grouping of the syllable stream into 
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disyllabic “chunks”. This grouping sets up a context in which deviations from the 

expected ‘pe bi’ can be thought of as occurring on a local, within-syllable-pair level 

(substitutions or omissions) or on a more global level involving the whole pair 

(transpositions). As a control condition, we also presented streams of the same syllable 

pairs (pe bi’,‘pe da’, ‘da bi’, ‘bi pe’ and ‘pe _’) but with equal probability (see Fig. 11a). 

We performed wide-field calcium recordings (see Fig. 11b), imaging from multiple 

auditory cortical areas of awake mice. We focused on testing whether cortical activity 

in mouse auditory cortex, as revealed by Ca++ imaging, is sensitive to sequence 

violations, and whether the character of this sensitivity differs for within-pair vs more 

global, whole-pair violations. Further, we investigated whether mismatch responses to 

different deviant types differ between primary and higher-order regions.  

Figure 11 
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Figure 11. (A) Schematic of auditory stimuli paradigm. (B) Customized experimental 

set-up for awake recording. Head-fixed Gcamp6s transgenic mice passively listened to 

auditory stimuli during wide-field microscopy imaging of the auditory cortex. (C) 

Spectrograms of auditory stimuli.  

Results  

Parcellation of regions into primary and higher-order auditory cortex 

Figure 12 

 

Figure 12. (A) Example of WF calcium signal to pure tones of different frequencies and 

sound levels of pure tones in one animal. Each image shows the averaged evoked 

response within 200-500ms after tone onset. (B) Example of tonotopy map at 40 dB 

attenuation in one animal. Different frequencies (kHz) of pure tone are color-coded, 

and each contour line illustrates the response area to the corresponding frequency. (C) 

Schematic of a tonotopic FRA map. Arrows represent gradients of low to high 

frequency preference. Distinct auditory fields (A1, AAF, A2) marked in different colors. 
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(D) Tonotopic FRA maps of 8 animals. Color indicates the corresponding auditory 

fields. 

 

We performed imaging of the left auditory cortex of ten awake adult mice, but excluded 

two animals due to poor data quality caused by cloudy cranial windows. Before 

characterizing the cortical responses to the syllable stimulus trains just described, we 

first identified the spatial location of different auditory cortical fields by imaging the 

frequency response areas (FRA) to different frequencies of pure tones (4-64 kHz in half 

octave steps) at different attenuation levels (0 dB, 20 dB, 40 dB). We found a clear 

tonotopy map for all analyzed subjects (N=8). The fluorescence amplitudes increased 

most at the 0 dB attenuation level, while the tonotopic map was much clearer at 40 dB 

attenuation. Based on the relative positions and the corresponding tonotopic gradients 

of different areas in the FRA map (Fig. 12C), we subdivided the imaged auditory 

cortical areas into A1, AAF, and A2. The tonotopic organization was reliable across all 

animals (Figure 12D) and was consistent with the previous study using the same type 

of transgenic animals (Liu et al., 2019; Romero et al., 2020).Finally, we selected the 

components for each area based on the tonotopic map from the ROIs generated by an 

autoencoder analysis as described in (Liu et al., 2019). 

 

Neuronal adaptation to repetition of auditory stimuli in the Oddball condition 
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Figure 13 

 

Figure 13. (A)Neural adaptation to subsequent repetitions of standard stimuli. 

(B)Linear regression quantifying repetition suppression. (C) Calcium response to 

deviants and standards in oddball condition. (D) Calcium response to the same stimulus 

types in the control condition. 

 

First, we quantified neuronal adaptation by analysing the responses to subsequent 

standard syllables. We observed that the fluorescence of the response to standard stimuli 

decreased from the first standard to the last repeat (immediately preceding the oddball 

stimulus; “pre-odd”) A1, AAF and A2 (See Fig. 13A). To test whether there is a neural 

adaptation effect, per area we performed linear regression on the area under the curve 

(AUC) of the fluorescence in response to the first three standard repeats and the last 

repeat. We identified a significant decrease of the AUC values from the first repeat to 

the last repeat in all areas (A1: F(2,150) = 10.7, P = 0.001; AAF: F(2,102) = 4.46, P = 
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0.037; A2: F(2,118) = 4.93, P = 0.028; see Fig. 13B).  

Then, to test whether the syllable pairs differed significantly in how strongly they 

activate cortex per se, independently of oddball or frequency effects, we performed 

two-way ANOVA on AUC values of fluorescence. We tested for differences between 

the four stimulus types (the standard and 3 deviants) and auditory areas (A1, AAF, A2), 

separately for the oddball condition and control condition.  

In the control condition, there was a significant main effect of stimulus type (F (4,455) = 

36.06, P < 0.001) and areas (F (2,455) =36.77, P < 0.001). However, the interaction 

between stimulus type and areas was not significant (F (8,455) = 0.65, P = 0.737).  

In the oddball condition, the main effect of the stimulus type was also significant (F 

(4,737) = 158.58, P < 0.001) as was the main effect of auditory areas (F (2,737) = 80.37, P 

< 0.001). In addition, we found a significant interaction between stimulus types and 

auditory areas (F (8,737) = 3.17, P = 0.002). In the post-hoc comparison in the oddball 

condition, we observed significant differences between deviants (averaged over type) 

and standards (A1: t37 = 11.758, P<0.0001, AAF: t25 = 10.792, P<0.0001, A2: t29 = 

12.560, P<0.0001). Then we compared the overall response between areas, and we 

found the overall response in A2 and AAF (post hoc, both p<0.0001) to be significantly 

stronger than in A1, and there is no significant difference between AAF and A2 (post 
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hoc, P=0.160).  

Thus, these results suggest that, in the oddball condition, stimulus frequency modulates 

the responses to stimuli, and this modulation might differ between auditory region. 

Such effect was not found in the control condition and we would not include the control 

condition for further comparison. 

 

Wide field responses to complex deviants  

Figure 14 

 

Figure 14. (A) Comparison of calcium response to the first standard stimuli, pre-odd 

standard stimuli and oddball stimuli across different deviant types and distinct auditory 

fields. (B) Comparison of mismatch response to the oddball (AUCoddball) and the 

responses to the standard preceding the oddball (AUCpre-odd) or to the first standard 

following the oddball (AUCfirst) between areas in oddball condition (substitution 
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oddball, ‘pe da’). (C) Comparison of mismatch response to the oddball (AUCoddball) and 

the responses to the standard preceding the oddball (AUCpre-odd) or to the first standard 

following the oddball (AUCfirst) between areas in oddball condition (substitution 

oddball, ‘da bi’). 

 

To estimate the mismatch responses evoked by different types of deviant stimuli, first 

we compared the AUC of fluorescence to the substitution (‘pe da’, ‘da bi’) and 

transposition (‘bi pe’) deviant stimuli against the pre-odd standard stimuli (‘pe bi’) in 

oddball blocks. This analysis showed that, for deviants containing a substitution of the 

second element of the pair (‘pe da’), the AUC was significantly larger for oddball 

stimuli compared with the pre-odd standard stimuli. This was true in all auditory fields 

(A1 area, paired t-test: t 37 = 13.672, Ppeda < 0.001; AAF area, paired t-test: t25 = 9.832, 

Ppeda < 0.001; A2 area, paired t-test: t29 = 13.411, Ppeda < 0.001; FDR corrected). 

Similarly, for deviants containing a substitution of the first pair element (‘da bi’), we 

found the same pattern of results in all areas (A1 area, paired t-test: t37 =14.240, Pdabi < 

0.001; AAF area, paired t-test: t25 = 10.126, Pdabi < 0.001; A2 area, paired t-test: t29 

=10.342, Pdabi < 0.001; FDR corrected). Interestingly, for the transposition condition 

(‘bi pe’), we found significant differences between the AUC of the deviants and the pre-

odd standard in the AAF and A2 areas (AAF area: paired t-test: t25 =3.031, Pbipe = 0.006; 

A2 area: paired t-test: t29 =3.224, Pbipe = 0.003; FDR corrected), but not in the A1 area 
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(paired t-test: Pbipe > 0.05; FDR corrected). 

 

In the above analysis, we compared the responses to a deviant stimulus vs. to an adapted 

pre-odd standard. Next, we sought to quantify the mismatch response after taking 

adaptation into account. To this end, we compared the AUC of fluorescence to the 

deviant stimuli (‘pe da’, ‘da bi’, ‘bi pe’) against the first standard stimuli (‘pe bi’) in 

oddball blocks. The results showed that for substitution deviants (‘pe da’ and ‘da bi’), 

the AUC of response to deviants was significantly larger than that to the first standard 

stimuli in all auditory fields (A1 area, paired t-test: t37 = 6.916, Ppeda < 0.001; AAF area, 

paired t-test: t25 = 5.836, Ppeda < 0.001; A2 area, paired t-test: t29 =7.990, Ppeda < 0.001; 

A1 area, paired t-test: t37 =8.716, Pdabi < 0.001; AAF area, paired t-test: t25 = 6.798, Pdabi 

< 0.001; A2 area, paired t-test: t29 =9.646, Pdabi < 0.001; FDR corrected for all P values). 

On the other hand, for the transposition deviant (‘bi pe’), we found that there was a 

significant difference between the AUC of the deviants vs. the first standard in the A1 

area (paired t-test: t37 =-2.862, Pbipe = 0.006; FDR corrected), but not in the AAF and 

A2 areas (AAF area, paired t-test: Pbipe > 0.05; A2 area, paired t-test: Pbipe > 0.05; FDR 

corrected). 

 

Having shown that there are significant mismatch responses (difference between 
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AUCoddball and AUCfirst, all P <0.001, FDR corrected, see Fig. 14A) to substitution 

deviants in all fields, and to transposition deviants in a subset of fields (AAF and A2 , 

PAAF=0.006,PA2=0.003, FDR corrected, see Fig. 14A), we then tested for differences in 

mismatch responses between fields. To this end, for each area and deviant type we 

subtracted responses to standards from responses to deviants, and entered the difference 

values into rank-sum tests between areas. We found there was a significant difference 

between A1 and A2 in mismatch responses to substitution deviants compared with the 

pre-odd standards (rank-sum test, Zpeda = 2.773, Ppeda = 0.006, Zdabi = 3.005, Pdabi = 0.002, 

FDR corrected,see Fig.14C), but not between A1 and AAF (rank-sum test, all P > 0.05, 

FDR corrected), or between AAF and A2 (rank-sum test, all P > 0.05, FDR corrected). 

However, when analyzing mismatch responses relative to the first standard, we only 

identified a significant difference between A1 and A2 in mismatch responses to deviants 

based on substituting the first element of the pair (‘da bi’; mismatch response 

significantly stronger in A2, rank-sum test, Z = 2.612, P = 0.009, FDR corrected), but 

not between other pairs of regions, and not for other types of deviants (all other P > 

0.05).  

 

We observed no significant omission responses in this study. The AUC of fluorescence 

to the omission deviant stimuli was found to be smaller than to the standards in all 
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auditory cortical fields (deviant vs pre-odd: paired t-test, t37 = 2.929, PA1=0.006, 

t25=5.919, PAAF<0.001, t29=9.807, PA2<0.001, FDR corrected; deviant vs fist standard: 

paired t-test, A1(t37 = 10.065), AAF(t25=9.844), A2(t29=10.175), all P <0.001, FDR 

corrected, see Fig. 15C).  

 

Beyond quantifying mismatch responses averaged over time (using AUC of 

fluorescence values), given previous reports that neural activity at different latencies 

might be functionally dissociable (Chen et al., 2015), we also aimed at characterizing 

mismatch responses with a higher temporal resolution. To this end, we calculated the 

first temporal derivative values for the calcium responses traces (fluorescence) and 

subjected them to further analysis (see Fig. 15A). In the temporal derivative time series, 

we observed four distinct response peaks (i.e., an early and a late response to each 

stimulus in a pair), based on which we specified four distinct time windows for the sub-

syllabic responses: the early peak of the first syllable (0-133 ms after the first stimulus 

onset), the late peak of the first syllable (166-300 ms after the first stimulus onset), the 

early peak of the second syllable (0-133 ms after the second stimulus onset) and the late 

peak of the second syllable (166-300 ms after the second stimulus onset). 
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Figure 15 

 

Figure 15. (A) The first derivatives of the traces of standard stimuli from all components 

in the control condition. Four peaks of derivative values in different time windows were 

observed. (B)The first derivatives of the traces (dark: standard, color-coded: deviants) 

from A1, AAF and A2 were plotted in the oddball condition and control condition. (C) 

Comparision of calcium response to the first standard stimuli, pre-odd standard stimuli, 

and oddball stimuli across distinct auditory fields in omission condition. (D) The first 

derivatives of traces (dark: standard, yellow: pe_) from A1, AAF and A2 were plotted 

in the oddball condition and control condition. 
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To test for peak differences between stimulus types in the time-resolved responses to 

deviants, we conducted a two-way ANOVA (area*type) based on responses to the 

deviant elements in each pair. Here, we only analyzed peaks to the syllables with low 

transition probability. Specifically, we compared the derivative peak values within 

different time windows of the deviant stimulus (‘da bi’: the early and late peaks of the 

first syllable, with 3.93% transition probability pe bi→da; ‘pe da’: the early and late 

peaks of the second syllable, with 3.66% transition probability pe→da; ‘bi pe’: the early 

and late peaks of the first syllable, with 3.93% transition probability pe bi→bi) against 

the derivative peaks of the standard stimuli at the same time windows. The ANOVA 

was conducted separately for the oddball condition and control condition. Based on 

these analyses, we found a significant main effect of stimulus type in both conditions 

(oddball condition: F (2,555) =329.82, P<0.001, control condition: F (2,555) =143.84, P<0.001). 

The main effect of auditory areas was not significant in either condition (oddball 

condition: F (2,555) =0.35, P=0.705, control condition: F (2,555) =1.13, P=0.322). Importantly, 

however, the interaction effect between stimulus type and area was significant in the 

oddball condition (F (4,555) =2.66, P=0.032), but not in the control condition (F (4,555) =0.36, 

P=0.837). 

Discussion  
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In this study, we examined whether the auditory cortical activity in awake mice shows 

sensitivity to violations of sequences based on local stimulus probability only, or 

whether it is also sensitive to more complex violations based on stimulus order. We 

found that mice could encode both the local probabilities and the more global stimulus 

patterns and elicit mismatch signals to the substitution deviants (‘pe bi’→ ‘pe da’ or ‘da 

bi’) and transposition (‘pe bi’→‘bi pe’) deviants (Fig. 14A), but not to omission 

deviants (‘pe bi’→‘pe _’; Fig. 15d). Interestingly, the A2 area was found to elicit more 

pronounced MMRs to those deviants compared with A1 (Fig. 14A), which suggests a 

hierarchical gradient of prediction error signaling.  

 

Consistent with previous studies in humans (Todorovic et al., 2011) and animals (Chen 

et al., 2015; Parras et al., 2017), we found a robust attenuation of responses to 

consecutive standards in all auditory fields (Fig. 13A). Similar effects have also been 

found in other modalities (Hamm et al., 2021; Hamm & Yuste, 2016; Homann et al., 

2017; Rao & Ballard, 1999; Shipp et al., 2013). Although, based on the current 

experimental design, we cannot exclude the possibility that this repetition suppression 

effect was driven by passive adaptation (May & Tiitinen, 2010), since the temporal 

interval between stimulus pairs (~2350 ms) was within the recovery range (about <10s) 

of the synaptic depression (Ulanovsky et al., 2004), an increasing number of studies 
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(Tang et al., 2018; Todorovic & de Lange, 2012; Wacongne et al., 2012) suggest that 

repetition suppression is not only due to passive adaption, but rather it may reflect a 

gradual reduction of a prediction error signal.  

 

In the analysis of responses to deviant stimuli, both substitution deviants (‘pe da’ and 

‘dabi’) resulted in robust mismatch responses in all auditory fields when comparing 

deviants against the immediately preceding standards (Fig. 14A). These MMRs were 

larger in A2 than A1, suggesting a hierarchical gradient of deviance processing. Such a 

hierarchical organization is consistent with other studies (Parras et al., 2017) , which 

showed that higher-order regions elicit larger prediction error signals. Notably, a similar 

difference between auditory cortical regions (A2 > A1) was also identified when 

comparing neural response (AUC) to ‘da bi’ deviants (in which the first element of the 

pair was surprising) with the first standards in the sequence (Fig. 14C), i.e., controlling 

for adaptation effect. However, no such effect was found for ‘pe da’ deviants (in which 

the second element of the pair was surprising, see Fig. 14B). This result indicates that 

the serial position of the deviant element in the pair can modulate the prediction error, 

as the transitional probability between the surprising stimulus and the preceding 

stimulus is similar in both cases (‘pe bi’ followed by da bi, 3.93%, pe da, 3.66%). 

However, an alternative explanation might be that the neural habituation level is 
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different in these two conditions due to differences in time intervals between the deviant 

stimulus and the preceding stimulus (‘peda’: 145 ms gap between the expected ‘pe’ and 

the surprising ‘da’; ‘dabi’: 2350 ms gap between the pre-odd standards ‘bi’ and the 

surprising ‘da’). Interestingly, a recent electrophysiology study (Parras et al., 2021) 

suggests that PAF (the posterior auditory field) produces an even more robust prediction 

error response to single deviants than A2. Future studies on responses to more complex 

substitution deviants should expand the imaging range of cortical regions to include the 

PAF, to test whether the gradient of mismatch responses extends further beyond A2.  

 

Interestingly, our results also show that both A2 and AAF elicit MMRs to the 

transposition deviants when compared against the immediately preceding standards. 

However, in this case we also identified a major contribution of repetition suppression 

to the mismatch signal, as no difference was found when comparing the deviants against 

the first standard. In contrast, no MMR was found in A1. The finding that non-A1 areas 

are sensitive to transposition deviants may be based on the local transitional 

probabilities (substitution deviant vs. the preceding standard: pebi→bi, 3.93%, bi→pe, 

92.15%). However, it seems that the local probability of the stimulus is the most 

influential cue for the deviant processing in this study, as the MMRs were found to be 

much weaker for the transposition deviants than for substitution deviants, although the 
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transition probability between the surprising syllable and the preceding standard 

syllable was matched between deviant types equal (pebi→bi, 3.93%, pebi→da, 3.93%).  

 

In contrast, our results based on responses to omission deviants (Fig. 15C) showed no 

robust mismatch response to the omitted stimulus. Responses to omissions might not 

be encoded in calcium activity (analyzed here) or spiking activity mainly from 

excitatory neurons in the superficial layers (to which wide-field imaging is most 

sensitive) (Waters, 2020), but rather in population activity or dendritic currents. Our 

devrivative results (see Fig. 15D) also suggested that there were no calcium events 

during the omitted stimulus (the second syllabic position), while calcium events at the 

second syllabic position were found in other types of stimuli and were modulated by 

the oddball types (see Fig. 15B). The omission stimulus is assumed to split the actively 

prediction signal from the prediction error (SanMiguel et al., 2013; Wacongne et al., 

2012). Thus, while our results based on omission responses are inconsistent with the 

standard microcircuits proposed to implement predictive coding (Friston, 2005; 

Heilbron & Chait, 2018), more evidence is needed to elucidate the types of neurons and 

population mechanisms underlying omission signalling.  

 

In summary, we show that mice can encode the deviants based on local stimulus 
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probabilities, but also based on transition probabilities related to the serial position of 

the deviants and the novelty of the deviant stimulus given preceding elements. Higher-

order auditory regions (A2) show larger MMRs than primary regions (A1), which 

extends previous findings in traditional oddball paradigms based on local stimulus 

probabilities, showing an increase of mismatch signalling along the auditory processing 

pathway (Parras et al., 2017) . Our findings thus show that the rat auditory cortex is a 

suitable model also for deviant processing based on more complex transitional 

probabilities.  

Methods 

Surgery for chronic window implantation 

Firstly, to prevent brain swelling during craniotomy, 0.1cc dexamethasone (2mg/ml, 

VetOne, USA) was administered subcutaneously at least two hours before surgery. The 

animals were initially anesthetized using 4% isoflurane (Fluriso, VetOne, USA) with a 

calibrated vaporizer (Matrix VIP 3000 Vaporizer, Midmark Corporation, USA). 

Isoflurane concentration was then lowered down to 1.5%–2% during surgery, and the 

depth of anesthesia was continuously monitored by toe pinch. Body temperature was 

maintained at 36.0 OC during surgery. Hair remover face cream (Nair, Church and 

Dwight, USA) was applied on the surgical area (the top and left side of the animal’s 
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head) to remove hair thoroughly. Povidone-iodine and 70% ethanol were applied to 

clean and sanitize the surgical area. Eye gel was applied to prevent eye drying. Then, a 

longitudinal curve scalp incision was made for skull exposure. Soft tissue under the 

scalp and periosteum was scraped by a scalpel. Then a circular cranial window was 

drilled over the left auditory cortex and is about 3.5mm in diameter. The dura matter 

was gently removed, and gelatin sponges were applied to stop bleeding. A sterile 

coverslip with three layers, which was made by the same method as (Liu et al., 2019) 

described, was implanted onto the brain surface over the left auditory cortex as a 

chronic recording window. Surgical silicone adhesive (kwik-sil, World Precision 

Instruments, USA) and quick adhesive cement (C&B Metabond, USA) were applied 

for window implantation. Lastly, a customized stainless-steel head plate was mounted 

on the top of the animal’s head by using C&B Metabond to secure the head for chronic 

imaging. Antibiotic, 0.05cc Cefazolin (500 mg/2.2 ml, 1 g/vial, West-Ward 

Pharmaceuticals, USA), was injected subsequently. All experimental procedures were 

approved by the University of Maryland’s Animal Care and Use Committee. 

After the surgery was completed, the animals were kept individually and stayed warm 

under heating lights until regaining consciousness. Antibiotics were prepared by 

diluting 6 ml of Sulfamethoxazole and Trimethoprim Oral Suspension (200mg 

Sulfamethoxazole and 40mg Sulfamethoxazole per 5ml, Aurobindo Pharma, India) in 
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100 ml of water, and were administered to the mice for a week following the surgery. 

There were no imaging experiments during recovery (1-2 weeks). 

 

Experimental design and Auditory stimuli  

In the FRA mapping blocks, pure tones were generated with custom MATLAB scripts. 

Each tone lasted 2 s with linear ramps of 5 ms at the beginning and at the end of the 

tone. Nine tones with equal logarithmic spacing between 4 and 64 kHz were used at 

three attenuation levels: 0 dB, 20 dB, and 40 dB. Each stimulus was repeated 10 times. 

Stimuli were presented in a random order. 

 

In the experimental blocks, artificial acoustic syllables pairs were used to form 

sequences containing standards and deviants. The syllables were selected from a 

database of CV syllables recorded by a male speaker (Ives et al., 2005) and were then 

analyzed and resynthesized by an open-source vocoder, STRAIGHT (Kawahara, 2006), 

in MATLAB R2018b (MathWorks Inc., Natick, USA). To generate experimental 

stimuli, we first manipulated and matched the stimulus onset and duration of all 

syllables (syllable duration = 251 ms), and then shifted the fundamental frequency and 

formant scalar of each CV syllable upward 1 octave to match the optimal rat hearing 

range (Kelly & Masterton, 1977). In the main experiment (the deviant condition), we 
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used ‘pebi’ as the standard stimulus (365 repeats, 85.88%), and ‘peda’ (15 repeats, 

3.53%), ‘dabi’ (15 repeats, 3.53%), ‘bipe’(15 repeats, 3.53%), and ’pe_’ (15 repeats, 

3.53%) as the deviant stimuli. In the control condition, all stimuli were presented with 

equal probability and repeated 20 times in a random order. The Stimulus-onset 

asynchrony (SOA) between pairs was 3 s and the gap between pair elements (offset to 

onset) was 145ms. 

 

The amplitudes of all auditory stimuli were calibrated to 75dB SPL with a microphone 

(Bruel & Kjær 4944-A, Denmark). During sound presentation, sound waveform was 

loaded into RX6 multi-function processor (Tucker-Davis Technologies (TDT)) and 

attenuated to desired sound levels by PA5 attenuator (TDT). Then the signal was fed 

into the ED1 speaker driver (TDT), which drove an ES1 electrostatic speaker (TDT). 

The speaker was placed on the right-hand side of the animal, 10 cm away from the head, 

at an angle of 45 degrees relative to the mid-line. 

 

Widefield imaging and data preprocessing 

Mice (Thy1-Gcamp6s) were head-fixed by a customized head holder and placed on a 

rotatable platform beneath Ultima-IV microscope (Bruker Technologies). We used 470 

nm LED light (M470L3, Thorlabs Inc.) to excite green fluorescence and acquired the 
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images (10Hz, 100ms exposure time, 400 * 400 pixels) with StreamPix 6.5 software 

(Norpix). Our imaging modality was also single photon, the calcium signals should 

mainly originate from the L2/3 (Waters, 2020; West et al., 2021). We down sampled the 

original image using the MATLAB built-in function ‘imresize’ from 400 pixels by 400 

pixels to 100 pixels by 100 pixels. Next, we performed whitening of the image sequence 

and image segmentation by using exactly the same procedures as previously described 

(Liu et al., 2019), including a constrained autoencoder. Finally, we chose the first 50 

components generated by the autoencoder. In the group-level analysis, we compared 

the AUC of traces and first derivative peaks across areas and stimuli types by using the 

two-way ANOVA. In addition, we compared the difference between deviants with 

standards across areas by using paired t-test. The false discovery rate (FDR < 0.05) was 

applied for correction for multiple comparisons. 
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Chapter 4. Congruency of "What" and "When" 

Predictions in the Auditory System 

Abstract 

The brain’s ability to form predictions based on statistical regularities in ongoing 

stimulus teams is an integral part of forming adaptive behaviors. Such events form 

regularities both in terms of the characteristics of the stimuli itself (e.g. “what” that 

event is) and in the predictability of onset for when events occur within a sequence (e.g. 

“when” the predicted event will take place). In real-world stimulus streams, regularities 

also occur at different hierarchies of complexity and meaning - e.g. predictions of 

individual notes vs. melodic contour, in the case of music perception, or vowel vs. 

sentence syntax predictions in natural language processing. However, the underlying 

mechanisms between “what” and “when” predictive processing have been traditionally 

investigated using non-complementary experimental paradigms, preventing their full 

disambiguation. To address this, the present study employs “what” and “when” 

prediction violations at different hierarchies within the same stimulus stream during an 

oddball task, while recording neural activity in human participants via 

electroencephalogram. Our results revealed a congruent effect in mismatch response 

amplitude between hierarchically structured “what” and ”when” violations, supported 
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by the presence of decreased left parietal activity.  

 

Introduction 

The ability to predict future events based on incoming stimulus streams is an integral 

aspect of sensory processing. Real-world sensory events contain multiple features 

which can be used to form such predictions, and humans can predict information in a 

sequence based on statistical regularities and chunking (Dehaene et al., 2015). A recent 

study (Ding,et al. 2016) has similarly suggested that cortical activity can entrain to 

hierarchical structures in linguistic sequences pursuant to levels of chunking. Typically, 

studies of predictive coding in the auditory system manipulate features that are content-

based or time-based in predictability. Such “what” and “when” predictions are present 

in virtually all auditory stimulus streams, and their manipulation has been the 

foundation for numerous classical and contemporary studies (Denham and Winkler, 

2020). In the case of oddball paradigms often employed in predictive coding research, 

a deviant stimulus token is presented in place of an otherwise predictable token within 

a repeated stream, resulting in the classical MMR and its modern interpretation as an 

error correction signal within predictive coding frameworks (Garrido et al., 2009). 

However, to make a prediction about what token will occur next in a sequence 

https://www.zotero.org/google-docs/?YPw7Ie
https://www.zotero.org/google-docs/?YPw7Ie
https://www.zotero.org/google-docs/?PEcNXC
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necessitates a mechanism for predicting when that token will occur within a regular 

stream. As opposed to “what” predictions, which often rely on MMR-based 

explanations, “when” predictions are typically explained by the concept of neural 

entrainment - phase alignment of neural activity to an external temporal structure 

(Auksztulewicz et al., 2019; Haegens and Zion Golumbic, 2018; Schroeder and Lakatos, 

2009). 

 

Recent cross-modal studies have investigated these disparate mechanisms through 

independent manipulation of timing and content predictability, observing partly 

dissociable neural correlates and putative underlying mechanisms. In an audio-visual 

study (Auksztulewicz et al., 2018), the predictability of auditory targets was modulated 

by the preceding visual cues, and it was observed that content and timing predictability 

evoked activity in dissociable regions and time windows, while also interactively 

modulating activity in the temporal gyrus during early latencies. Timing and content 

modulations have been observed in audio-motor linguistic studies, with overlapping 

“what” and “when” predictive activity observed only in higher level regions 

(Emmendorfer et al., 2020). Similar phenomena have been observed in lemniscal and 

non-lemniscal oscillatory activity associated with the temporal and syntactic content of 

musical sequences (Musacchia et al., 2014). In this context, neural entrainment of non-

https://www.zotero.org/google-docs/?sRsKHJ
https://www.zotero.org/google-docs/?sRsKHJ
https://www.zotero.org/google-docs/?cbM8b6
https://www.zotero.org/google-docs/?N7GykJ
https://www.zotero.org/google-docs/?rNJZdo
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lemniscal regions representing stimulus rhythms can be seen to modulate lemniscal 

regions representing stimulus contents, including MMR processing along the ascending 

pathways. However, it is unknown if these interactions are specific to the hierarchical 

levels present in complex naturalistic stimuli such as speech or music (Hasson et al., 

2015). MMR amplitude has been shown to increase as a function of deviance, with 

deviants straying further from the standard eliciting higher MMR amplitudes (Jalewa 

et al., 2020). This phenomenon corresponds not only to stimulus characteristics such as 

the frequency of a deviant relative to the expected standard, but also to stimulus onset 

asynchrony, with deviants occuring at the expected temporal onset eliciting higher 

amplitudes than those at jittered onsets (Auksztulewicz et al., 2019, 2018; Jalewa et al., 

2020; Musacchia et al., 2014). In the case of naturalistic music, lower-level contents 

are present in the form of single notes within a sequence and higher-level contents 

present in the resulting melody of a sequence, each occurring at their respective time 

scales. Based on current theories it is unclear if entrainment modulates processing of 

stimulus contents in a hierarchically specific way - e.g. if entrainment amplifies the 

processing of stimuli presented at a preferred time window, or only to inputs presented 

at a relevant time scale.  

 

Here, we disambiguate neural correlates of “what” and “when” predictions by 

https://www.zotero.org/google-docs/?89Bf2n
https://www.zotero.org/google-docs/?89Bf2n
https://www.zotero.org/google-docs/?VwvxEX
https://www.zotero.org/google-docs/?VwvxEX
https://www.zotero.org/google-docs/?deo4Qy
https://www.zotero.org/google-docs/?deo4Qy
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independently manipulating temporal and syntactical content at two hierarchical levels. 

Human EEG signals were recorded during an auditory oddball task in order to gauge 

the effect of temporal predictive mechanisms at hierarchically higher and lower 

temporal scales, and their modulatory effect on higher and low-level content-based 

predictive hierarchies. Musical sequences (ascending or descending musical scales) 

were chosen as stimulus sets, to reduce the influence of speech-specific processing on 

neural activity (e.g., modulation by language comprehension, speech-specific semantic 

and syntactic processing, etc.) and provide a better comparison to similar work in 

animal models. Temporal predictability was manipulated at slower (2 Hz) and faster (4 

Hz) time scales, while acoustic deviants were introduced at lower (e.g. single tones) 

and higher (e.g. tone pairs) hierarchical levels. In the analysis, we focused on 

interactions between "what" and "when" predictions, specifically testing whether 

MMRs are modulated by temporal predictability in a hierarchically specific way. To 

explain the effects observed at the scalp level, we used source reconstruction, which 

allowed us to infer the putative mechanisms of interactions between "what" and "when" 

predictions. 

Methods 

Participant sample 
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Participants (N=20, median age 21, range 19-25), 10 females, 10 males; 19 right-

handed, 1 left-handed) volunteered to take part in the study and gave written consent. 

The work was conducted in accordance with protocols approved by the Human Subjects 

Ethics Sub-Committee of the City University of Hong Kong. All participants self-

reported normal hearing and no current or past neurological or psychiatric disorders. 

 

Stimulus design and behavioral paradigm 

Participants were exposed to auditory sequences containing independent manipulations 

of “what” and “when” predictability. Stimuli were presented in sequences (trials) of 7 

ascending or descending scales, each composed of 8 musical notes with fundamental 

frequencies increasing or decreasing in 8th octave steps, so that one scale covered one 

octave. Each sequence thus comprised a total of 56 notes(Fig. 11A, 11B). Each 

participant heard a total of 240 sequences (trials). Within a trial, all scales were either 

ascending or descending, and the ascending or descending trials were presented in a 

random order. The fundamental frequency of the initial note of each scale was randomly 

drawn from a range 300-600 Hz. Each tone was generated by resynthesizing a virtual 

harp note F4 (played on virtualpiano.net), to match a fixed 166 ms duration and the 

desired fundamental frequency. The required manipulations of the original note were 

implemented in an open-source vocoder, STRAIGHT (Kawahara, 2006) for Matlab 

https://www.zotero.org/google-docs/?8a6qvM
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2018b (MathWorks; RRID: SCR_001622). Tones were perceptually grouped into pairs 

by manipulating the intensity ratio of odd/even tones, with the even (2nd, 4th, 6th and 

8th) tones within a scale presented 10 dB quieter relative to the odd-position tones.  

The temporal predictability of the sequences was manipulated according to three 

“predictability conditions”, which were administered in 12 blocks of 20 trials (4 blocks 

per condition). The blocks were presented in a pseudo-random order, allowing no 

immediate repetitions of the same condition. In the “fully predictable” (isochronous) 

condition, tones were presented with a fixed SOA of 247 ms, resulting in all notes 

having predictable timing at both the slow time scale (tone pairs) and the fast time scale 

(single tones). In the “predictable slow, unpredictable fast” condition, the slow time 

scale was predictable (corresponding to a fixed pair onset asynchrony, i.e., a fixed 494 

ms interval between the onsets of the odd, pair-initial tones) but the fast time scale was 

unpredictable (corresponding to a random onset of the even, pair-final tones, relative to 

the pair-initial tones). In this condition, the exact SOA of the pair-final tones was set by 

randomly drawing one value from the following 4 SOAs, relative to the standard 247 

ms SOA: 33.3% shorter; 16.6% shorter; 16.6% longer; 33.3% longer. Finally, in the 

“predictable fast, unpredictable slow” condition, the fast time scale was predictable 

(corresponding to a fixed 247 ms SOA of the pair-final tones, relative to the pair-initial 

tones) but the slow time scale was unpredictable (corresponding to a random onset of 
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the odd, pair-initial tones, relative to the expected 494 ms interval). In this condition, 

the exact SOA of the pair-initial tones was set by randomly drawing one value from the 

same 4 SOAs as above, and shifting the onset of the pair-initial tone by this value, 

relative to the expected 494 ms interval relative to the previous pair onset. A fixed inter-

trial interval of 1 second was employed between the offset of the last tone of a 56-tone 

sequence and the onset of the first tone in the next sequence.  

 

Content predictability was manipulated by altering the fundamental frequency of a 

subset of tones within the scales, such that trials could contain a “fast” deviant (i.e., a 

single deviant tone) or a “slow” deviant (i.e., a deviant tone pair). The “fast” deviants 

were introduced by replacing the final tone of a scale with an outlier frequency (i.e., a 

tone whose fundamental frequency was 20% lower/higher than the range of the entire 

scale). The “slow” deviants were introduced by replacing the penultimate tone of a scale 

(i.e., the initial tone of the final pair) in the same manner. In each trial, the first two 

scales were left unaltered (to facilitate the extraction of statistical regularities in the 

sequences), and two deviant tones were randomly placed within the subsequent 5 scales. 

Additionally, in 50% of the trials, a scale containing an immediate tone repetition was 

included in the last 5 scales. In subsequent EEG analysis, neural responses evoked by 

“fast” and “slow” deviants were compared with neural responses evoked by the 
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respective standard tones, designated as the final (“fast”) and penultimate (“slow”) 

tones in two unaltered scales out of the final 5. 

  

In total, 64.3% of the scales were left unaltered, 14.3% contained a “fast” deviant, 

14.3% contained a “slow” deviant, and 7.1% contained a tone repetition. The global 

deviant probability equaled 3.57% of all tones, amounting to 80 deviant tones per 

deviant type (“fast”, “slow”) per temporal condition (“fully predictable”, “predictable 

fast”, “predictable slow”). To ensure that the EEG analysis is not confounded by 

differences in baseline duration between temporal conditions (e.g., “fast” deviants 

preceded by shorter/longer SOAs in the “predictable slow” condition than in the other 

two conditions), the SOAs preceding all deviant tones and designated standard tones 

were replaced by a fixed 247 ms SOA. Therefore, the temporal predictability 

manipulation was purely contextual, and did not affect the exact timing of either 

deviants or standards.  

 

Auditory sequences were generated using the freely-available Psychtoolbox for 

MATLAB and delivered to participants fitted with Brainwavz B100 earphones via a 

TDT RZ6 multiprocessor at a playback sampling rate of 24414 Hz. Participants were 

seated in a sound-attenuated EEG booth. Visual stimuli (fixation cross) and instructions 
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were presented on a 24-inch computer monitor and delivered using the Psychophysics 

Toolbox for MATLAB. Participants were asked to minimize movements and eye blinks 

and instructed to perform a tone repetition detection task, by pressing a button as soon 

as possible upon hearing an immediate tone repetition. Prior to experimental blocks, 

participants were exposed to a training session consisting of “fully predictable” 

sequences containing a tone repetition, to familiarize themselves with the task and 

stimuli. Participants performed training trials until they could detect tone repetition in 

3 consecutive trials with reaction times shorter than 2 seconds. Then, during the actual 

experiment, participants received feedback on their mean accuracy and reaction time 

after each block of 20 trials. The data segments (scales) containing tone repetition were 

subsequently rejected from EEG analysis. 

 

Behavioral analysis 

Analysis was performed on the accuracy and reaction time data corresponding to 

participant responses during the repetition detection task. Reaction times longer than 2 

seconds were excluded from analysis, and mean reaction times were log-transformed 

to approximate a normal distribution. Accuracy and mean reaction times were entered 

into separate repeated-measures ANOVAs with a within-subjects factor Time (fully 

predictable, predictable fast, predictable slow). Post-hoc comparisons were 
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implemented using paired t-tests. 

Figure 16 

 

Figure 16. Experimental paradigm and behavioral results. (A) Participants listened 

to sequences of ascending (pictured) or descending scales of acoustic tones. Sequences 

were composed of tone pairs, where odd tones (grey circles) were louder than even 

tones (white circles). Participants performed a tone repetition detection task (orange 

circles: behavioral targets). Additionally, sequences could include deviant tones (red 

circles), in which one of the pair-final tones had an outlier frequency, and deviant pairs 

(blue circles), in which one of the pair-initial tones had an outlier frequency. (B) 

Sequences were blocked into three temporal conditions: a “fully predictable” condition 

(upper panel), in which ISI between tones was fixed at 0.25 s; a “predictable fast” 

condition (middle panel), in which the ISI between odd and even tones within pairs was 
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fixed at 0.25 s but the ISI between odd tones (pair-initial tones) was jittered; and a 

“predictable slow” condition (lower panel), in which ISI between odd tones (pair-initial 

tones) was fixed at 0.5 s but the ISI between odd and even tones within pairs was jittered. 

(C) Behavioral results. Left panel: accuracy, right panel: reaction times. Error bars 

denote SEM across participants. Asterisks denote p < 0.05, plus symbol denotes a trend 

towards significance. 

 

Neural data acquisition and pre-processing 

EEG signals were collected using a 64-channel ANT Neuro EEGo Sports amplifier at 

a sampling rate of 1024 Hz. The signals were grounded at the nasion and referenced to 

the Cpz electrode. The recorded data were pre-processed using the SPM12 Toolbox 

(Wellcome Trust Centre for Neuroimaging, University College London; RRID: 

SCR_007037) for MATLAB. Continuous data were high-pass filtered at 0.1 Hz and 

notch filtered 48 Hz and 52 Hz before being down-sampled to 300 Hz and subsequently 

low-pass filtered at 90 Hz. All filters were 5th order zero-phase Butterworth. Eyeblink 

artifacts were removed using channel Fpz and subtracting their two spatiotemporal 

principal components from all EEG channels (Ille et al., 2002). Cleaned signals were 

re-referenced to the average of all channels. The pre-processed data were analyzed 

separately in the frequency domain (phase coherence analysis) and in the time domain 

(event-related potentials; ERPs). 

 

https://www.zotero.org/google-docs/?YxNv2e
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Phase coherence analysis 

To test whether tone sequences are associated with dissociable spectral peaks in the 

neural responses at the single-tone rate (4.048 Hz) and at the tone-pair rate (2.024 Hz), 

we analyzed the data in the frequency domain. Continuous data were segmented into 

epochs ranging from the onset to the offset of each trial (tone sequence). For each 

participant, channel, and sequence, we calculated the Fourier spectrum of EEG signals 

measured during that sequence. We then calculated the ITPC, separately for each 

temporal condition (“fully predictable”, “predictable fast”, “predictable slow”) 

according to the following equation (Ding and Simon, 2013): 

𝐼𝑇𝑃𝐶𝑓 = ([𝛴𝑁𝑐𝑜𝑠𝜙𝑓]
2
+ [𝛴𝑁𝑠𝑖𝑛𝜙𝑓]

2
) 𝑁⁄ , 

where φf corresponds to the Fourier phase at a given frequency f, and N corresponds to 

the number of sequences (80 per condition).  

 

In the initial analysis, ITPC estimates were averaged across EEG channels. To test for 

the presence of statistically significant spectral peaks, ITPC values at the single-tone 

rate (4.048 Hz) and tone-pair rate (2.024 Hz) were compared against the mean of ITPC 

values at their respective neighboring frequencies (single-tone rate: 3.974 and 4.124 Hz; 

tone-pair rate: 1.949 and 2.099 Hz) using paired t-tests.  

 

https://www.zotero.org/google-docs/?YinqhY
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Furthermore, to test whether tone-rate and pair-rate spectral peaks observed at single 

EEG channels show modulations due to temporal predictability, spatial topography 

maps of single-channel ITPC estimates were converted to 2D images, smoothed with a 

5 x 5 mm full-width-at-half-maximum (FWHM) Gaussian kernel, and entered into 

repeated-measures ANOVAs (separately for tone-rate and pair-rate estimates) with a 

within-subjects factor Time (fully predictable, predictable fast, predictable slow), 

implemented in SPM12 as a general linear model (GLM). Statistical parametric maps 

were thresholded at p < 0.001 and corrected for multiple comparisons over space at a 

cluster-level pFWE < 0.05 under random field theory assumptions (Kilner et al., 2005).  

 

Finally, to test whether spectral signatures of temporal predictability are modulated by 

experience with stimuli, we split the data into two halves (two consecutive bins of 40 

trials), separately for each condition. Tone-rate and pair-rate ITPC estimates were 

averaged across EEG channels and compared separately for each of the two halves 

using repeated-measures ANOVAs with a within-subjects factor Time (fully predictable, 

predictable fast, predictable slow).  

Event-related potentials 

For the time-domain analysis, data were segmented into epochs ranging from -50 ms 

before to 247 ms after deviant/standard tone onset, baseline-corrected from -25 ms to 

https://www.zotero.org/google-docs/?JwtWdh
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25 ms to prevent epoch contamination due to the temporally structured presentation 

(Fitzgerald et al., 2021), and denoised using the “Dynamic Separation of Sources” (DSS) 

algorithm (de Cheveigné and Simon, 2008). Condition-specific ERPs (corresponding 

to “fast”/”slow” deviants and the respective standards, presented in each of the three 

temporal conditions) were calculated using robust averaging across trials, as 

implemented in the SPM12 toolbox, and low-pass filtered at 48 Hz (5th order zero-

phase Butterworth). The resulting ERPs were analyzed univariately to gauge the effects 

of “what” and “when” predictions on evoked responses. ERP data were converted to 

3D images (2D: spatial topography; 1D: time), and the resulting images were spatially 

smoothed using a 5 x 5 mm FWHM Gaussian kernel. The smoothed images were 

entered into a GLM implementing a 3 x 3 repeated-measures ANOVA with a within-

subject factors Contents (standard, deviant tone, deviant pair) and Time (fully 

predictable, predictable fast, predictable slow). Beyond testing for the two main effects 

and a general 3 x 3 interaction, we also designed a planned contrast quantifying the 

congruency effect (i.e., whether “when” predictions specifically modulate the 

amplitude of mismatch signals evoked by deviants presented at a time scale congruent 

with “when” predictions, i.e., deviant tones in the “predictable fast” condition and 

deviant pairs in the “predictable slow” conditions). To this end, we tested for a 2 x 2 

interaction between Contents (deviant tone, deviant pair) and Time (predictable fast, 

https://www.zotero.org/google-docs/?zOB6YQ
https://www.zotero.org/google-docs/?t1u0o3
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predictable slow). Statistical parametric maps were thresholded at p < 0.001 and 

corrected for multiple comparisons over space and time at a cluster-level pFWE < 0.05 

under random field theory assumptions (Kilner et al., 2005).  

Brain-behavior correlations 

To test whether the effects of “what” and/or “when” predictions correlate with each 

other, as well as with behavioral benefits of “when” predictions in the repetition 

detection task, we performed a correlation analysis across participants. Given that we 

observed a significant congruency effect (i.e., a 2 x 2 interaction between “what” and 

“when” predictions; see Results and Fig. 18C), as well as effects of the time scale of 

“when” predictions (predictable fast vs. predictable slow) on ITPC (Fig. 16D) and 

behavioral accuracy (Fig. 16C), we included these measures in the correlation analysis. 

Furthermore, since we hypothesized that performance in the repetition detection task 

might be related to overall deviance detection, we also included a measure of “what” 

predictions (i.e., the overall difference between deviant- and standard-evoked ERPs; 

Fig. 18AB). Thus, for each participant, we calculated a single behavioral index (the 

difference between accuracy scores obtained in the predictable fast vs. predictable slow 

condition) and three neural indices: (1) the difference between deviant-evoked ERP 

amplitudes measured in the temporally congruent (deviant tones presented in the 

predictable fast condition; deviant pairs presented in the predictable slow condition) 
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and incongruent (deviant pairs presented in the predictable fast condition; deviant tones 

presented in the predictable slow condition) conditions, averaged across electrodes in 

the significant cluster; (2) the difference between the pair-rate ITPC values obtained for 

predictable fast vs. predictable slow conditions in the second half of the experiment 

(see Results); and (3) the difference between the absolute deviant-evoked and standard-

evoked ERP amplitudes (averaged across significant channels and temporal conditions). 

We then fitted a linear regression model with three predictors (the three neural indices) 

regressed against the accuracy effect, and identified outlier participants using a 

threshold of Cook’s distance exceeding 5 times the mean. Correlations between all 

measures were quantified using Pearson’s r and corrected for multiple comparisons 

using Bonferroni correction. 

Source reconstruction 

Source reconstruction was performed under group constraints (Litvak and Friston, 2008) 

using empirical Bayesian beamformer (Belardinelli et al., 2012; Little et al., 2018; Wipf 

and Nagarajan, 2009) based on the entire post-stimulus time window (0-247 ms). Since 

in the ERP analysis (see Results) we identified two principal findings - namely a 

difference between ERPs evoked by deviants and standards, and an interaction between 

deviant type and temporal condition - we focused on comparing source estimates 

corresponding to these effects. In the analysis of the difference between deviants and 

https://www.zotero.org/google-docs/?FvSadj
https://www.zotero.org/google-docs/?hru3yS
https://www.zotero.org/google-docs/?hru3yS
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standards, source estimates were extracted for the 173-223 ms time window, converted 

into 3D images consisting of 3 spatial dimensions and smoothed with a 10 x 10 x 10 

mm FWHM Gaussian kernel. Smoothed images were then entered into a GLM 

implementing a 3 x 3 repeated-measures ANOVA with within-subjects factors of 

Content (standard, deviant tone, deviant pair) and Time (fully predictable, predictable 

fast, predictable slow). In the analysis of the interaction between deviant type and 

temporal condition, source estimates were extracted for the 130-180 ms and processed 

as above. Smoothed images were then entered into a GLM implementing a 2 x 2 

repeated-measures ANOVA with within-subjects factors of Content (deviant tone, 

deviant pair) and Time (predictable fast, predictable slow). Statistical parametric maps 

were thresholded and corrected for multiple comparisons over space at a cluster-level 

pFWE < 0.05 under random field theory assumptions (Kilner et al., 2005). Source labels 

were assigned using the Neuromorphometrics probabilistic atlas, as implemented in 

SPM12. 

Results 

Behavioral results 

Performance across all trials revealed significant differences in accuracy across 

conditions (main effect of Time: F2,38 = 7.3530, p = 0.002), corresponding to 
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significantly lower accuracy in the “predictable slow” condition (mean ± SEM: 63.88% 

± 3.65%) than in the “fully predictable” (mean ± SEM: 67.75% ± 4.64%; t19 = -2.5272, 

p = 0.0205) and “predictable fast” conditions (mean ± SEM: 69.12% ± 3.55%; t19 = -

5.984, p < 0.001) (Fig. 16C). Reaction times also significantly differed across 

conditions (F2,38 = 3.5543, p = 0.0385), with post-hoc analysis revealing that reaction 

times were significantly faster in the “fully predictable” condition (mean ± SEM: 511 

± 74 ms) than in the “predictable slow” condition (mean ± SEM: 653 ± 79 ms; t19 = 

2.4089, p = 0.0263). The difference between the “fully predictable” condition and the 

“predictable fast” condition (mean ± SEM: 649 ± 83 ms) trended towards significance 

(t19 = 2.0132, p = 0.0585). No significant difference was observed between the “fully 

predictable” condition and the “predictable fast” condition (p = 0.9013). 

Phase coherence analysis 

In the EEG spectrum of inter-trial phase coherence (ITPC; averaged across conditions 

and channels), both tone-rate peak (4.048 Hz) and pair-rate peak (2.024 Hz) were 

observed, relative to neighboring frequency points (tone-rate: t19 = 6.8489, p < 0.001; 

pair-rate: t19 = 3.6274, p = 0.0018). The ITPC peak estimates differed between 

experimental conditions, reflecting differences in the stimulus spectrum. Specifically, 

the tone-rate ITPC estimates were higher in the “fully predictable” and “predictable 

slow” conditions than in the “predictable fast” conditions, and this effect was observed 
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at most of the EEG channels (Fmax = 46.30, Zmax = 6.43, pFWE < 0.001; pairwise 

comparisons: “fully predictable” vs. “predictable fast”, Tmax = 8.02, Zmax = 6.10, pFWE 

< 0.001; “predictable slow” vs. “predictable fast”, Tmax = 9.62, Zmax = 6.81, pFWE < 

0.001; “fully predictable” vs. “predictable slow”, all pFWE > 0.05). Conversely, the pair-

rate ITPC estimates were higher in the “predictable slow” condition than in the other 

two conditions, and this effect was observed over right lateral channels (Fmax = 7.45, 

Zmax = 2.90, pFWE = 0.031; pairwise comparisons: “predictable slow” vs. “fully 

predictable”, Tmax = 3.81, Zmax = 3.48, pFWE = 0.004; “predictable slow” vs. “predictable 

fast”, Tmax = 3.83, Zmax = 3.50, pFWE = 0.001; “fully predictable” vs. “predictable fast”, 

all pFWE > 0.05). Interestingly, the pair-rate differences between conditions built up 

during the experiment: they were absent during the first half of the experiment (F2,59 = 

1.0433, p = 0.3622), and were only observed during the second half of the experiment 

(F2,59 = 3.8798, p = 0.0293). This was not the case for the tone-rate differences between 

conditions, which were stable during the experiment (first half: F2,59 = 26.1701, p < 

0.001; second half: F2,59 = 26.9480, p < 0.001).  
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Figure 17 

 

Figure 17. Spectral signatures of temporal predictability. (A) Inter-trial phase 

coherence (ITPC) in the stimulus spectrum. Black: “fully predictable”, cyan: 

“predictable fast”, magenta: “predictable slow”. Pair-rate (2.024 Hz) and tone-rate 

(4.048 Hz) peaks are indicated by dashed vertical lines. (B) ITPC based on EEG activity 

(averaged across channels). Legend as above. Shaded areas indicate SEM across 

participants. (C) EEG topography maps of main effects of Condition (fully predictable 

vs. predictable fast vs. predictable slow) on the pair-rate peak ITPC (left panel) and 

tone-rate peak ITPC (right panel). Statistical F values are represented on the color scale. 

Unmasked area corresponds to significant clusters (pFWE < 0.05). (D) Pair-rate (left 

panel) and tone-rate (right panel) peak ITPC values plotted separately for the 1st half 

and 2nd half of the trials. Error bars denote SEM across participants.  

Event-related potentials 

To test for effects of “what” and “when” predictions on ERP amplitudes, we analyzed 

the data in the time domain. ERP amplitudes differed significantly between deviant and 

standard tones, pooled over temporal conditions (Fig. 18A; posterior cluster: 173-223 

ms, Fmax = 53.94, Zmax = 6.68, pFWE < 0.001; anterior cluster: 177-220 ms; Fmax = 37.57; 
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Zmax = 5.67; pFWE < 0.001). When analysing specific deviant types (“fast” and “slow” 

deviants vs. their respective standards), significant differences between deviants and 

standards were observed in both cases (“fast” deviants vs. standards: posterior cluster, 

173-223 ms, Fmax = 41.50, Zmax = 5.94, pFWE < 0.001; anterior cluster, 177-227 ms; Fmax 

= 35.56; Zmax = 5.52; pFWE < 0.001; “slow” deviants vs. standards: posterior cluster, 

170-220 ms, Fmax = 45.63, Zmax = 6.20, pFWE < 0.001; anterior cluster, 177-213 ms; Fmax 

= 30.17; Zmax = 5.11; pFWE < 0.001). No significant differences were observed between 

the two deviant types, pooling over temporal conditions (pFWE > 0.05). Thus, the main 

effect of “what” predictions differentiated between deviants and standards, but not 

between deviant types. 

Figure 18 

  



117 

Figure 18. Event-related potentials. (AB) Main effect of content-based predictions 

(deviant vs. standard). Left panels: time courses of ERPs averaged over the spatial 

topography clusters shown in the right panels. Shaded area denotes SEM across 

participants. Black horizontal bar denotes pFWE < 0.05. Middle panels: mean voltage 

values for standards (blue) and deviants (red). Right panels: spatial distribution of the 

main effect. Color bar: F value. (C) Hierarchical interaction between content-based 

predictions (deviant tone vs. deviant pair) and temporal predictions (predictable slow 

vs. predictable fast). Left panels: time courses of ERPs averaged over the spatial 

topography clusters shown in the right panels. Shaded area denotes SEM across 

participants. Black horizontal bar denotes pFWE < 0.05. Middle panels: mean voltage 

values for the six deviant conditions. Right panels: spatial distribution of the interaction 

effect. Color bar: F value.  

 

In the analysis of the main effect of “when” predictions (pooled over deviants and 

standards), no significant differences between the three temporal conditions were 

revealed (all pFWE > 0.05). Similarly, in the analysis of the interaction effect of “what” 

and “when” predictions (pooled over deviant types), no significant effects were 

revealed. Specifically, neither deviants nor standards showed significant ERP amplitude 

differences when presented in different temporal contexts (all pFWE > 0.05). Thus, the 

overall temporal structure of the sound sequences did not affect the tone-evoked 

responses (averaged across deviants and standards) or the mismatch responses 

(differences between deviants and standards). 
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However, an analysis of the interaction between “what” and “when” predictions 

focused on the hierarchical effects (i.e., differences between deviants presented in a 

corresponding temporal context, e.g. “fast” deviants in “predictable fast” condition, and 

those presented in a different context, e.g. “fast” deviants in “predictable slow” 

condition) revealed a significant interaction between deviant type and temporal 

condition (Fig. 18B; left central-posterior cluster: 130-180 ms, Fmax = 20.63, Zmax = 

4.24, pFWE = 0.044). Post-hoc analysis revealed that MMR amplitudes in “predictable 

fast” were significantly larger for deviant tones (mean ± SEM: -0.1640 ± 0.0942 μV) 

than for deviant tone pairs (mean ± SEM: 0.0091 ± 0.1010 μV; t19 = 2.2843, p = 0.0340, 

two-tailed). In the “predictable slow” condition, MMR amplitude was observed to be 

nominally larger for deviant tone pairs (mean ± SEM: -0.1725 ± 0.0851 μV) than for 

deviant tones (mean ± SEM: -0.0155 ± 0.1233 μV), with this effect trending towards 

significance (t19 = 1.9024, p = 0.0724, two-tailed). No significant interaction effects 

were revealed when comparing deviant types between the “fully predictable” condition 

and either the “predictable slow” or the “predictable fast” conditions. Thus, we 

observed a specific increase in deviant ERP amplitude when this deviant was presented 

in a temporally congruent context.  

Brain-behavior correlation analysis 

Three neural predictors (the congruency effect of “what” and “when” predictions on 
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ERPs; the effect of “when” predictions on ITPC; and the effect of “what” predictions 

on ERPs) were tested as potential correlates of the behavioral effects on accuracy. We 

identified two outlier participants based on a linear regression model. Having excluded 

these two participants, we did not find any significant correlations between the neural 

indices and the behavioral effects (Pearson’s r; all p > 0.2), suggesting that behavior in 

the repetition detection task is not functionally related to ERP signatures of deviance 

detection. However, we did find a significant correlation between the congruency effect 

on ERPs and the effect of “when” predictions on ITPC (r = 0.6439; p = 0.0039; 

corrected), such that the magnitude of the ERP difference between deviants presented 

in the temporally congruent vs. incongruent conditions positively correlated with the 

magnitude of the ITPC difference between “predictable fast” and “predictable slow” 

conditions.  

 

Source reconstruction 

To identify the most plausible sources underlying the observed ERP differences 

between deviants and standards, as well as the hierarchical interaction between deviant 

types and temporal conditions, we carried out a source reconstruction analysis. Overall, 

source reconstruction explained 76.43 ± 3.08% (mean ± SEM across participants) of 

sensor-level variance.  
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Figure 19 

 

Figure 19. Source reconstruction. (A) Regions showing a significant main effect of 

content-based predictions (deviant vs. standard). Inset shows average source estimates 

per condition. Error bars denote SEM across participants. (B) Regions showing a 

significant hierarchical interaction effect between content-based predictions (deviant 

tone vs. deviant pair) and temporal predictions (predictable fast vs. predictable slow). 

Figure legend as in (A).  
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Table 2 

Effect Cluster label Peak MNI 

coords 

Fmax Zmax Voxel 

extent 

pFWE 

Deviant 

vs. 

standard 

Right transverse 

temporal gyrus / 

auditory cortex 

(AC) 

48 -20 12 53.99 4.83 20508 < 0.001 

Right superior 

temporal gyrus 

(STG) 

44 -48 12 40.15 4.42 

Right inferior 

frontal gyrus (IFG) 

40 26 -6 34.52 4.20 

Left transverse 

temporal gyrus / 

auditory cortex 

(AC) 

-38 -28 12 34.31 4.20 2177 0.003 

Left superior 

temporal gyrus 

(STG) 

-60 -20 -8 31.19 4.06 

(“Fast” 

vs. 

“slow” 

deviant) 

x 

(“Predict

able fast” 

vs. 

“Predicta

ble 

slow”) 

Left superior 

parietal lobule 

(lSPL) 

-26 -40 46 49.37 5.82 3073 0.003 

Table 2. Source reconstruction results. Summary of significant clusters showing 

differences between conditions. 

The difference between source estimates associated with deviants and standards was 

localized to a large network of regions (see Table 2 for full results), including bilateral 

AC and STG and the rIFG. On the other hand, the interaction effect between deviant 
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types and temporal conditions was localized to a spatially confined cluster in the left 

superior parietal lobule (SPL; see Table 2). A post-hoc analysis revealed that, in this 

cluster, “fast” deviant responses presented in the “predictable fast” condition were 

associated with weaker source estimates than “slow” deviant responses presented in the 

“predictable fast” condition (Tmax = 3.67, Zmax = 3.46, pFWE = 0.009, small-volume 

corrected). Similarly, “slow” deviant responses presented in the “predictable slow” 

condition were associated with weaker source estimates than “fast” deviant responses 

presented in the “predictable slow” condition (Tmax = 5.79, Zmax = 5.11, pFWE = 0.003, 

small-volume corrected). Thus, while the deviant processing could be linked to a wide 

network of auditory and frontal regions, deviants presented in the corresponding 

temporal predictability conditions (e.g., “fast” deviants in the “predictable fast” context) 

were associated with a relative decrease of left parietal activity. 

Discussion 

In the present study, we observed a correlation in MMR amplitude to heirachally-high 

(tone-pair) and hierarchically-low (single-tone) deviants in corresponding 

hierarchically structured slow and fast temporal predictability, indicating a congruency 

effect in predictive processing between so-called “what” and “when” events in the 

auditory system. This finding is supported by the presence of decreased left parietal 
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activity during congruent deviants. ITPC analysis revealed increased right hemispheric 

activity during the presence of slow temporal manipulations, consistent with existing 

research (Giroud et al., 2020).  

 

Deviant responses within melodic sequences and tone contours are well documented, 

having been used to explore a variety of phenomena in the auditory system (see Yu et 

al., 2015 for partial review). Deviant tones within familiar musical scales have been 

found to elicit higher MMR amplitudes compared to those of unfamiliar scales and 

tones presented without a scale structure (Brattico et al., 2001), as well as higher deviant 

responses to out-of-scale notes in unfamiliar melodies (Brattico et al., 2006). Deviant 

responses to manipulated musical characteristics within melodic sequences (e.g. timing, 

pitch, transposition, melodic contour) have similarly been demonstrated in musician 

and non-musician groups (Tervaniemi et al., 2014, 2014; Vuust et al., 2011). In 

predictive coding frameworks, such evoked responses can be understood in the context 

of prediction error, wherein bottom-up error signaling triggers the adjustment of higher-

level models of the stimulus train formed as a result of perceptual learning during 

repeated stimulus presentation (Garrido et al., 2009). Our source reconstruction was 

equally consistent with existing literature revealing bilateral activity in the primary 

auditory cortex (A1) and higher-order auditory regions in the superior temporal gyrus 

https://www.zotero.org/google-docs/?L4AZG8
https://www.zotero.org/google-docs/?3VCHhP
https://www.zotero.org/google-docs/?3VCHhP
https://www.zotero.org/google-docs/?3VCHhP
https://www.zotero.org/google-docs/?3VCHhP
https://www.zotero.org/google-docs/?NZ27QL
https://www.zotero.org/google-docs/?frqR43
https://www.zotero.org/google-docs/?s0v0Tw
https://www.zotero.org/google-docs/?XoKGzb
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(STG), as well as the rIFG (Garrido et al., 2008; Giroud et al., 2020). 

 

Results of our frequency domain analysis show that the EEG spectrum largely follows 

that of the stimulus spectrum. However, ITPC peaks at the pair-tone rate of ‘fully 

predictable’ and ‘predictable fast’ are significantly larger than neighboring frequencies, 

which is not the case in the stimulus spectrum, indicating that ITPC peaks do not just 

follow the stimulus spectrum but also reflect the neural processing of sequence 

structures at higher levels (e.g. chunking). This result is inconsistent with previous 

MEG studies observing that neural entrainment at syllabic rates are bilaterally 

distributed (Ding et al., 2016). We found that the EEG-based ITPC response at tone-

rate is stronger near central electrodes, with results consistent with existing EEG studies 

(Ding et al., 2017). Additionally, the pair-rate effect is predominantly present in the 

right hemisphere, suggesting that the hierarchical structure of non-linguistic sequences 

can be entrained by parallel neural activity in different regions at distinct time scales. 

Interestingly, the ITPC differences between conditions (predictable-low, predictable-

fast) emerged during the experiment in pair-rate peaks, but not in tone-rate peaks, 

suggesting that rapid learning could enhance the congruence of neural entrainment to 

auditory sequences with different regularities at the pair-rate level. Similarly, a previous 

study (Moser et al., 2021) found significant differences in non-linguistic triplet-rate 

https://www.zotero.org/google-docs/?wtI2zU
https://www.zotero.org/google-docs/?w7gADi
https://www.zotero.org/google-docs/?Ha9oMr
https://www.zotero.org/google-docs/?8dE8Xr
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ITPC peaks between structured and random conditions, occurring during early 

exposure. This ITPC difference suggests a fine shift in sequence encoding, with 

different regularities from single elements to integrated chunks. Notably, we also found 

correlations between the ITPC difference conditions and the congruence effect of ERP 

amplitude, indicating a mutual network between neural entrainment and prediction. 

 

Previous studies have shown that the processing of musical information requires 

predictive mechanisms for timing of content of auditory events, and that such 

predictions can have modulatory effects at hierarchical cortical levels when presented 

within the framework of melodic expectation (Di Liberto et al., 2020; Royal et al., 

2016). Musical stimuli present us with an intriguing opportunity to investigate 

predictive coding mechanisms, as the statistical regularities within musical frameworks 

are well defined and intrinsically learned. In particular, such structures allow us to 

disassociate “what” and “when” predictions while keeping other elements of a stimulus 

stream intact across manipulations and trials. Studies have demonstrated an early right 

anterior negativity (ERAN) in contexts where musical syntax has been violated, as 

opposed to the comparatively low-level acoustic diavations that elicit a MMN response 

(see Koelsch et al., 2019 for review). Because the presence of musical syntax violations 

require knowledge acquired through long-term repeated exposure to music, long-term 

https://www.zotero.org/google-docs/?esDaQH
https://www.zotero.org/google-docs/?esDaQH
https://www.zotero.org/google-docs/?czGLI7
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memory recall is involved in establishing those regularities. The role of memory in 

syntactical prediction violation is an avenue ripe for further investigation, and future 

studies may wish to extend our paradigm to further probe the observed late-series ITPC 

pair-rate differences in that context.  
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Chapter 5. Conclusions 

This thesis investigated the predictive processing and sequence segmentation 

ability in humans and rodents. We provided more evidence for the potential 

mechanisms of acoustic sequence coding in different species and for the processing 

hierarchy in the auditory neocortex. The main findings can be summarized as follows: 

1. Learning boosts the decoding of sound sequences in rat auditory 

cortex 

(Ding et al., 2016) found that human subjects' cortical activity is entrained to 

distinct time scales of speech streams across different linguistic hierarchical 

levels if subjects are familiar with the language. In our study, we sought to 

establish an animal model of entrainment to different hierarchical levels of 

acoustic sequences, and tested whether neural activity in the rat auditory 

cortex is modulated by previous segment experience (familiarity). 

1.1 We found that rats could behaviorally differentiate familiar from unfamiliar 

acoustic stimulus triplets after training. However, the low-frequency 

entrainment to the triplet rate was not detectable in the neural activity of 

anesthetized rodents.  
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1.2 We showed that behavioral training leads to improvements in decoding 

stimulus-related information for familiar sequences based on the spatial pattern 

of neural activity in the auditory cortex. 

Thus, our results suggest that activity in the rat auditory cortex is modulated by 

previous stimulus experience and enables improved decoding of familiar sound 

sequences. 

2. Deviant Processing of Complex Sounds in Mouse Auditory 

Cortex 

Extensive literature in rodent models (Parras et al., 2021; Parras et al., 2017) on 

mismatch responses to single stimuli suggests a hierarchy of regions, such that 

secondary areas encode deviance detection to a larger extent than primary areas. 

However, it remains elusive whether the primary auditory cortex, or higher 

order regions, can also encode deviance of more complex stimulus patterns. 

This study investigated whether mismatch responses to complex deviants differ 

between primary and higher-order auditory regions.  

2.1 Our results suggest that mice could encode both the local probabilities 

(transitions) and the more global stimulus patterns, and elicit mismatch signals 

to substitution deviants (pairs containing novel elements) and transposition 
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deviants (pairs containing familiar elements in a different order), but not to 

omission deviants.  

2.2 Notably, the higher-order area of the auditory cortex (A2) elicited more 

pronounced mismatch responses to complex deviants than the primary auditory 

area. 

Thus, our results suggest a hierarchical gradient of prediction error signaling for 

complex deviants.  

3. Congruence of "What" and "When" Predictions in the Auditory 

System 

Transitions and timing knowledge is one of the most basic mechanisms of 

sequence coding (Dehaene et al., 2015). A recent human ECoG study 

(Auksztulewicz et al., 2018) found that cortical responses to auditory targets 

were modulated both by the stimulus content expectation and by its timing 

expectation, and suggested that what (content) and when (time) predictions 

engage complementary and interacting neural mechanisms in different cortical 

regions. Here, we tested whether “what” and “when” predictions show 

interactions specific to the hierarchical level at which they are manipulated (e.g., 

single tones vs. tone pairs) by independently manipulating temporal and 
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content-based expectations at two hierarchical levels in humans. 

3.1 The EEG experiment in humans revealed interactive effects of “what ” and 

“when” predictions in terms of their modulation of the stimulus-evoked activity 

amplitude. This effect was only present at both hierarchical levels (single tones 

and tone pairs) only for hierarchically congruent “what” and “when” 

predictions (i.e., fast predictions modulated mismatch responses to unexpected 

single tones, and slow predictions modulated mismatch responses to 

unexpected tone pairs) 

3.2 Frequency-domain analysis showed that entrainment to stimuli expected in time 

at the slower temporal scale gradually increased over the course of the 

experiment and was mostly expressed over the right hemisphere. 

Thus, our results indicated a congruence effect in predictive processing of stimulus 

contents and timing in the auditory system. 

4. Limitations and future perspectives 

While the work in this thesis has advanced our understanding, it nevertheless 

leaves some questions unanswered, and there are aspects of this work which, with the 

benefit of hindsight, could be improved.  For example, in the first study (chapter 2) the 

training method could be improved in future studies to shorten the training duration, 
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which can also avoid the potential influence of the age effect. However, the rats were 

normal hearing, and there were no cognitive tasks (Rimmele et al., 2015) during the 

ECoG recording, which reduced the potential confound of age effects in our first study.  

Our results (chapter 2) suggest that rats process suprasyllabic regularities in acoustic 

sequences, and that the training experience modulates their cortical activity even under 

subsequent anesthesia. However, we didn’t observe the neural entrainment at the triplet 

rate in the trained animal group and we cannot exclude that the animal status may 

strongly affect the neural oscillations (Akeju et al., 2017) in our study. Previous studies 

in humans suggested that neural entrainment could be disrupted by sleep (Makov et al., 

2017). In addition, different anesthesia methods (Carbajal et al., 2018, Schmidt et al., 

2013) may influence the neural response in animals differently,  especially for the MMN. 

Thus, future studies should test the behavioral relevance of these signals by relating the 

neural activity to behavioral responses in awake and behaving animals.  

The second study’s experimental design could be improved. For example, we have 

transposition (more global) and substitution (position) of deviant stimuli, and we also 

introduced the novelty (probability) of the deviant stimuli. This design makes it hard to 

explain which factor (novelty or position) modulates the neural response most. Future 

studies should split these factors into different experiments or blocks. For the stimulus 

selection, especially for the omission condition, future studies should employ simpler 
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stimuli, such as single vowels instead of syllable pairs, to detect the omission response.  

     In addition, while we demonstrate that both mice and humans could encode the 

transitions and temporal information of the sequence (chapter 3 and 4), future research 

should employ the same paradigm in both species to better identify the possible scope 

of extrapolating results from animal models to humans.  

Nevertheless, the research presented in this thesis indicates that two building 

blocks of sequence coding mechanisms (i.e., transitions and timing, and chunking; 

Dehaene et al., 2015) are evolutionarily conserved across rodents and humans.  
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