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Abstract 

Brain responses that differentiate the processing of unexpected deviant stimuli from 

expected standard stimuli are often quantified as mismatch negativity (MMN). The MMN 

(a difference in event-related potentials based on non-invasive recordings evoked by 

sensory deviants and standards) has long been recognized to reflect novel stimulus 

processing. Previous studies in humans (Phillips et al., 2015) suggest that MMN is related 

to deviance detection based on sensory prediction violations.  However, it has also been 

suggested that predictions of stimulus contents (“what”) vs. stimulus timing (“when”) have 

different putative mechanisms (Auksztulewicz et al., 2018b). While the latter study raises 

the possibility that violating predictions of different stimulus attributes can be dissociable, 

it is unknown whether this functional specialization extends to different content-based 

predictions, such as acoustic pitch, location, duration, and spectral composition. 

Furthermore, since deviant detection rests on extracting a memory representation of recent 

stimulus statistics, the MMN can be used as an indirect measurement of sensory memory 

formation. However, other more direct measurements, such as intracranial recordings from 

animal models, are needed to elucidate the neural mechanisms of auditory memory 

formation.  

In this thesis, I investigated whether violations of acoustic predictions based on different 

stimulus features (pitch, duration, location, or formant) are reflected in differences in neural 

activity in human and animal models. The first two experiments used a roving oddball 

experimental paradigm, adapted from a previous study (Garrido et al., 2008). In the first 

experiment, I investigated whether feature-specific differences in the spatial distribution of 

MMN responses can be mapped onto different cortical regions using electrocorticography 
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(ECoG) recording in the rat auditory cortex. We demonstrated that MMN could be 

observed following the violation of four independent acoustic features, but that these MMN 

responses show a large degree of heterogeneity not only across different acoustic features 

but also across individual animals.  

In the second experiment, I applied the same paradigm to humans using 

electroencephalography (EEG). As in the rat study, we found significant mismatch 

responses following prediction violations of four independent acoustic features. While no 

significant differences were observed between MMN signals corresponding to different 

stimulus features in a traditional univariate analysis, acoustic feature information could be 

decoded from the fine-grained topography of mismatch responses based on multivariate 

analysis. Consistent with  previous studies, the results indicated that deviant detection 

along different stimulus features could be linked to differences in the spatial distribution 

of neural responses.  

In the third experiment, I used a direct manipulation of auditory memory formation and 

recorded auditory cortical activity in anesthetized rats to infer the neural correlates of 

auditory pattern learning, differentiating between repeated sequences and novel sequences. 

While no significant differences between re-occurring and new sequences were observed 

in event-related potentials (ERPs), when comparing responses in the time-frequency 

domain, we found robust differences between re-occurring and new sequences. This result 

was most prominent in the beta frequency band, indicating a neural correlate of learning 

formation in passively listening and anesthetized animal models.  

In conclusion, the thesis shows that the neural correlates of sensory deviance detection 

depend on the type of sensory feature whose violation underlies deviant stimulus 
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presentation and that the auditory cortex is susceptible to auditory memory formation both 

through indirect measurements (mismatch responses) and more direct measurements 

(repeated presentation of the same stimulus sequence).  
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Chapter 1 

Introduction 

1.1 Importance of  predictive processing in auditory cortex 

      The ability to automatically detect signal changes is essential to survival for any organism. For 

example, an animal living in the forest can distinguish a relatively constant sound background, 

such as leaves blowing in the wind, from a sudden novel sound, such as a cracking branch, which 

might indicate the presence of a predator nearby. Distinct brain responses to novel sounds (as 

opposed to expected sounds) are known as mismatch negativity (MMN) in humans and are thought 

to reflect this ability of auditory change detection. MMN was observed at first by Näätänen et al. 

(1978) in the human electroencephalogram (EEG) as a late negative deflection in auditory evoked 

potentials (AEPs) following a presentation of deviant stimuli. They found that the neural response 

was attenuated by the sound sequence of repetitive stimulation while a presentation of an 

unexpected stimulus enhanced the neural response. The MMN amplitude is typically observed at 

approximately 100 - 250 ms post-stimulus in humans (Javitt et al., 1994, 2008; Nattanen et al., 

1978, 2007; Näätänen and Alho, 1995b; Näätänen and Michie, 1979) 

Two main hypotheses have been proposed concerning the neural mechanisms of the MMN: the 

model adjustment hypothesis and the neural adaptation hypothesis. According to the model 

adjustment hypothesis (Näätänen and Alho, 1995; Näätänen et al., 2005), incoming sounds 

(deviants) are compared with the neural memory trace established by prior exposure of sounds 

(standards), which indexes the sound change detection of a mismatch between properties of 

deviant and standard sounds.  In contrast, the neural adaptation hypothesis assumes that MMN 

does not reflect a higher level comparison process but rather results from neural adaptation to 
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repeated sounds (standard). According to the latter view, repeated sound presentation attenuates 

neural responses in the auditory cortex due to synaptic depression and inhibition (May et al., 1999; 

May and Tiitinen, 2010). However, it can be argued that both of these models are too simple to 

explain the ability to predict more complex changes in the acoustic environment.   

Alternatively, predictive coding (Friston & Kiebel, 2009; Rao & Ballard, 1999), one of the most 

widely accepted integrative brain function theories, assumes that the brain continuously updates 

the internal model to minimize the error between the incoming input and the model. In this view, 

the brain is considered a hierarchically organized system where each level adjusts between the 

bottom-up sensory inputs and top-down predictions (Garrido et al., 2009). In this framework, 

MMN is typically interpreted as reflecting the discrepancy between top-down predictions and 

bottom-up inputs.  

While the predictive coding interpretation of the MMN is relatively recent, MMN was also subject 

to extensive neuroscientific research prior to the formulation of the predictive coding framework. 

Previous studies have investigated MMN properties across a wide range of stimulus conditions, 

including deviant stimulus type (i.e., violating predictions of different stimulus features such as 

pitch, duration, location, identity, etc.), deviant probability, and interstimulus interval (Korzyukov 

et al., 1999; May et al., 1999; Korzyukov et al., 2003; Jaaskelainen et al., 2004). However, non-

invasive recordings in humans using EEG techniques have a limited spatial resolution, making it 

difficult to answer more detailed questions about mismatch detection mechanisms along the 

auditory pathway.  

Therefore, many researchers have turned to animal models, such as rodents, which offer the 

possibility of direct recordings from neuronal populations and single neurons. In the rodent models, 
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the MMN amplitude is typically observed at approximately 50 – 150 ms post-stimulus (Ruusuvirta 

et al., 1998; Lazar and Metherate, 2003; Astikainen et al., 2006; Roger et al., 2009a; Astikainen et 

al., 2011; Nakamura et al., 2011). The MMN latency difference between humans and animals is 

attributed to the brain’s size and complexity (Javitt et al., 1992). Despite this difference, mismatch 

response has been shown to occur following manipulations of multiple acoustic features such as 

syllable patterns (Ahmed et al., 2011; Mahmoudzadeh et al., 2017), duration (Lipponen et al., 

2019), and frequency (Eriksson and Villa, 2005). While these studies in rodents suggest that 

violations of different acoustic features can be used to elicit mismatch responses, recent studies in 

humans suggest that different neural populations and mechanisms mediate prediction and 

prediction error corresponding to different stimulus features (Auksztulewicz et al., 2018b; 

Stefanics et al., 2019). However, since the previous studies in rodent models did not address 

differences in mismatch responses along different acoustic features, a critical question remains 

whether mismatch signaling is a domain-general or domain-specific process of detecting deviant 

stimuli.  

Domain-general learning theories posit that learning different types of new information may be 

processed in the same way through the same brain areas and that learning in different domains 

may function interdependently (Sloutsky, 2010; Li et al., 2014). Conversely, domain-specific 

learning theories posit that humans detect different information types differently through 

specialized brain networks and mechanisms (Cosmides et al., 2010; Cosmides and Tooby, 2013). 

Functional imaging studies have shown that simple stimuli such as pure tones are sufficient to 

drive activity in the auditory core (Heschl’s gyrus), whereas more complex stimuli such as 

bandpass noise or speech responses drive activity in higher-order (belt and para-belt) regions 

(Binder et al., 2000; Scott et al., 2000; Wessinger et al., 2001; Hickok and Poeppel, 2007). These 
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results support a hierarchical auditory processing model in the human auditory cortex with 

different regions playing distinct functional roles. In principle, the hierarchical organization of the 

auditory cortex has been linked to distinct regional distribution and independent processing of 

different stimulus features. Several studies (Schröger, 1995; Paavilainen et al., 2001; Phillips et al., 

2015; Rosburg et al., 2018) support the evidence that separable neural mechanisms mediate 

mismatch responses to violations of different stimulus dimensions. However, they did not consider 

that physical differences between stimuli along acoustic features should be individually adjusted 

to yield similar behavioral responses. Therefore, Chapter 2 in this thesis will address the regional 

specificity of neural mismatch responses to violations of different content-based predictions in the 

rat model. Furthermore, testing the evolutionary conservation of domain-specificity of MMN 

signalling, Chapter 3 will answer the question whether MMN responses in humans differ 

depending on whether sudden stimulus change occurs in pitch, duration, location, or vowel identity 

using behaviorally adjusted deviant sounds.  

Finally, to understand the interrelations between MMN and sensory memory, it is essential to 

investigate the underlying neural mechanisms in the auditory cortex. MMN is elicited by a 

mismatch between the deviant auditory input and sensory-memory trace representing the standard 

stimuli. Earlier studies support the notion that MMN increases with the number of standard 

stimulus repetitions (Näätänen, 1992; Imada et al., 1993). This result suggested that MMN is a 

neurophysiological index for the echoic memory trace. However, MMN could not directly explain 

echoic trace formation because MMN depends on preceding standard formation. Previous 

electrophysiological studies have investigated how neurons adapt to re-occurring sounds to 

understand memory and adaptation processes by using a simplified experimental paradigm, in 

which the presentation of standard sounds (pure tones) is disrupted by a presentation of a deviant 
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sound (Garrido et al., 2009a; Malmierca et al., 2014; Nieto-Diego and Malmierca, 2016). However, 

realistic auditory scenes typically do not just include single sounds, but occasionally repeated 

appearances of more complex stimuli. As a result, studies using single sounds have limited 

ecological validity when explaining auditory pattern learning. Therefore, Chapter 4 in this thesis 

will focus on the physiological correlates of auditory pattern learning using repetitive exposure to 

a specific complex sound sequence.  

 

1.2 Neural pathways in the auditory system 

Auditory neurons encode and decipher the spectral, spatial, and temporal properties of sound. This 

chapter describes the auditory pathway that extends from the external ear, via the cochlea and 

several synaptic relays, to the cerebral cortex. The hearing process relies on three sequential stages 

along the pathway: the outer ear, middle ear, and inner ear. The outer and middle ear collect sound 

and physically travel the sound toward the inner ear that consists of the cochlea. The cochlea has 

three fluid-filled sections (i.e., the scala media, scala tympani, and scala vestibuli). Corti’s organ 

is located in this duct on the basilar membrane and transforms mechanical waves into neurons’ 

electric signals. The chemical difference between the fluids endolymph and perilymph fluids is 

vital for the inner ear’s function due to electrical potential differences between potassium and 

calcium ions. Therefore, the auditory system transforms a wide range of mechanical signals into a 

complex electrical signal series in the central nervous system (Figure 1). 
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Figure 1. The structure of the human ear.  
There are three major parts of the overall ear structure. The external ear, or auricle, collects sounds 
into the external auditory meatus. The sound vibrates the tympanum. These vibrations are 
conveyed to the middle ear bones; the malleus, the incus, and the stapes. The vibration of stapes 
is transmitted to the cochlea in the inner ear (Schultz, 2001).   
 

The neurons of the cochlear nuclei in the brainstem are the first central processors of auditory 

information, providing inputs to all the major brainstem and midbrain auditory nuclei. The synaptic 

connectivity pattern of neural networks in each part of the cochlear nuclear complex is an essential 

determinant of their information processing role (Figure 2).  
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Figure 2. The central auditory pathway 

The figure outlines the central auditory pathway from the cochlear nucleus to the auditory cortex. 
Neurons in the cochlear nucleus send their parallel axons along three main pathways; the dorsal 
acoustic stria, the intermediate acoustic stria, and the trapezoid body. The first construction of 
binaural representations is in the superior olivary nucleus, which is involved in sound 
localization—post-synaptic axons from the superior olivary nucleus project to the lemniscus. The 
inferior colliculus converges multisensory information. The geniculate axons terminate in the 
auditory cortex, providing an interface between sensory and cognitive networks (Schultz, 2001). 

 

Cochlear Nuclei 

The first relay of the primary auditory pathway occurs in the cochlear nuclei in the brain stem, 

which receives spiral ganglion axons (auditory nerve). The major role of these nuclei is to preserve 
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the order of input according to the topographic organization of frequency encoding, established in 

the cochlea and specialized post-synaptic neurons that process the auditory nerve’s output (Osen, 

1969; Cant and Benson, 2003). This region is anatomically split into two regions in mammals, the 

dorsal cochlear nuclei (DCN) and ventral cochlear nuclei (VCN). From the DCN, most fibers cross 

the midline and ascend in the contralateral lateral lemniscus. Other fibers ascend in the ipsilateral 

lateral lemniscus (Brawer et al., 1974). From the VCN, some fibers also ascend in the lateral 

lemniscus bilaterally. The second primary relay in the brain stem is in the superior olivary complex: 

most of the auditory fibers synapse are there, having already crossed the midline (Lee et al., 1996).  

Superior Olivary Complex 

The olivary complex consists of three primary nuclei – the medial superior olive (MSO), lateral 

superior olive (LSO), and medial nucleus of trapezoid body (MNTB) – and several smaller 

preolivary nuclei (Guinan and Li, 1990; Yin and Chan, 1990; Kavanagh and Kelly, 1992). They 

have several complementary physiologic roles. Neurons in the MSO encode phase relationships 

and delay sensitivity from the two ears, mainly from lower frequencies; these signals are essential 

for accurate spatial localization (Yin and Chan, 1990). Neurons in the LSO converge monaural 

input of the cochlear nuclei to derive binaural signals sensitive to intensity difference and send this 

information from the lateral lemniscal nuclei (LLN) to the inferior colliculus (IC) (Kavanagh and 

Kelly, 1992). Finally, MNTB contributes to creating binaural subtypes via their inhibitory input to 

the LSO (Guinan and Li, 1990). The construction and variety of binaural interactions allow for 

emergent functions to directly relate to a particular neural circuit (Covey et al., 1991).  
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Inferior Colliculus  

The inferior colliculus (IC) is a dome-shaped structure, among the largest auditory nuclei in the 

vertebrate brain. It is virtually an obligatory synaptic terminus for ascending input to the medial 

geniculate body (MGB) (Aitkin and Reynolds, 1975). Besides, the IC’s connectivity pattern 

suggests its critical roles in both the auditory ascending and descending pathway. The IC contains 

three principal divisions: central nucleus, lateral nucleus, and dorsal cortex. Each has several nuclei 

that differ in neuronal structure (Morest and Oliver, 1984), connectivity (Rockel and Jones, 1973) 

and functional role (Aitkin et al., 1970). The central nucleus is exclusively auditory (Aitkin et al., 

1994) and is essential for normal hearing (Jenkins and Masterton, 1982). The lateral nucleus is 

multisensory and the target of considerable non-auditory input (Morest and Oliver, 1984). Lastly,  

the dorsal cortex receives most of its projections from the cerebral cortex (Winer et al., 1995).  

The Medial Geniculate Body 

The primary sensory nucleus of the medial geniculate body (MGB) possesses three subdivisions: 

ventral (MGBv), dorsal (MGBd), and medial (MGBm) bodies (Clerici and Coleman, 1990; Winer 

et al., 1999; Malmierca, 2003). An earlier study (Graybiel, 1973) defined two sensory conduction 

routes referred to as lemniscal and lemniscal-adjunct (or non-lemniscal) systems. Since then, 

auditory research is widely used to easily classify and understand the role of multiple subdivisions 

(Hu, 2003; Jones, 2003; Lee and Winer, 2008). The lemniscal pathway consists of the central 

nucleus IC, the MGBv, and the primary auditory cortex (AC) in the rat study (Parras et al., 2017). 

The lemniscal division is thought to be in charge of accurately relaying sensory input and tends to 

be sharply tuned to frequency response. In addition, lemniscal neurons showed a consistent 

response to the sound including shorter latencies and higher spontaneous activity (Malmierca et 
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al., 2015). The other system referred to as the non-lemniscal pathway includes the rostral and 

dorsal part of IC, MGBd-MGBm, and secondary area of AC in rodents (Parras et al., 2017). This 

pathway consists of a belt of broadly tuned neurons that receive input from lemniscal and from 

other non-lemniscal stations. This connectivity reflects their comparatively longer latencies and 

breadth of frequency response (Saldana et al., 1996; Malmierca and Ryugo, 2011). Therefore, the 

non-lemniscal pathway seems to form a higher-order pathway processing, handling more complex 

aspects of the auditory scene and being required to account for the emergence of deviance-

detection activity (Carbajal and Malmierca, 2018).  

Primary Auditory Cortex 

The auditory cortex plays a critical role in sound processing as it comprises multiple receptive 

fields with a hierarchical organization. Three major subdivisions are identified in primates referred 

to as the core, belt, and para-belt regions. The cells in the core areas have relatively short response 

latencies and well-defined frequency responses. In the caudal area, neurons are best activated by 

high-frequency tones whereas rostral area neurons are activated by low-frequency tones 

(Merzenich and Brugge, 1973; Imig et al., 1977; Aitkin et al., 1986; Morel and Kaas, 1992; Morel 

et al., 1993; Kosaki et al., 1997). The auditory belt surrounds the core with dense interconnections 

with the core. The belt appears to receive only sparse inputs from the ventral part of the medial 

geniculate complex with most of its thalamic inputs coming from the dorsal and medial division 

of the complex (Rauschecker et al., 1997). The para-belt is interconnected with adjunct portions 

of the temporal and parietal lobe and several frontal lobe regions (Yeterian and Pandya, 1989; 

Kosmal et al., 1997; Romanski et al., 1997). Para-belt neurons are unlikely to respond to pure tones 

and prefer complex stimuli such as vocalizations. The previous functional imaging studies of the 
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human auditory cortex have suggested the hierarchical organization in which the simple stimulus 

such as pure tone is sufficient to drive activity in the auditory core whereas complex stimuli such 

as bandpass noise or speech produced activity in surrounding auditory cortical regions (Binder et 

al., 2000; Scott et al., 2000; Wessinger et al., 2001; Hickok and Poeppel, 2007).  

Moreover, deviance detection and prediction error are widespread in the auditory cortex. The 

primary auditory cortex is the first station in the lemniscal pathway to exhibit deviance detection 

reliably. The predictive error seems to account for about 25% of the overall deviance-detection 

activity recorded in the lemniscal AC, which is a more significant proportion than in non-lemniscal 

divisions of the subcortical area (Parras et al., 2017). Therefore, in this thesis, we measured the 

auditory cortex differences between primary and higher-order regions map.  

 

1.3 Mismatch negativity (MMN) and stimulus-specific adaptation (SSA) 

Mismatch negativity (MMN) 

When presented with novel input, the brain responses reveal a unique pattern. Neural activity 

waveforms typically show suppression (attenuation) of responses to the familiar or expected 

stimuli whereas an enhanced response reflects novel or unexpected stimuli. This response pattern, 

when observed in local field potential (LFP) or electroencephalography (EEG) signals, is called 

the mismatch negativity (MMN) and comprises an auditory event-related potential (ERP) 

calculated by subtracting the response to a standard or repeated stimulus from the responses to a 

deviant or novel stimulus (see Figure 3 (a)). MMN is interpreted as a brain response reflecting 

automatic deviance detection. In traditional MMN-inducing paradigms, such as the oddball 

paradigm, the probability of standard stimulus presentation is, by definition, much higher (ca. 90%) 
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than the probability of deviant stimulus presentation (ca. 10%) (see Figure 3 (b)). The peak latency 

is approximately 100 - 250 ms (in the N1 range and later) relative to the onset of the deviant 

stimulus. Interestingly, MMN responses might differ depending on the type of stimuli. Previous 

research studied the modulation of MMN amplitude by the feature of stimulus deviance such as 

pitch, duration, formant, and location (Alho et al., 1998; Grimm et al., 2004; Ahmed et al., 2011; 

Komatsu et al., 2015). The details of multi-feature deviance detection are described in section 1.5. 

According to source reconstruction studies, the MMN neural generators are typically localized 

within the auditory cortex, including the primary auditory cortex (A1) and superior temporal gyrus 

(Hari et al., 1984; Giard et al., 1990; Näätänen and Alho, 1995; Alho et al., 1998). However, the 

correlation of neural mechanisms and specific brain regions remains unresolved.  

Recently, MMN research mainly considers the underlying neural mechanisms (Garrido et al., 

2009b). There are two main hypotheses proposed to explain it. The first hypothesis has been 

referred to as the “model adjustment” hypothesis. The second has been referred to as the “neural 

adaptation” hypothesis (Näätänen et al., 2005; May and Tiitinen, 2010). These hypotheses are 

discussed in detail in section 1.4.  
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Figure 3. Schematic representation of the mismatch negativity (MMN) and oddball paradigm 

a) MMN is marked as a shaded area, which is calculated as a standard response (thin line) 
subtracted from the deviant response (bold line). b) Descending oddball paradigm where expected 
high-frequency stimuli serve as standard sounds (green) and unexpected low-frequency stimuli 
serve as deviant sounds (red) (Kujala and Näätänen, 2001).  

 

Stimulus-specific adaptation (SSA) 

Using the same oddball sequence as in MMN studies, a similar deviance-sensitive response has 

been identified in the response of single neurons along the auditory pathway in animal models. 

These neurons show progressively reduced response to repetitive sounds, which is restored when 

exposed to novel sounds. This single-neuron phenomenon is referred to as stimulus-specific 

adaptation (SSA) (Movshon and Lennie, 1979). SSA is quantified as the index of change in a 
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neuron’s response firing rate between deviant and standard stimuli. This index is referred to as the 

common SSA index (CSI), which is calculated as 

CSI = [d(f1)+d(f2) − s(f1) − s(f2)]/[d(f1) + d(f2)+s(f1)+s(f2)] 

Here, d(f) and s(f) denote spike rate to two frequencies (f1 and f2)  for deviant (d) or standard (s) 

stimulus. CSI measures the proportional difference in spike rate between deviant and standard. 

When the deviant stimulus-response is stronger, the CSI value is positive (see Figure 4(a)).  

Compared to MMN, SSA is typically observed at earlier latencies – for instance, one previous 

SSA study (Harms, 2016) showed the difference in spiking responses peaking at 50-100 ms. SSA 

is observed subcortically in the IC (Perez-Gonzalez et al., 2005; Reches and Gutfreund, 2008; 

Malmierca et al., 2009; Lumani and Zhang, 2010; Netser et al., 2011; Zhao et al., 2011), and the 

MGB (Anderson et al., 2009; Yu et al., 2009; Antunes et al., 2010) as well as in the primary AC 

(Ulanovsky et al., 2003; Ulanovsky et al., 2004a; von der Behrens et al., 2009; Taaseh et al., 2011). 

Among those above,  SSA to frequency deviance is stronger in the non-lemniscal regions (IC) such 

as in the dorsal, rostral and lateral cortices than in the central nucleus (Perez-Gonzalez et al., 2005; 

Malmierca et al., 2009; Lumani and Zhang, 2010; Malmierca et al., 2011; Duque et al., 2012) 

(Figure 4(b)). Previous studies have observed sensitivity to intensity and duration deviance in the 

AC, but it is not as robust as responses to frequency deviance (Ulanovsky et al., 2003; Farley et 

al., 2010).  

Another finding is that SSA is not homogeneously distributed within the frequency response in IC 

neurons. In a study of the IC in the rat (Duque et al., 2012), the authors compared SSA levels at 

multiple combinations of frequency and intensity using single-unit recordings. They found that 

adapting neurons show stronger SSA at high frequency and low sound intensity. According to a 
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line of previous studies (Malmierca et al., 1993; Malmierca et al., 1995; Malmierca et al., 2011), 

the morphological differences reflected differences in IC location. They found that dorsal and 

rostral IC regions possess widespread dendritic arbors and broader frequency tuning than the 

central IC region (Duque et al., 2012). Besides the encoding deviance by spike count, IC neurons 

could also encode deviance information through spike timing. The first spike latency (FSL) evoked 

by the deviant stimulus is shorter than the standard stimulus (Malmierca et al., 2009; Zhao et al., 

2011; Duque et al., 2012). This is referred to as the latency adaptation, which seems to be a 

uniquely subcortical phenomenon (Malmierca et al., 2009; Antunes et al., 2010; Duque et al., 

2012). Thus, these results indicate that temporal coding seems to play a vital role in the signaling 

of deviance.  

 

Figure 4. Illustration of Stimulus-Specific Adaptation (SSA)  
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a) The common SSA index (CSI) is used to quantify the SSA neuronal responses. Three peri-
stimulus time histograms (PSTHs) represent the response of the deviant (red line) and standard 
(blue line) for three different CSI values.  b) Photomicrography showed the anatomical location of 
SSA in the IC. The plot represents a sagittal section of the IC with electrode track (asterisks) and 
electrolytic lesion (arrowhead). C (caudal); D (dorsal). The right panel (box plot) shows that CSI 
value depends on anatomic regions. The blue box represents the 25th - 75th percentile, and the red 
crosses are outliers (Duque et al., 2012). 

 

1.4 Different ways of understanding deviance detection 

1.4.1 Model adjustment hypothesis 

While the MMN has been subject to intensive research regarding its spatial distribution, latency, 

and sensitivity to stimulus characteristics, the hypothesized mechanisms have been debated. 

Earlier studies (Winkler and Czigler, 1998) suggested the model adjustment hypothesis to explain 

the mismatch between the standard stimuli and deviant stimuli. According to this theory, the MMN 

is thought to reflect an online update of the prior perceptual model established based on the 

previous experience and compared with the actual auditory input. As a result of the update, the 

neural response to the deviant increases relative to the neural response to standard stimuli (Figure 

5.1). In agreement with this theory, a previous study demonstrated deviant detection updated 

model of the sensory input in auditory processing. (Sussman and Winkler, 2001).  In this study, 

the researchers examined the effect of the single deviants on the response to double deviant in a 

contextual change paradigm.  The deviants were presented in two ways; one single tone (single 

deviant) and two successive tones (double deviant) had a higher pitch than standard. The responses 

of both the first and the second deviant evoked significant MMN, but the MMN evoked by the 

first differed from that evoked by the second. The first deviant of the double deviant showed MMN 

both at the beginning and end of the segment, but the second deviant of a double deviant elicited 
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MMN only at the end of the segment. This result indicated that the auditory system attended double 

deviant at the beginning (integration) and only after sufficient information is obtained can different 

stream emerge in perception (segregation).  Sussman and Winkler (2001) postulated that the 

dynamic process of sensory input updating continuously in the auditory system.  

Note also that source reconstruction studies (Opitz et al., 2002; Doeller et al., 2003) suggest that 

MMN is generated bilaterally in the temporal cortex. These previous studies used dipole modeling 

over different time windows to explain the topographic distribution of MMN. They observed that 

the early component (in the 90-120 ms time window) originates in the superior temporal gyrus 

(STG) while the late component (in the 140-170 ms time window) was localized to the left and 

right inferior frontal gyrus (IFG). This result suggests that the temporal area might involve 

processing the signal physical properties, whereas the frontal area might reflect interpretation 

sensory input of signal processing.  

In addition, from the model adjustment perspective, MMN can be used to study how the brain 

detects deviant input and modulates its processing by top-down mechanisms. A previous study by 

Sussman et al., (2003) supported this hypothesis by providing evidence for the top-down 

modulation of the deviance detection system. The results of behavioral and electrophysiological 

analyses suggested that the predictability of irrelevant sound changes was related to involuntary 

switches of attention. When irrelevant sound changes occurred unpredictably, reaction times were 

longer and attention-related ERP components (P3 peak) could be observed. However, when sound 

changes occurred in a predictable fashion, the correlates of involuntary attention switches were 

not observed. The results are consistent with the notion of top-down control over stimulus-driven 

switching of attention.     
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Figure 5.1. Model Adjustment 
According to the model adjustment hypothesis,  the N1 component of the response to an 
unexpected stimulus reflects an analysis by a transient detector system. The results of the analysis 
are passed onto a sensory memory system. Based on the comparison between past stimuli in 
sensory memory and new stimuli, the MMN response reflects the difference between them. The 
bottom panels are depicting N1 generator activity and MMN generator activity. Four standards (S) 
are followed by one deviant (D) and the corresponding neural responses are shown in blue and red 
lines. The first N1 response is larger than the MMN response. In contrast, the MMN generator 
response is only visible following the deviant stimulus (May and Tiitinen, 2010). 
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1.4.2 Adaptation hypothesis  

Unlike the model adjustment hypothesis, the adaptation hypothesis supposes that the attenuated 

response following standard stimuli could be simply due to neural adaptation (Figure 5.2). A 

previous study by May and Tiitinen (2010) suggested that the attenuation response may be due to 

synaptic depression and lateral inhibition mechanisms. According to the adaptation hypothesis, the 

N1 response, which delays or suppresses the activation of calcium-dependent potassium channels, 

leads to a slow hyperpolarizing current and decreases neuronal firing rates. Thus, the neural 

adaptation results from pre-synaptic mechanisms and rests on post-synaptic responsiveness 

changes (Faber and Sah, 2003). The adaptation hypothesis encompasses the SSA, which in this 

view is due to fast time constants of adaptation during the stimulus sequence, and demonstrates a 

simple, low-level mechanism mimicking more sophisticated perceptual-cognitive effects 

(Ulanovsky et al., 2004b; Costa-Faidella et al., 2011).  

However, while both adaptation and adjustment hypotheses have been used to interpret the MMN, 

both hypotheses have shortcomings in explaining this phenomenon. The adjustment hypothesis is 

weakened by the lack of clarity regarding the extent to which MMN reflects a pure measure of 

deviance; the absence of direct evidence for a population of neurons capable of higher-order 

change detection; and the lack of consistent support from animal and intracranial studies (Edwards 

et al., 2005; Taaseh et al., 2011; Fishman and Steinschneider, 2012; Harms et al., 2014). The 

adaptation hypothesis has failed to account for the large MMN elicited by repetition deviants 

(Horvath and Winkler, 2004; Macdonald and Campbell, 2011; Wacongne et al., 2012), stimulus 

omissions (Hughes et al., 2001; Wacongne et al., 2011; Salisbury, 2012), and unpredicted vs. 

predicted deviant tones (Sussman et al., 1998; Sussman and Gumenyuk, 2005).  
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Figure 5.2. Adaptation Model 
In the adaptation model, when stimuli are presented, the activations of adapting cells and non-
adapting cells are overlapping. The standard (repetitive) stimuli lead to cell tuning, resulting in 
adaption and suppression. In contrast, when deviant (novel) stimuli are presented,  the responses 
of non-adapting cells increase. Unlike the model adjustment hypothesis, this model suggested that 
the N1 and MMN are generated by the same neural populations (May and Tiitinen, 2010). 
 

 

1.4.3 Predictive coding       

A new perspective, which integrates model adjustment and adaptation, has been proposed to 

account for the neurobiological mechanisms of deviance. This framework is referred to as 

predictive coding. This is one of the most comprehensive neural function theories that account for 

how the brain perceives the world (Heilbron and Chait, 2018). Consistent with the model-

adjustment hypothesis, in this view, the input stimuli are compared with information inferred from 

past events through an internal model, and the following error is reduced by continuously updating 
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the model. However, when predictive coding is used to explain findings based on oddball 

paradigms, it faces a major methodological limitation as it confounds adaptation and expectation 

effects (Ruhnau et al., 2012). In an oddball sequence, the adaptation effect induced by repetitive 

tones is known to cause a reduced auditory N1. By subtracting the standard response (including 

N1 peaking at 100 ms) from the deviant response (peaking at around 100-200 ms), MMN could 

be contaminated by the N1 and overestimated. However, a suitable control sequence can help 

estimate adaptation and deviance detection separately.  For example, in the many-standard 

sequence, the target tone is embedded within a sequence of other random tones. This sequence 

does not generate repetition suppression in response to the target tone, while controlling for the 

state of refractoriness of the auditory system ( Schröger and Wolff, 1996). This comparison 

between the response to the target tone in the control sequence and the standard-evoked response 

accounts for repetition suppression while the difference between the deviant-evoked response and 

the target response can be imputed to prediction error (Figure 5.3).  

Thus, predictive coding establishes a computational model of  neuronal activity via a Bayesian 

inference system (Friston, 2005), which involves estimating the posterior probability based on a 

prior probability distribution. In this view, the MMN reflects the discrepancy between sensory 

information from the environment and predictions based on an internal model of the environment 

(Auksztulewicz and Friston, 2016). 
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Figure 5.3. Predictive Coding 
Based on the predictive coding theory, repetition suppression occurs when the control-standard 
comparison has a positive value, and the prediction error is observed when the deviant–control 
comparison has a positive value. Deviance detection indicates a more general concept that is 
equivalent to the deviant-standard comparison (Carbajal and Malmierca, 2018).  
 

1.5 Deviance detection across acoustic features 

Previous research has attempted to explain the mechanisms of deviance detection between the 

incoming sound and past sounds based on various auditory features (e.g., sound duration, 

fundamental frequency, vowel formant, spatial location, etc.) This chapter will review MMN 

studies in animal and human models using different deviant features and paradigms (Table 1).  

1.5.1 Sensitivity to deviance in duration 

The time dimension plays a vital role in the generation of MMN. A previous study (Umbricht et 

al., 2005) investigated event-related potentials (ERP) evoked by deviant stimuli in different 

auditory stimulation paradigms in mice to determine if duration MMN can be observed in an 

animal model. It has been found that standard-deviant difference occurred on a 50% reduction 
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(from 100 to 50 ms) in duration. Such results would be predicted based on the different onsets of 

the stimulus differences and indicated that MMN shifts according to the onset of the detectable 

difference between deviant and standard stimuli. In another study (Roger, Hasbroucq, Rabat, Vidal, 

& Burle, 2009), the authors investigated the discrimination between the standard and the deviant 

by recording electroencephalographic responses in the rat. The results showed that  MMN was 

observed in response to 33% (100 ms deviant vs. 150 ms standard) but not 16% changes in duration. 

Recently, Lipponen et al. (2019) investigated the detection of vowel duration changes in 

anesthetized mice. Epidural recordings of auditory-evoked potentials were obtained in 

anesthetized mice exposed to change in sound duration from 100 to 200 ms in 10 ms steps. They 

observed a differential response only to the shortest (110 ms) deviant sound interspersed with the 

200 ms standard sound (45% duration decrease). 

In contrast to rodent studies, in humans (Joutsiniemi et al., 1998) MMN could also be elicited by 

a shorter duration tone (25 and 50 ms) than the 75 ms standard tone. Although the MMN peak 

amplitude for 25 ms deviants was larger than for 50 ms deviants, no significant difference was 

observed in peak latencies. Robust MMN has been detected following duration increments and 

decrements even for 10% changes in sound duration (100 ms vs. 110 ms) (Jaramillo et al., 2000). 

Thus, the neurophysiological detection of sound duration changes in rodents seems not to be as 

advanced as in humans. This suggests that deviant detection might depend on the complexity of 

the network of the brain.  

1.5.2 Sensitivity to deviance in frequency 

Previous reports utilizing epidural recordings in the rat have found evidence of MMN-like activity 

to pure-tone frequency deviants. Ruusuvirta et al.(1998) recorded ERP from the auditory cortex in 
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anesthetized rats to different tones (2000 / 2500 Hz). The MMN-like activity was observed as a 

significant difference between standards and deviants, 63-253 ms from stimulus onset. This result 

implied that deviant tones were neurophysiologically discriminated from standard tones in 

anesthetized rats. Another study (Astikainen et al., 2011) recorded activity over the primary 

auditory cortex in urethane anesthetized rats. In oddball conditions, tone frequency was 

manipulated to produce a small difference of 5% (200 Hz deviants) and a large difference of 12.5% 

(500 Hz deviants). Mismatch responses were observed at 60-100 ms after stimulus onset for a 

frequency increase of 5% and 12.5%, but not for similarly descending deviants.  

Consistent with the animal models, a previous study in humans (Sams et al., 1985) observed the 

MMN in auditory frequency discrimination. They found that the MMN is much more pronounced 

following larger differences in tone frequency. Consistent with the previous study, two recent 

studies have analyzed not only frequency but also spectral information that facilitates pitch 

processing (Tervaniemi et al., 2000; Grimm et al., 2011). Thus, both animal and human studies 

strongly support the notion of a hierarchically organized novelty and deviance detection in the 

auditory system. 

1.5.3 Sensitivity to deviance in phonetic features of vocal sounds 

The ability to represent speech sounds is a necessary condition for understanding speech. 

Interestingly, this ability is not unique to humans but can also be observed in animal models. In a 

previous study in guinea pigs (Kraus et al., 1994), mismatch responses were observed in the 

auditory thalamus and cortex. The authors found that the /ba/-/wa/ pair elicited a strong mismatch 

response, whereas /ga/-/da/ mismatch responses did not occur in the thalamus. Moreover, 

mismatch responses were observed only in the non-primary areas of the auditory pathway. These 
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results indicate that different speech features may be processed differently and that certain acoustic 

features require processing at the cortical level. A recent study (Ahmed et al., 2011) presented 

synthesized spoken syllables (/da/, /ga/, and /ba/) to anesthetized rats and recorded their neural 

activity in the primary auditory cortex. The authors found that evoked responses had a higher 

amplitude to the deviant /ba/ than to the standard /ba/ in the oddball condition. The findings 

suggested that animal brains can represent human speech change detection mechanisms analogous 

to those underlying the MMN in humans.  

In humans, neural representations of speech sounds are already established pre-attentively. 

Previous studies (Näätänen et al., 1997; Sharma and Dorman, 2000) found that the brain’s 

automatic change-detection response differed depending on the listener’s native language. A 

recent study (Altmann et al., 2014b) tested the neurophysiological effects of speech change 

detection using magnetoencephalography (MEG). The authors used manipulated consonant-vowel 

(CV) sounds, including /ba/, /da/, /bo/, and /do/, and morphed either consonants (e.g., /ba/ - /da/) 

or vowels (e.g., /ba/ - /bo/) from 0% to 100% in 10% steps. Behaviorally, they found that subjects 

showed more pronounced effects for the morphed consonants compared to vowels. They also 

observed a difference in representations between consonants and vowels at the neural level, in 

which consonants revealed more pronounced effects in the left superior temporal gyrus (STG) and 

sulcus. Thus, MMN can also reflect a processing level in language-specific categories and 

anatomical locations for representations of phonemic deviance.  

1.5.4 Sensitivity to deviance in spatial location 

An ability to judge the spatial localization of sound sources is a skill of considerable adaptive value 

(Darwin and Hukin, 2000). Two primary sound localization cues, i.e., interaural time difference 
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(ITD) and interaural level difference (ILD), exhibit anatomical separation already in the brain stem 

(Grothe et al., 2010). Recent studies have attempted to measure the neuronal response in different 

cortical fields across sound source locations (Recanzone, 2000; Stecker et al., 2003; Harrington et 

al., 2008). In one of the previous studies (Recanzone, 2000), the authors compared the cortico-

cortical and cortico-thalamic connections with respect to their spatial tuning. The results have 

shown that neurons in the caudomedial fields better predict sound localization than the primary 

auditory cortex. In the auditory cortex, other studies (Stecker et al., 2003; Harrington et al., 2008) 

also observed that the posterior auditory field (PAF) units responded with longer latency and 

stronger stimulus location compared to the anterior auditory field (AAF) and primary (A1). This 

evidence supports the notion that the response properties of neurons in different cortical areas are 

functionally distinct with respect to the spatial localization of sounds.  

Another study (Roger et al., 2009b) measured the mismatch response to temporal cue 

discrimination to study central auditory mechanisms underlying spatial processing. The authors 

found that a difference between deviants and standards was observed for all temporal difference 

conditions except the smallest difference (16% change). Overall, the topographical and 

electrophysiological results support the hypothesis that ILD and ITD cues are processed by distinct 

cortical processing.  

However, it should be noted that other invasive studies have found evidence to the contrary – 

namely that specialization of cortical regions for spatial processing is at best partial. For instance, 

in the auditory cortex of ferrets, spatial location has been found to be processed in a distributed 

manner, together with other acoustic features such as pitch and timbre (Bizley et al., 2009). 
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Similarly, distributed processing of auditory spatial information has been found in the cat auditory 

cortex (Stecker et al., 2003; Furukawa et al., 2000). 

In humans, a previous electroencephalography (EEG) study ( Schröger, 1996) has shown a 

significant difference in the latency, amplitude, and topographies of MMN to ILD and ITD 

comparable to the sum of MMN response to single deviants (ITD or ILD). Other studies (Altmann 

et al., 2014a; Altmann et al., 2017) also support the notion of independent processing of ITD and 

ILD cues at the level of the MMN along with the difference between the frequency ranges (low 

and high). These findings suggest that the additivity of ITD and ILD is processed independently 

in both animal and human studies.  
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Table 1. Deviance detection studies using manipulations of different acoustic features 

Publication Species Recoding Probability Deviant Stimulus Characteristics Comments 
(%) Standard Deviant 

Umbricht et al., 
(2005) 

Mice Scalp EEG 10-90 Duration & 
Frequency 

10kHz 
100ms 

5-14kHz 
50, 250ms 

Duration deviance paradigm showed 
typical human MMN response.  

Roger et al., 
(2009)  

Long 
Evans rats 

Scalp EEG 16.67-66.67 Duration 3kHz 
150ms 

50,75,100 and 
125ms 

MMN response showed a 
discrimination threshold between 16% 
and 33% change.   

Lipponen et al., 
(2019) 

Mice Epidural 10-90 Duration /a/ speech 
200ms 

110-180ms 
Steps 10ms 

The shortest deviant (110ms) showed a 
significant difference.  

Joutsiniemi et 
al., (1998) 

Human EEG 6-94 Duration 700Hz 
75ms 

700Hz 
25 and 50ms 

Both shorter tones showed MMN 
response.  

Jaramillo et al., 
(2000) 

Human EEG 20-80 Duration White noise 
100ms 

Increment 110, 
150 or 200ms  
Decrement 1, 
10 or 50ms 

MMN was elicited by both stimulus 
decrement and increments.  

Ruusuvirta et 
al.(1998) 

Wistar rats Epidural 5-95 Frequency 2000Hz 
50ms 

2500Hz 
50ms 

ERPs deviant tone showed a 
significantly different from the 
standard tone at 63-243 ms  

Astikainen et 
al., (2011) 

Spraque 
Dawley 
rats 

Epidural 10-90 Frequency 4000Hz 
50ms 

Small:3800-
4200Hz  
Large: 3500-
4500Hz 

Increment frequency deviant (small 
and large) showed mismatch response 
at 60-100ms but not for similar 
decrement.  

Sams et al., 
(1985) 

Human EEG 20-80 Frequency 1000Hz 
50ms 

1002, 1004, 
1008, 1016 or 
1032Hz  

MMN was elicited by 1016 and 1032 
Hz, and 1008 Hz tended small MMN.  

Grimm et al., 
(2011) 

Human EEG 20-80 Frequency Low:1200Hz 
High:2580Hz 

Low: 800 Hz 
Hight: 3780Hz 

The low-frequency condition showed 
more negative mean amplitude than the 
high condition.  

Tervaniemi et 
al., (2000) 

Human EEG 10-90 Frequency 3paris:500-
1500Hz 
5paris: 500-
2500Hz  

3pairs: 
513,1026 and 
1539  
5paris: 
513,1026, 
1539, 2052 and 
2565 Hz  

MMN amplitude enhanced rich sounds 
compared with sinusoidal tone.  
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Kraus et al., 
(1994) 

Guinea pig Epidural 10-90 Consonant /ga/ 
/ba/ 

/da/ 
/wa/ 

At thalamic level, /ba/-/wa/ showed 
mismatch response. Moreover, 
mismatch response observed non-
primary auditory pathway.  

Ahmed et al., 
(2011) 

Spraque 
Dawley rats 

Epidural 10-90 Consonant /da/ /ga/ or /ba/ Deviant /ba/ showed higher amplitude 
than standard /da/.  

Näätänen et al., 
(1997) 

Human EEG 15-85 Vowel Finnish and 
Esotonian /e/ 

/6/ and /o/ The vowel prototype of the native 
language presented a larger MMN.  

Sharma and 
Dorman, (2000)  

Human AEP 15-85 Consonant /ba/-/pa/ change 
voice on set 
(VOT) 10ms 

/ba/-/pa/ change 
voice on set 
(VOT) 50ms 

Robust MMN was seen only in Hindi 
listeners (non-native) and not in 
English listeners (native).  

Altmann et al., 
(2014) 

Human MEG Behanvioral 
test 

Consonant 
and vowel 

/da/ -/ba/, /ba/-/bo/, /bo/-/do/, and  
/da/-/do/ for each morph 10% steps 
change 

In the behavioral test, consonants have 
a more substantial categorical effect 
than vowels. At a neural level, 
consonants revealed a categorical 
effect in the left STG. 

Roger et al., 
(2009) 

Long Evans 
rats 

Epidural 30-70 ITD 150ms 125, 100, 75 and 
50ms  

The difference between deviants and 
standard was significant for 50, 75, and 
100 ms but not 125 ms deviant.  

Schröger 
(1996) 

Human AEP 12-88 ITD/ILD ITD: 0 µs 
ILD: 0 dB SPL 

ITD: delay 300 
µs 
ILD: 11dB SPL 

The MMN obtained with ILD/ITD 
deviants were larger than one location 
cue only.  

Altmann et al., 
(2014, 2017) 

Human EEG 1.67-86.67 ITD/ILD ITD: 0 µs 
ILD: 45 dB SL 

ITD: 200 or -
200 µs 
ILD:average for 
two ears on dB 
scale 

Significant MMN for ILD/ITD 
deviants in low and high frequency, but 
an incongruent combination ILD/ITD 
was only detectable in a lower 
frequency range. 
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1.6 Memory for auditory information 

Auditory sensory memory is a prerequisite for MMN, as in the process of deviance detection, the 

auditory system compares the input from the deviant auditory information with the sensory 

memory representations based on the preceding auditory stimulation (Näätänen and Michie, 1979). 

In a recent study (Haenschel et al., 2005), it has been found that ERP changes correlated with the 

repetition of the standard stimulus observed as a positive polarity between 50 and 250 ms post-

stimulus, which is termed repetition positivity (RP). This RP was recorded from the frontal 

electrode when participants listened in passive or active conditions. These RP effects are similar 

to adaptation effects in the primary auditory cortex neurons to the repetition of sounds, namely the 

SSA (Ulanovsky et al., 2003). Both studies reported their findings to occur without overt attention 

to sounds and to develop rapidly. An earlier study (Näätänen and Rinne, 2002) demonstrated 

stimulus repetition during auditory memory-trace formation. The authors exposed participants to 

randomized sequences of stimuli (ten different tones or complex frequency-glide stimuli). They 

found that repetition negativity response was elicited only by stimulus repetitions. These results 

indicated that the repeated experience with the same sensory input stimulus leads to suppressing 

the neuronal response. This particular repetition effect was mediated by a change in synaptic 

plasticity for a memory trace.  

Despite the efforts of previous studies, the neural mechanisms underlying echoic memory traces 

are still not fully understood. One of the caveats of these studies is that the constant presentation 

of sounds reflects realistic auditory scenes only to a limited extent. In realistic environments, 

listeners must learn from complex sounds and associate them with various sound sources. Recent 

studies (Andrillon et al., 2015; Barascud et al., 2016; Southwell and Chait, 2018) investigated how 

human listeners employ auditory memory processing to discover statistical structure in complex 
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sound sequences.  Andrillon et al. (2015) applied psychophysics, EEG, and modeling to the noise 

learning paradigm, in which participants are exposed to reoccurring identical noise snippets, 

interspersed with other noise snippets. They found that repeated exposure to the same noise snippet 

is accompanied by a rapid formation of behavioral and neural selectivity to these stimuli. More 

specifically, in a within-trial repetition detection task, participants showed faster reaction times 

and higher accuracy for noise stimuli that also reoccurred across trials than for those stimuli that 

were presented anew in each trial. In the EEG analysis, the inter-trial phase coherence (ITPC) 

increased for reoccurring noise stimuli compared to other conditions. Furthermore, the EEG 

signals showed an ERP-like pattern locked to noise reoccurrence within trials. The amplitude of 

this ERP correlated with the behavioral performance in the within-trial repetition detection task, 

indicating that this neural response induced by learning new sounds has behavioral significance 

and can be interpreted as memory-evoked potentials (MEPs). These MEPs could be source-

localized to higher-order auditory regions, which had previously been linked to auditory mismatch 

responses (Berti et al., 2000; Näätänen et al., 2005). 

Another study (Barascud et al., 2016) has investigated how listeners are sensitive to the emergence 

of complex patterns within rapidly evolving sound sequences. While the main finding of the study 

was that acoustic pattern regularity correlated with the amplitude of sustained neural activity, the 

authors also found that an MMN-like response was evoked by the transition from regular to 

random pattern conditions. This result is consistent with the notion that the brain continually 

accumulated the internal model, and this model is shaped by both the memory of statistical 

regularities in the stimulus sequence and the incoming information processing. 
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Similarly, Southwell and Chait (2018) investigated whether the regularity of stimulus sequences 

influences the neural responses to deviant tones presented in these sequences. The study found that 

the neural responses to deviant (outlier) tones were greater when the outliers were embedded in 

regular sequences than in random sequences. Interestingly, a source reconstruction analysis 

indicated that the increased deviance response in regular sequences could be localized to the 

temporal and orbitofrontal regions, which have been proposed to exert top-down modulation of 

the auditory cortex. These findings provide converging evidence for an interplay between deviance 

detection and continuous monitoring of the sequence structure, which enables memory formation.  

 

 

1.7 Thesis overview 

This thesis investigates the neural correlations of prediction violation based on multiple acoustic 

features and implicit learning based on complex acoustic stimuli. In particular, to assess whether 

the neural correlates of deviance detection across various stimulus features show evolutionary 

conservation, I recorded electrophysiological signals in different species. Experimental Chapters 

2-4 summarise the investigations into the research questions that I have undertaken throughout my 

Ph.D studies.  

Chapter 2: Cortical mapping of mismatch responses to independent acoustic features 

This chapter analyses the mismatch response amplitudes, topographies, and latencies following 

prediction violations along several acoustic features (duration, pitch, interaural level difference, or 

consonant identity). To quantify mismatch responses, I recorded auditory cortical activity with a 

64-channel ECoG array in 9 adult female Wistar rats. I found that mismatch responses differ 



 

33 
 

significantly in terms of their spatial distribution from the sound-evoked response. However, there 

were also considerable differences between individual rats regarding the spatial distribution of 

mismatch responses to prediction violations along different acoustic features. This study suggested 

that different but largely idiosyncratic neural populations mediate the predictive processing of 

different stimulus features.  

Chapter 3: Do auditory mismatch responses differ between acoustic features? 

As an extension of the previous chapter, testing the evolutionary conservation of domain 

specificity of mismatch responses, I measured MMN in humans and tested whether it differentiates 

between prediction violations along different features. To this end, EEG signals were recorded in 

normal-hearing participants. Using a multivariate decoding analysis, I found that acoustic features 

could be decoded at later latencies than typical for MMN. This finding indicates that the process 

of deviance feature detection might be separate from general mismatch detection. 

Chapter 4: Neural correlates of auditory pattern learning in the auditory cortex 

This chapter characterizes the neural correlates of auditory pattern learning in the auditory cortex 

based on repetitive exposure to a specific sound sequence. In this study, I recorded neural activity 

in the auditory cortex using ECoG in 9 anesthetized young adult female Wistar rats. I found that 

auditory cortical activity in the beta frequency band significantly decreased for repetitive 

sequences relative to fresh sequences. This suggests that neural correlates of auditory learning 

formation can be observed in animal models even under anesthesia.  
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Abstract 

 

Predictive coding is an influential theory of neural processing underlying perceptual inference. 

However, it is unknown to what extent prediction violations of different sensory features are 

mediated in different regions in auditory cortex, with different dynamics, and by different 

mechanisms. This study investigates the neural responses to synthesized acoustic syllables, which 

could be expected or unexpected, along several features. By using electrocorticography (ECoG) 

in rat auditory cortex (subjects: adult female Wistar rats with normal hearing), we aimed at 

mapping regional differences in mismatch responses to different stimulus features. 

Continuous streams of morphed syllables formed roving oddball sequences in which each stimulus 

was repeated several times (thereby forming a standard) and subsequently replaced with a deviant 

stimulus which differed from the standard along one of several acoustic features: duration, pitch, 

interaural level differences (ILD), or consonant identity. Each of these features could assume one 

of several different levels, and the resulting change from standard to deviant could be larger or 

smaller. The deviant stimuli were then repeated to form new standards. We analyzed responses to 

the first repetition of a new stimulus (deviant) and its last repetition in a stimulus train (standard). 

For the ECoG recording, we implanted urethane-anaesthetized rats with 8×8 surface electrode 

arrays covering a 3×3 mm cortical patch encompassing primary and higher-order auditory cortex.  

We identified the response topographies and latencies of population activity evoked by acoustic 

stimuli in the rat auditory regions, and mapped their sensitivity to expectation violations along 

different acoustic features. For all features, the responses to deviant stimuli increased in amplitude 

relative to responses to standard stimuli. Deviance magnitude did not further modulate these 

mismatch responses. Mismatch responses to different feature violations showed a heterogeneous 
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distribution across cortical areas, with no evidence for systematic topographic gradients for any of 

the tested features. However, within rats, the spatial distribution of mismatch responses varied 

more between features than the spatial distribution of tone-evoked responses. This result supports 

the notion that prediction error signaling along different stimulus features is subserved by different 

cortical populations, albeit with substantial heterogeneity across individuals.  
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1. Introduction 

 

   Predictive coding is an influential theory of neural processing underlying perceptual inference. 

Successful listening requires not only tracking stable auditory objects, but also detecting 

unexpected changes to the auditory scene. Mismatch negativity (MMN) is one of the most well-

studied physiological correlates of deviance detection in the auditory system. When presented with 

unexpected input, brain activity recorded using electroencephalography in humans exhibits a well-

described pattern of neural response waveforms showing an enhanced response to novel stimuli. 

Conversely, repetitive, and therefore expected, stimulation leads to reduced responses. The 

difference in response waveforms between responses to unexpected as opposed to expected stimuli 

is known as the MMN, and it is well defined based on previous studies in humans (Näätänen, 

1990).   

MMN is a macroscopic signature of deviance detection derived from bulk measures of neural 

activity such as electroencephalogram (EEG). Meso- and microscopic correlates of mismatch 

responses have also been described at the level of small neuronal populations (multi-units) and 

single neurons along the auditory pathway, showing an increased response amplitude to a novel 

stimulus (oddball) relative not only to a repeated standard stimulus (Malmierca et al., 2009), but 

also to a control stimulus that is predictable but not repeated (Nieto-Diego and Malmierca, 2016), 

suggesting true deviance detection. This particular type of adaptation, known as stimulus-specific 

adaptation (SSA), quantifies the changing neuronal firing rates to a deviant stimulus compared 

with a standard. SSA can be observed in both primary and secondary areas of the auditory cortex 

(Ulanovsky et al., 2003; Malmierca et al., 2009; von der Behrens et al., 2009; Antunes et al., 2010; 

Richardson et al., 2013; Duque et al., 2016; Nieto-Diego and Malmierca, 2016; Parras et al., 2017). 
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SSA responses are thought to reflect deviance detection mechanisms at the microscopic level, and 

they have been suggested to form a counterpart of the MMN which is a more macroscopic response 

detectable on the scalp (Ulanovsky et al., 2003; Escera and Malmierca, 2014; Nieto-Diego and 

Malmierca, 2016). 

Traditionally, two main, not necessarily mutually exclusive, hypotheses have been put forward to 

interpret these physiological observations. According to the “model adjustment hypothesis” 

(Saarinen et al., 1992), the MMN reflects an online update of the prior perceptual model, 

previously established due to sensory experience, by comparing it with actual auditory input. 

Meanwhile, the adaptation hypothesis (May et al., 1999) claims that the attenuation of the response 

to standard stimuli could be simply due to neural adaptation. More recently, these hypotheses have 

been united under the predictive coding framework, according to which the brain entails and 

continuously revises an internal model of the world. In this theory, the model updates are based on 

prediction error signals, which result from comparing the internal model predictions with the actual 

sensory inputs (Friston, 2005; Bastos et al., 2012; Auksztulewicz and Friston, 2016). When sensory 

information reaches a given stage of sensory or cortical processing, it is suppressed by predictions 

signalled from higher-order stages in a descending (top-down) manner. If new sensory information 

cannot be predicted by the brain’s internal model, the resulting prediction errors are propagated in 

a bottom-up (ascending) manner to higher-order regions and update the subsequent predictions. 

Hence, lower and higher cognitive stages keep communicating through reciprocal pathways, with 

descending connections mediating prediction signalling, and ascending connections mediating 

prediction error signalling. This results in a gradual suppression of prediction error signalling 

(model adjustment) and a rapid decrease of synaptic efficacy (adaptation) when a deviant stimulus 

is first encountered and then repeated to form a standard. Specifically, according to the model 
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adjustment hypothesis, the MMN is thought to reflect an online update of the prior perceptual 

model, based on a comparison between previous sensory experience and the actual auditory input 

(Saarinen et al., 1992). Unlike the model adjustment hypothesis, the adaptation hypothesis claims 

that the attenuation of the response to standard stimuli could be simply due to neural adaptation 

(May et al., 1999; Jaaskelainen et al., 2004; May and Tiitinen, 2010). 

While prediction error suppression is a widely accepted theory explaining mismatch responses, it 

has been suggested that predictions and prediction errors corresponding to different stimulus 

features are mediated by different neural populations, and even different mechanisms 

(Auksztulewicz et al., 2018a; Stefanics et al., 2019). On the other hand, in animal studies, although 

mismatch responses have been shown to occur following changes in repetitive syllable patterns 

(Ahmed et al., 2011; Mahmoudzadeh et al., 2017), syllable duration (Lipponen et al., 2019), and 

acoustic frequency (Eriksson and Villa, 2005), no robust regional differences to various stimulus 

features have been identified. Directly comparing results of studies in animal models and human 

volunteers is challenging because of methodological differences: while most animal studies apply 

a classical MMN design with a low constant probability (10%) of occurrence of a deviant and a 

high probability (90%) of the standard tone (Javitt et al., 1996; Pincze et al., 2001; Ulanovsky et 

al., 2003; Ulanovsky et al., 2004b; Roger et al., 2009b), human studies often use more complex 

paradigms with dynamically evolving (and occasionally switching) probabilities of deviant stimuli 

(Baldeweg et al., 2004; Haenschel et al., 2005; Garrido et al., 2009b). 

Here, building upon previous studies that characterized the spatial distribution of mismatch 

responses to a single auditory feature (Nieto-Diego and Malmierca, 2016), we aim to broaden our 
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understanding of predictive coding in auditory regional mapping differences across multiple 

acoustic features. 

2. Material and methods 

   All experimental procedures were approved by the Committee on the Use and Care of Animals 

at City University of Hong Kong and under license by the Department of Health of Hong Kong 

[Ref. No. (17-72) in DH/SHS/8/2/5 Pt.1].  

2.1 Subjects and surgical procedures 

   The subjects were nine female adult Wistar rats acquired from the Chinese University of Hong 

Kong. The rats were between 8 and 20 weeks of age (mean = 10 weeks) and weighed 200 - 310 g 

(mean = 238 g) at the time of the experiment. All rats were normal hearing (click ABR thresholds 

< 20 dB) with no prior exposure to the stimulus sequences described below. At the start of each 

recording experiment, we used mixture of ketamine (80 mg/kg, Intraperitoneal injection; i.p) and 

xylazine (12 mg/kg, i.p) to induce anaesthesia and received an injection of the anti-inflammatory 

dexamethasone (0.2 mg/kg, i.p) before surgery. Body temperature was maintained with a heating 

pad at 36° ± 1 C. This was replaced by urethane administration during subsequent recording. 

Ketamine + xylazine was chosen as the main surgery anaesthetic as it takes less time to induce 

deep anaesthesia than urethane. Urethane (0.75mg/kg, i.p) was administered about one hour after 

induction with the ketamine + xylazine. Therefore, ketamine + xylazine should not affect the 

neural activity recorded during urethane anaesthesia. This protocol is based on previous studies in 

rodents (Malmierca et al., 2019).  The depth of anesthesia was controlled by regular testing of the 

toe pinch and the absence of withdrawal reflex. If required, extra doses (0.1- 0.2 ml) of urethane 

were administered. The anesthetized animal was placed in a stereotaxic frame in which hollow ear 
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bars were set to deliver sound and fix head for craniotomy. The skin and muscle tissue over the 

right temporal side of the skull were removed. A unilateral craniotomy was performed to expose 

a 5 mm × 4 mm region over the right primary auditory cortex, as shown in Figure 1 (2.5 mm 

posterior from the bregma, and ventral from the temporal edge of the lateral skull surface) (Doron 

et al., 2002; Lamas et al., 2017).  

 

 

Figure 1. Experiment setup. 

A) Rat brain atlas template: 8-7 mm grid projected onto a lateral view of the right hemisphere of 

the rat brain. Horizontal and vertical numeric values represented distance with respect to bregma 

(0,0) (Bakker et al., 2015). Yellow: Schematic craniotomy site including  the 5 auditory cortical 

fields; A1(primary auditory cortex), VAF(ventral auditory field), SRAF(suprahinal auditory field), 

AAF(anterior auditory field), PAF(posterior auditory field) (Polley et al., 2007). B) Photograph 

of a craniotomy, with superimposed drawing of the ECoG recording sites for one animal. Empty 

circles show the locations of the 61 ECoG electrode sites, while filled circles represent 3 reference 

electrodes. 
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2.2 Auditory paradigm 

   In this experiment, two consonant-vowel (CV) stimuli /da/ and /ba/ were selected from a corpus 

of natural speech syllables (Ives et al., 2005) and digitally edited using STRAIGHT software 

toolbox (Kawahara, 2006) for Matlab R2018b (Mathworks Inc., Natick, USA) to match the raw 

syllables for vowel duration and fundamental frequency (F0). We then used STRAIGHT to obtain 

stimulus tokens varying systematically in vowel duration, fundamental frequency (F0), inter-aural 

level differences (ILDs), and the onset consonant (/da/-/ba/, obtained by mixing the spectrograms 

corresponding to the two syllables at different ratios). In this study, stimulus features are largely 

based on previous animal studies which have investigated mismatch responses to changes in 

duration, pitch, ILD, or consonant (Roger et al., 2009b; Walker et al., 2009; Ahmed et al., 2011; 

Li et al., 2019). Since the previous animal studies did not include auditory cortical mapping across 

different features, we selected these features for our study. There is also a precedent in the human 

literature (Phillips et al., 2015), which compared amplitudes and sources of mismatch responses 

to duration, pitch/frequency, ILD/location, as well as intensity and gap. Our initial rationale to 

replace e.g. intensity with another condition (consonant) was that we wanted a relatively small set 

of features that would have the potential to map onto distinct auditory regions; since intensity is 

known to modulate processing at all stages from the cochlea, we reasoned that intensity mismatch 

is likely to have less localised effects than other features. This set of syllables was then 

concatenated to generate stimulus sequences containing syllables that could vary along one of the 

four different features: duration, pitch, ILD, or consonant. The features were manipulated in 

separate blocks. In any one block, one feature could assume one of 9 different levels (durations: 

55 - 95 ms in 5 ms steps; pitch mean F0: 0.7 - 1.4 kHz logarithmically spaced; ILD: -8 to +8 dB 

at an average binaural level of 64 dB, in 2 dB steps; consonant: /da/-/ba/, blended at ratios, from 
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0.1:0.9 to 0.9:0.1, in equidistant steps; see Table 1), and the remaining features fixed to an 

intermediate level.  

Our roving oddball paradigm is adapted from Garrido et al., (2008), but differs in a few details. 

First, unlike the previous study, our paradigm used two speech syllables (/ba/ and/da/) instead of 

the pure tones. Second, we used a different number of deviant step sizes. The previous study used 

7 frequency steps, from 500 to 800 Hz in 50 Hz intervals, while we used 9 different levels for each 

condition. Finally, there were a few differences in stimulus parameters.  Garrido et al used stimulus 

durations of 70 ms and inter-stimulus intervals (ISIs) of 500 ms, with around 200 trials presented 

for each experimental run. In our study, the stimulus duration was 55-95 ms, the ISI 300 ms, and 

the deviant and standard presentation yielded around 100 trials for each condition. In our roving 

oddball paradigm, CV stimuli were presented in continuous trains. The first CV stimulus of a train 

constitutes an auditory deviant, which becomes a standard after a few repetitions in a train (see 

Figure 2). After a number of repeat presentations drawn randomly from a uniform interval of 3 to 

40 repeats, a new CV stimulus is chosen at random from the 9 possible stimulus levels shown in 

Table 1. The first occurrence of this new stimulus thus constitutes a "deviant" from the last 

stimulus of the previous train, which can be of greater or lesser magnitude depending on how much 

the last standard and the next deviant differ in level. This new stimulus then starts a new train of 

randomly chosen length, during which it becomes the new "standard". In the analysis, neural 

responses were compared between the first (deviant) and last (standard) repetition of each train. 

This ensures that deviant and standard responses in our dataset have precisely the same stimulus 

parameters and number of trials. Data were acquired in 2 blocks for each condition. Each block 

comprised 3800 stimuli, and yielded around 50 standard and deviant presentations for each 

deviance magnitude. Therefore, a total of around 100 standards and deviant AEPs were averaged 
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per condition in the analysis. Blocks for different conditions were run in a pseudo-random order, 

and to avoid potential deviant condition order effects, blocks were presented in a different order 

in each rat.  

Table 1. The stimulus features and levels used in the experiment 

Level Duration 

(ms) 

Consonant ILD 

(contra- vs. 

ipsilateral) 

Pitch  

(F0, kHz) 

Low 55 /da/ 10% - /ba/ 90% -8 dB 0.7071 

 60 /da/ 20% - /ba/ 80% -6 dB 0.7711 

 65 /da/ 30% - /ba/ 70% -4 dB 0.8409 

 70 /da/ 40% - /ba/ 60% -2 dB 0.9170 

Intermediate 75 /da/ 50% - /ba/ 50% 0 dB 1 

 80 /da/ 60% - /ba/ 40% +2 dB 1.0905 

 85 /da/ 70% - /ba/ 30% +4 dB 1.1892 

 90 /da/ 80% - /ba/ 20% +6 dB 1.2968 

High 95 /da/ 90% - /ba/ 10% +8 dB 1.4142 
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Figure 2. Schematic representation of the stimulation sequences.  

CV syllable sounds, represented by circles, are presented in trains of 3 to 40 repeat presentations. 

At the end of each train, stimulation continues with a new train starting at a different stimulus 

level. The first stimulus in each train (solid circles) is therefore a deviant sound, while the last 

(hatched circles) represents a standard sound, after the brain has adapted to the new train. In this 

example, the first deviant differs from the previous sequence by two levels. The second deviant 

differs by four levels.  

 

2.3 ECoG data acquisition and pre-processing 

  EcoG recordings were performed under anaesthesia. The length of each condition was about 20 

minutes. ECoG signals were recorded at a sampling rate of 24,414 Hz using a Viventi EcoG 

electrode array (Woods et al., 2018) connected to a Tucker Davis Technologies (TDT) PZ5 

neurodigitizer and RZ2 real-time processor controlled by BrainWare. Stimuli were presented using 

a TDT RZ6 multiprocessor at a rate of 48,828 Hz. To extract ERPs, the recorded electrode signals 

were first low pass filtered at a cutoff frequency of 45 Hz using a 5th order Butterworth filter, and 

downsampled to 1,000 Hz. The pre-processed signals were then epoched by extracting 300 ms 

long voltage traces from -50 ms to +250 ms relative to the onset of each syllable in the sequence. 
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The epoched traces were baseline corrected by subtraction of the mean voltage observed over the 

50 ms before sound onset, and linearly detrended (Salisbury, 2012). To remove outliers, we 

calculated a standard deviation of the voltage fluctuation in each trial (SDi) and rejected trials with 

SDi beyond the median ± 3 SD of all SDi values. This resulted in rejecting 1.08% ± 0.12% of trials 

(mean ± SD across rats). 

Due to individual variations in anatomy and electrode placement, we could not assume that the 

signals recorded from a particular electrode channel in two different animals would necessarily 

reflect the activity of precisely matched, equivalent neuronal populations in each rat (see also a 

quantitative analysis below). We therefore calculated principal spatial and temporal components 

of the measured responses, and used them to reduce the dimensionality of the data. We then 

performed statistical analyses on these reduced data, which integrate response patterns over time 

or space, and are therefore less sensitive to positional mismatches than single electrode and time 

point data (Lan et al., 2010). Specifically, per rat and acoustic feature, we calculated single-trial 

difference waveforms between deviant and standard stimuli by subtracting the ECoG amplitude at 

each channel and time point corresponding to a standard stimulus from the amplitude 

corresponding to a deviant stimulus. The single-trial difference waveforms were then averaged 

across trials, resulting in a channel-by-time matrix of amplitude difference values. This matrix was 

entered into a principal component analysis, resulting in orthogonal temporal and spatial 

components, ordered from highest to lowest by the amount of variance they explain in the original 

data. The temporal and spatial components were analyzed separately. For each rat and condition, 

we took the first N components describing in total at least 99% variance, and calculated their 

weighted sum (where each component is weighted by the amount of explained variance). These 

weighted sums of temporal and spatial components are shown in Figure 3.  
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To test whether the time-series of neural responses to acoustic deviants differ from those to 

standards, we applied the corresponding weighted summed spatial component to the original data 

(channel × time × trial), obtaining amplitude values for each time point and trial that effectively 

summarized all ECoG channels according to how strongly they reflect the difference waveform. 

This analysis was performed separately for each rat and each condition. First, the resulting single-

trial data were averaged across all trials and entered per time point into a repeated-measures 

ANOVA with one random factor (rat) and two fixed factors (mismatch: deviant vs. standard; 

condition: duration, consonant, ILD, pitch). Tests were corrected for multiple comparisons across 

all 300 time points (from -50 to 250 ms relative to tone onset) at a false discovery rate of 0.05 

(Benjamini and Hochberg, 1995). Second, having established differences between responses to 

standards and deviants across all conditions (see Results), we tested whether mismatch responses 

to different acoustic features have different latencies, by entering the rat-specific latencies (in 

milliseconds relative to syllable onset) of the peak mismatch responses into a repeated-measures 

ANOVA with one random factor (rat) and one fixed factor (condition).  

Finally, we also tested whether the magnitude of mismatch responses is modulated by deviance 

magnitude (i.e., by how many steps each deviant differed from the preceding standard) and sign 

(i.e., by whether each deviant was formed by going up or down a specific acoustic feature). To this 

end, per time point, we averaged the single-trial difference waveforms (calculated by subtracting 

the amplitude of responses to standards from those to deviants) separately for each condition, for 

large vs. small deviance magnitudes, and for different directions of the deviance, resulting in four 

difference waveforms per rat and acoustic feature. These average mismatch response waveforms 

were entered into a repeated-measures ANOVA with one random factor (rat) and three fixed 
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factors (condition; step size: large vs. small; step sign: up vs. down), testing for main and 

interaction effects. Tests were corrected for multiple comparisons across time points as above.  

Beyond comparing the time courses of responses, we also compared the spatial topographies of 

responses. First, we focused on the spatial principal components and tested for the relative 

consistency of mismatch response topographies between different acoustic features and rats. To 

this end, for each rat and condition, we normalized (z-scored) each spatial topography and 

calculated its Euclidean distance (Guggenmos et al., 2018) to either (1) the average spatial 

topography of the remaining conditions (acoustic features) in the same rat; or (2) the average 

spatial topography of the remaining rats in the same condition. Second, we tested for the relative 

consistency of syllable-evoked response (rather than mismatch response) topographies between 

different acoustic features and rats. Thus, we extracted spatial components of evoked responses 

(averaged per rat and condition across all trials) in an identical principal component analysis 

procedure as described above for the mismatch responses. Having obtained the summed weighted 

spatial components describing the topographies of evoked responses for each rat and condition, 

we calculated the same two Euclidean distance metrics as for mismatch responses above, this time 

quantifying the dissimilarity of evoked (rather than mismatch) responses (3) across conditions and 

(4) across rats. Finally, we quantified the dissimilarity between the evoked and mismatch responses 

by calculating, per rat and condition, (5) the Euclidean distance between the topography of an 

evoked response and the topography of a mismatch response. These topography distance measures 

were compared using paired rank-sum Wilcoxon tests in pair-wise comparisons, correcting for 

multiple comparisons using a Bonferroni correction.  
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Finally, we tested whether the topographies of mismatch responses along different acoustic 

features show consistent spatial distributions across channels. Per rat and condition, we extracted 

the 2D (dorsal-ventral and rostral-caudal) coordinates of peak electrodes showing (1) the strongest 

amplitude of the stimulus-evoked response and (2) the strongest amplitude of the mismatch 

(deviant vs. standard) waveform. To test whether mismatch responses can be mapped at a 

consistent angle (on the dorsal-ventral and posterior-anterior axes) relative to the spatial peak of 

the evoked response, we calculated the angle of the unit-normalized vector drawn between the 

peak of the evoked response and peak of the mismatch response, for each rat and condition. We 

then tested, per condition, for the clustering of rat-specific angles using the nonparametric 

Rayleigh z test under the null hypothesis that angles are uniformly distributed on a circle.  

 

3. Results 

3.1 Time course and topographic distribution of mismatch responses 

   Overall, acoustic stimuli evoked differential responses to standards vs. deviants (i.e., mismatch 

responses) along each of the four acoustic features (Figure 3). Given that the 61 channel ECoG 

electrode array covered primary and higher-order auditory cortex regions (Doron et al., 2002; 

Lamas et al., 2017), we could characterize the spatial distribution of the evoked responses 

(averaged across standards and deviance) as well as the difference between standard and deviant 

responses in different conditions. The respective spatial topographies are presented in Figure 3B 

and C. The time courses of mismatch responses, summarizing the principal components explaining 

> 99% of the observed data, are presented in Figure 4A separately for each condition (acoustic 

feature). 
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Figure 3. Time courses and topographic distributions of mismatch responses to different acoustic 

features. 

A) The time course of mismatch responses, computed as a weighted sum of principal components 

of difference waveforms (response to deviant minus response to standard) which explain > 99% 

of the original variance. The gray-shaded areas denote the SEM across rats. B) The mean 

topography of the evoked response, averaged across rats. C) The mean topography of the 

mismatch response, averaged across rats. Gray box indicated reference channel (8,57 and 64). 

The y-axis represented dorsal to ventral (D-V) and x-axis showed posterior to anterior (P-A).  

 

3.2 Differences in time courses of standard and deviant responses 

   The spatial principal components of mismatch responses (see above) were applied to the original 

data (channel × time × trial, separately for each rat and condition) as a form of data dimensionality 

reduction. The resulting amplitude values, obtained for each time point and trial, effectively 

summarized all ECoG channels according to how strong they reflected the difference waveform. 

In a repeated-measures ANOVA, we observed a significant main effect of mismatch between 17 
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and 193 ms (after correcting for multiple comparisons across time points at a p < 0.05, all F1,24 > 

7.256, all uncorrected p = 0.029). No significant main effect of condition or interaction between 

mismatch and condition were observed after correcting for multiple comparisons across time 

points. Responses to deviants and standards for all four acoustic features are presented in Figure 

4A. The latency of peak mismatch responses was not significantly different between conditions 

(F3,24 = 0.34, p = 0.793). 

3.3 No effects of deviance magnitude and direction 

   Having established significant differences between deviants and standards across conditions, we 

tested whether the mismatch response depends on step size (the level of deviance: large vs. small) 

and sign (direction of deviance along with each stimulus feature) in another repeated-measures 

ANOVA. This analysis revealed no significant main or interaction effects of step size or sign, after 

correcting for multiple comparisons across time points (p > 0.05). Figure 4B shows the mismatch 

time courses for each condition, step size, and step sign. 
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Figure 4. Temporal distributions of mismatch responses through the auditory cortex in different 

conditions 

A) The average waveform of neural responses to acoustic standards (blue) and deviants (red) in 

each condition (acoustic feature). The horizontal bars (gray) indicate the time points (17ms to 

193ms) for which there was a statistically significant main effect of mismatch (deviant vs. standard 

stimuli; FDR-corrected p-value < 0.05). Since no main or interaction effects of condition were 

found, these time indices are the same across conditions. B) The average mismatch waveform for 

each deviant step size (large: thick lines; small: thin lines) and sign (up: solid lines; down: dashed 

lines). No main or interaction effects were significant after correcting for multiple comparisons 

across time points.  

 

3.4 Similarity between spatial topographies of mismatch and evoked responses 

   To compare the topographies between mismatch and evoked responses along different acoustic 

features, we quantified the (dis)similarity of the spatial distribution of mismatch and evoked 

responses between conditions (but within rats), between rats (but within conditions), and between 

each other (within rats and conditions). This analysis (Figure 5A, B) showed that, overall, there 

was more variability in response distribution between rats than between conditions (evoked 

responses: Z = 4.147, p < 0.001; mismatch responses: Z = 2.938, p = 0.003). Interestingly, while 
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the variability of mismatch responses between rats was similar to the variability of evoked 

responses between rats (p > 0.05), the variability of mismatch responses between conditions was 

higher than the variability of evoked responses between conditions (Z = 3.016, p = 0.002). 

Furthermore, evoked responses were more dissimilar from mismatch responses (within rats and 

conditions) than from other evoked responses in different conditions (within rats; Z = 3.927, p < 

0.001). Thus, the spatial distribution of mismatch responses was significantly different from the 

spatial distribution of the evoked responses.  

To test whether the spatial distribution of mismatch responses was systematic across rats, we 

extracted 2D peak coordinates (dorsal-ventral and anterior-posterior) of the topographies of 

mismatch responses (deviant vs. standard) and evoked responses (averaged across deviants and 

standards) per rat and condition. Figure 5B shows the individual rats’ peak coordinates of the 

mismatch response, relative to the peak coordinates of the evoked response, drawn as vectors with 

a specific length and angle. While mismatch response peaks did not overlap with the evoked 

response peaks (average ± SEM vector length in mm: duration = 1.157 ± 0.257 mm; consonant = 

1.389 ± 0.192 mm; ILD = 1.112 ± 0.396 mm; pitch = 1.298 ± 0.237 mm), the spatial peak of the 

mismatch response did not have a consistent localization (vector angle) relative to the spatial peak 

of the evoked response (Rayleigh z test under the null hypothesis of a uniform angle distribution: 

all Z < 1.246). In other words, for individual rats, the strongest mismatch responses for particular 

features appeared to occur in regions that were “off to one side” from the maximal overall evoked 

response, which could be interpreted to indicate particular parts of cortex being particularly 

involved in mismatch detection for that particular sound feature. However, such trends were not 

consistent across animals, and our data therefore do not support the hypothesis that particular 
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cortical fields consistently specialize for mismatch detection in specific acoustic features such as 

pitch, duration or location.   

Figure 5. Comparison in spatial neural response between mismatch and evoked responses in 

different conditions.  

 A) Average topography dissimilarity between conditions (left bars) and rats (right bars) for the 

evoked responses (light gray) and mismatch responses (dark gray). B) Average topography 

dissimilarity evoked responses between conditions (light gray) and evoked responses vs. mismatch 

responses within conditions (white) C) The difference in peak coordinates between spatial 

topographies of syllable-evoked responses and mismatch responses shown per condition as a 

vector for each rat (gray lines) along with the average vector across all rats (black line). The y-

axis represented dorsal to ventral (D-V) and x-axis showed posterior to anterior (P-A).  
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4. Discussion 

   In this study, we investigated whether violations of different acoustic features (duration, 

consonant, ILD, and pitch) elicit mismatch responses in anesthetized rats, as well as whether these 

differential responses to sensory deviants vs. standards can be mapped onto different regions in 

the auditory cortex. To this end, we recorded neural activity using large-scale surface recordings 

(ECoG) over primary and higher-order auditory cortex in a roving oddball paradigm where each 

deviant stimulus was physically identical with a standard. This approach allowed us to find 

evidence for a differential time course of neural responses to sensory standards and deviants, and 

quantify the spatial variability of these responses between acoustic features and individual animals. 

Traditionally, research on mismatch responses utilizes the classical oddball paradigm, in which a 

standard stimulus is assigned a high probability (e.g., 90%), and a deviant stimulus is assigned a 

low probability (e.g., 10%) (Näätänen, 1995; Jaramillo et al., 2000; Garrido et al., 2009b). To 

control for physical differences between deviant and standard sounds, previous studies introduced 

several control conditions including a classic-reverse sequence, local-global sequence, and many 

standards sequences (Bekinschtein et al., 2009; Shiramatsu et al., 2013; El Karoui et al., 2015; 

Parras et al., 2017). However, they typically necessitate more trials, define standards and oddballs 

in terms of a global probability rather than local transition probability, and make the effects of 

stimulus repetition more challenging to study. Therefore, in this study, we used the roving 

paradigm which controls for physical differences between standards and deviants in an efficient 

way. The roving oddball paradigm has been used in several clinical studies (Boly et al., 2011; 

Moran et al., 2013; Uhrig et al., 2014; Rosch et al., 2019) and non-clinical human studies (Garrido 

et al., 2008; Garrido et al., 2009b). Only a few studies (Komatsu et al., 2015; Takaura and Fujii, 
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2016) used the roving oddball paradigm to investigate mismatch responses in non-human primates. 

Although one previous study in guinea pigs (Christianson et al., 2014) characterised mismatch 

responses in a roving paradigm, this study provides the first demonstration of mismatch responses 

in rodents in a roving oddball paradigm using multiple acoustic features. In the present study, we 

found mismatch responses in all acoustic features tested, with no significant latency differences 

between conditions. Previous studies in rodent models using simple acoustic stimuli (pure tones) 

observed frequency and duration deviants (Ruusuvirta et al., 1998; Astikainen et al., 2006; 

Tikhonravov et al., 2008; 2010; Astikainen et al., 2011). Compared to these reports, our data show 

earlier onset times and longer latency ranges of mismatch responses. These discrepancies may be 

accounted for by differences in oddball sequences and stimulus types. Our results are consistent 

with previous studies using syllable stimuli (Ahmed et al., 2011; Komatsu et al., 2015), which 

revealed earlier onset times of the mismatch response than previous studies using simple acoustic 

stimuli. This suggests that processing more complex sounds results influence the latency of 

mismatch responses in the rat model. However, previous human studies showed not only overall 

later-onset times and longer latency ranges of mismatch responses (Jaramillo et al., 2000; Grimm 

et al., 2004; Tardif et al., 2006), but also differences in latencies between stimulus features 

(Takegata et al., 1999). This may be explained by mismatch detection eliciting higher-order 

cognitive processes such as stimulus anticipation in humans (Näätänen et al., 2007), which may 

be more difficult to observe under anesthesia or in rodent models more generally. This suggests 

that the modulation of mismatch responses by stimulus features might depend on the complexity 

of brain networks.  

While the overall differences between neural responses evoked by deviants and standards were 

robust for all stimulus features tested in this study, we did not observe further modulations of 
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mismatch response amplitude by deviance magnitude or direction. The results of previous studies 

which tested for differences in deviance direction or magnitude (Shelley et al., 1991; Jaramillo et 

al., 2000; Umbricht et al., 2005; Takegata et al., 2008; Shiramatsu et al., 2013) were mutually 

inconsistent, which may have resulted from differences in step size between stimuli. For instance, 

duration step sizes have ranged from 50 ms (Shelley et al., 1991; Umbricht et al., 2005) to 1 ms 

(Jaramillo et al., 2000), or from 50% (Umbricht et al., 2005) to 16% (Roger et al., 2009b). 

Generally, rodent studies have found significant differences in mismatch response amplitude for 

large vs. small magnitude of deviance when step sizes were above 33% (Roger et al., 2009b; 

Lipponen et al., 2019), while in humans these modulations can be observed even for 10% step 

sizes(Jaramillo et al., 2000). While our selection of step sizes was based on previous literature 

(Walker et al., 2009; Ahmed et al., 2011; Parras et al., 2017), taken together, the results of this and 

previous studies suggest that future experiments in the anesthetized rodent models should include 

relatively large deviance magnitudes. 

On the other hand, we observed differences in spatial distribution between the mismatch responses 

and evoked responses, as well as between mismatch responses to different acoustic features. The 

variability of evoked responses between rats was similar to the variability of mismatch responses 

between rats, suggesting that overall the spatial distribution of mismatch responses and evoked 

responses could be identified with similar reliability. However, mismatch responses were more 

variable between conditions (acoustic features) than evoked responses. While a previous study in 

the ferret auditory cortex (Bizley et al., 2009) demonstrated that multiple perceptual attributes of 

sound, including the pitch, timbre and spatial location of the sound, can be represented by 

overlapping populations of neurons distributed among multiple auditory fields, our results suggest 

that mismatch responses to different acoustic feature are even more heterogeneous than evoked 
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responses. This is broadly consistent with a previous microelectrode study in rat (Shiramatsu et al., 

2013), reporting that the focal activation loci of evoked response were in the auditory core region, 

while mismatch responses had broader spatial distributions, including  both core and belt regions. 

However, our study also shows that mismatch responses vary considerably across conditions and 

individual rats, consistent with a previous study in humans (Phillips et al., 2015) which found that, 

while multiple regions in the frontotemporal network are sensitive to auditory mismatch, the 

overall activity levels in single temporal and frontal regions do not differentiate between mismatch 

responses to different acoustic features. Taken together, these results support the notion that 

mismatch responses have a broad and diverse spatial distribution, similar to other higher-order 

functions (Herbert et al., 1991; Malmierca, 2003). 

In our study, we aimed to record signals from primary and higher-order auditory regions in order 

to map any regional differences between mismatch responses to multiple acoustic features. 

However, as can be appreciated in Figure 3B and C, there was little evidence for a functional 

separation between regions based on the topography of the sound-evoked response, which made it 

difficult to delineate primary from higher-order regions based on the activity evoked by the stimuli 

used in this study. Even more importantly, as reported in Figure 5C, there was a large degree of 

heterogeneity in the relative topographies of evoked and mismatch responses across rats, again 

supporting the idea that the topography of observed (evoked or mismatch) responses would have 

been a poor ground for functional segregation of areas into primary and higher-order cortices. 

Based on these results, we decided not to perform separate analyses on subgroups of channels. 

However, it remains a possibility that other functional mapping methods (e.g. based on tonotopic-

mapping) would help in delineating the functional neuroanatomy of auditory regions in terms of 

primary and higher-order cortices, as indeed suggested by previous work (Higgins et al., 2010; 
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Shiramatsu et al., 2013; Nieto-Diego and Malmierca, 2016). Therefore, it will be important to 

address functional separation between primary and higher-order regions in future work. 

In conclusion, in the present study, we observed mismatch responses to several acoustic features, 

with different spatial patterns between evoked and mismatch responses, as well as between 

mismatch responses to different acoustic features. However, the spatial distributions of mismatch 

responses showed considerable differences between individual rats, suggesting that while 

prediction errors to different stimulus features are mediated by different neural populations 

(Auksztulewicz et al., 2018a; Stefanics et al., 2019), these populations may not be consistently 

grouped into separate auditory fields at the level of primary and higher-order auditory cortices. 

Future work should combine neural recordings of mismatch responses in awake animals engaged 

in a change detection task, as well as compare the results of rodent and human studies in an 

identical paradigm. This would yield insights into the functional role of mismatch response 

variability, and shed light on the extent to which the predictive processing of different perceptual 

dimensions of sounds is preserved in evolution. 
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Abstract 

Mismatch negativity (MMN) is the electroencephalographic (EEG) waveform obtained by 

subtracting event-related potential (ERP) responses evoked by unexpected deviant stimuli from 

responses evoked by expected standard stimuli. While the MMN is thought to reflect an 

unexpected change in an ongoing, predictable stimulus, it is unknown whether MMN responses 

evoked by changes in different stimulus features have different magnitudes, latencies, and 

topographies. The present study aimed to investigate whether MMN responses differ depending 

on whether sudden stimulus change occur in pitch, duration, location or vowel identity 

respectively.  

To calculate ERPs to standard and deviant stimuli, EEG signals were recorded in normal-hearing 

participants (N=20; 13 males, 7 females) who listened to roving oddball sequences of artificial 

syllables. In the roving paradigm, any given stimulus is repeated several times to form a standard, 

and then suddenly replaced with a deviant stimulus which differs from the standard. Here, deviants 

differed from preceding standards along one of four features (pitch, duration, vowel or interaural 

level difference). The feature levels were individually chosen to match behavioral discrimination 

performance.  

We identified neural activity evoked by unexpected violations along all four acoustic dimensions. 

Evoked responses to deviant stimuli increased in amplitude relative to the responses to standard 

stimuli. A univariate (channel-by-channel) analysis yielded no significant differences between 

MMN responses following violations of different features.  However, in a multivariate analysis 

(pooling information from multiple EEG channels), acoustic features could be decoded from the 

topography of mismatch responses, although at later latencies than those typical for MMN. These 
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results support the notion that deviant feature detection may be subserved by a different process 

than general mismatch detection.  

1. Introduction 

Neural activity is typically suppressed in response to expected stimuli and enhanced following 

novel stimuli (Carbajal and Malmierca, 2018). This effect is often summarized as a mismatch 

response, calculated by subtracting the neural response waveform to unexpected deviant stimuli 

from the response to expected standard stimuli. Auditory deviance detection has been associated 

with a human auditory-evoked potential, the mismatch negativity, occurring at about 150–250 ms 

from sound change onset (Näätänen, 2007; Garrido et al., 2008).  The principal neural sources of 

the MMN are thought to be superior temporal regions adjacent to the primary auditory cortex, as 

well as frontoparietal areas (Doeller et al., 2003; Chennu et al., 2013). Initially, the MMN was 

interpreted as a correlate of pre-attentive encoding of physical features between standard and 

deviant sounds (Doeller et al., 2003). However, more recent studies have led to substantial 

revisions of this hypothesis, and currently, the most widely accepted explanation of the MMN is 

that it reflects a prediction error response.  

An important theoretical question remains whether mismatch signaling has a domain-general or 

domain-specific (feature-dependent) implementation in the auditory processing pathway. A recent 

study using invasive recordings from the cortical surface  (Auksztulewicz et al., 2018b) 

demonstrated that neural mechanisms of predictions regarding stimulus contents (“what”) and 

timing (“when”) can be dissociated in terms of their topographies and latencies throughout the 

frontotemporal network, and that activity in auditory regions is sensitive to interactions between 

different kinds of predictions. Additionally, biophysical modeling of the measured signals has 

shown that predictions of contents and timing are best explained either by short-term plasticity or 
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by classical neuromodulation respectively, suggesting separable mechanisms for signaling 

different kinds of predictions. However, these dissociations might be specific to predictions of 

contents vs. timing, which may have fundamentally different roles in processing stimulus 

sequences (Friston and Buzsaki, 2016).  

Interestingly, an earlier magnetoencephalography (MEG) study (Phillips et al., 2015) provided 

evidence for a hierarchical model, whereby violations of sensory predictions regarding different 

stimulus contents were associated with similar response magnitudes in auditory cortex, but 

different connectivity patterns at hierarchically higher levels of the frontotemporal network. This 

result is consistent with the classical predictive coding hypothesis in which reciprocal feedforward 

and feedback connections at the lower levels of the hierarchy are thought to signal prediction errors 

and predictions regarding simple sensory features, but hierarchically higher levels are thought to 

signal more complex predictions and prediction errors, integrating over multiple features (Kiebel 

et al., 2008). Several studies, however, reported independent processing of prediction violations 

along different acoustic features or sound dimensions. An earlier study (Giard et al., 1995) 

investigated the neural correlates of mismatch processing across three different acoustic features 

(frequency, intensity, and duration). Mismatch responses to each feature were source-localised by 

fitting equivalent current dipoles to EEG signals, and the results indicated that violations of 

different features can be linked to dissociable sources, suggesting the involvement different 

underlying populations. Similar conclusions have been reached in another set of studies ( Schröger, 

1995; Paavilainen et al., 2001), which quantified the additivity of MMN to changes along different 

acoustic features, either in isolation or by combining two or more features. In these studies, the 

MMN response to violating two features could largely be reproduced by adding the MMN 

responses to violating two single features, suggesting that the latter are mutually independent. A 
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more recent study has combined these two approaches (source localization and additivity analyses), 

demonstrating partial independence of three different timbre dimensions (Caclin et al., 2006). The 

notion that mismatch responses to violations of different features are mediated by independent 

mechanisms is also supported by studies showing that MMN (as well as the later P3a component) 

typically decreases following two identical deviants presented in direct succession, but remains 

stable following two deviants which vary from the standard along different features (for a review, 

see Rosburg et al., 2018).  

However, in most previous studies (Giard et al., 1995; Schröger, 1995; Paavilainen et al., 2001; 

Phillips et al., 2015; Rosburg et al., 2018), physical differences between deviants and standards 

were not behaviorally matched across different features or participants, raising the possibility that 

differences in mismatch-evoked activity might to some extent be explained by differences in 

stimulus salience (Shiramatsu and Takahashi, 2018). This was also the case in the more recent 

studies on MMN responses to multiple acoustic features (Phillips et al., 2015) or in previous roving 

paradigms (Garrido et al., 2008). Interestingly, a recent study investigating the MMN to acoustic 

violations along multiple independent features in the auditory cortex of anaesthetised rats (An et 

al., 2020) revealed that the topography of MMN signals was highly diverse across not only acoustic 

features but also individual animals, even though several sources of inter-subject variability (e.g. 

electrode placement) were better controlled than in typical non-invasive studies, suggesting that 

the spatial resolution of non-invasive methods such as EEG or MEG might not be sufficient for 

mapping more subtle differences between mismatch responses to violations of different features. 

The few EEG studies that did use behaviourally matched deviant sounds across different features 

either used very small sample sizes (N=8 (Deouell and Bentin, 1998)) or were limited to relatively 

specialised perceptual characteristics (e.g. different timbre features: Caclin et al., 2006). In contrast, 
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our study used a larger sample size (N=20) and manipulated relatively general sound dimensions 

(location, pitch, duration, and syllable identity). Our primary goal was to test whether mismatch 

responses to violations of different features differ in magnitude or latency, in an attempt to replicate 

previous studies (Deouell and Bentin, 1998). However, in addition to testing the effects of acoustic 

feature on the MMN time-course in a mass-univariate analysis (i.e., on an electrode-by-electrode 

basis), we also aimed at decoding acoustic features from differences in MMN topography in a 

multivariate analysis (i.e., pooling signals from multiple electrodes). 

2. Materials and Methods 

 

2.1 Participants 

Twenty volunteers (13 males and 7 females; mean age 23.9 years old) enrolled in the study upon 

written informed consent. All participants self-reported as having normal hearing and no history 

of neurological disorders, and all but two were right-handed. All participants but one were native 

Hong Kong residents, and their mother tongue was Cantonese. A musical training questionnaire 

indicated that 16 participants had no musical training, and the remaining participants had less than 

four years’ experience in playing a musical instrument. Participants were seated in a sound-

attenuated and electrically shielded room in front of a computer screen. They were instructed to 

fixate on a fixation cross displayed on the screen during the acoustic stimulation. All experimental 

procedures were approved by the Human Subjects Ethics Sub-Committee of the City University 

of Hong Kong.  
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2.2 Stimuli 

The present study employed a roving oddball paradigm in which auditory deviants could differ 

from preceding standards along one of four independent acoustic features. Specifically, we 

manipulated two consonant-vowel (CV) syllable stimuli, /ta/ and /ti/ (Retsa et al., 2018), along the 

following independent acoustic features: duration, pitch, interaural level difference (ILD) or vowel 

(An et al., 2020). Prior to the EEG recording, per participant, we estimated the feature interval 

yielding ~80% behavioral performance by employing a 1-up-3-down staircase procedure. In each 

staircase trial, two out of three stimuli, chosen at random, were presented at a mean level of a given 

feature (e.g., a 50/50 vowel mixture or a 0 dB ILD) while the third stimulus was higher or lower 

than the mean level by a certain interval. Participants had to indicate which stimulus was the “odd 

one out”. Following three consecutive hits, the interval decreased by 15%; following a mistake, 

the interval increased by 15%. Each participant performed 30 staircase trials for each feature 

(Figure 1.(B)). For the roving oddball stimulus sequences, the stimulus duration was set to 120 ms 

and the inter-stimulus intervals (ISIs) were fixed at 500 ms. Stimuli formed a roving oddball 

sequence: after 4-35 repetitions of a given stimulus (forming a standard), it was replaced with 

another (deviant) stimulus, randomly drawn from the set of 5 possible levels (Figure1. (A)). 

Roving oddball sequences corresponding to different features were administered in separate 

blocks, in a randomized order across participants. The total number of stimuli in each block was 

approximately 2000, including 200 deviant stimuli and 200 corresponding (immediately 

preceding) standards. 
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Figure 1. (A) Schematic representation of the stimulation sequences. The first stimulus in each 
train (solid circles) represents a deviant sound, while the last (hatched circles) represents a standard 
sound. (B) The range of each acoustic feature used to construct stimuli in the EEG experiment. 
Red line indicates the median value of each feature (across participants), blue bars and black 
whiskers represent mean and SD of upper and lower ranges across participants.   

2.3 Experimental procedure 

We recorded signals from 64 EEG channels in a 10-20 system using an ANT Neuro EEG Sports 

amplifier.  EEG channels were grounded at the nasion and referenced to the Cpz electrode. 

Participants were seated in a quiet room and fitted with Brainwavz B100 earphones, which 

delivered the audio stimuli via a MOTU Ultralite MK3 USB soundcard at 44.1 kHz. EEG signals 

were pre-processed using the SPM12 Toolbox for MATLAB. The continuous signals were first 

notch-filtered between 48 and 52 Hz and band-pass filtered between 0.1 and 90 Hz (both filters: 

5th order zero-phase Butterworth), and then downsampled to 300 Hz. Eye blinks were 

automatically detected using the Fp1 channel, and the corresponding artefacts were removed by 

subtracting the two principal spatiotemporal components associated with each eye blink from all 
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EEG channels (Ille et al., 2002). Then, data were re-referenced to the average of all channels, 

segmented into epochs ranging from -100 ms before to 400 ms after each stimulus onset, baseline-

corrected to the average pre-stimulus voltage, and averaged across trials to obtain ERPs for 

deviants and standards for each of the four acoustic features.   

2.4 Data analyses   

First, to establish the presence of the MMN response, we converted the EEG time-series into 3D 

images (2D spatial topography × 1D time-course) and entered them into a general linear model 

(GLM) with two factors (random effect of mismatch: deviant vs. standard; fixed effect of 

participant), corresponding to a paired t-test. Statistical parametric maps were thresholded at an 

uncorrected p < 0.005, and the resulting spatiotemporal clusters of main effects were tested for 

statistical significance at the family-wise error corrected threshold pFWE < 0.05, taking into 

account the spatiotemporal correlations and multiple comparisons across channels and time points.  

In an additional control analysis, we have tested whether the mismatch responses observed in this 

study were modulated by adaptation effects, which have been shown to be especially prominent in 

the N1 range (Baldeweg et al., 2004). To this end, per standard stimulus (i.e., the last stimulus in 

a sequence of identical stimuli), we have calculated the number of stimuli separating it from the 

preceding deviant (i.e., the first stimulus in a sequence of identical stimuli). If our results were 

indeed confounded by adaptation, the difference between responses evoked by deviants vs. 

standards should be modulated by the number of stimuli preceding each deviant. To test this 

hypothesis, we have regressed out the number of preceding stimuli from single-trial standard-

evoked responses (using two regressors: a linear regressor, coding for the actual number of 

preceding stimuli, and a log-transformed regressor, approximating empirically observed 
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adaptation effects; e.g. (Baldeweg et al., 2004), and subjected the residuals to the remaining 

univariate analysis steps (i.e., averaging the single-trial responses to obtain ERPs, and performing 

statistical inference while correcting for multiple comparisons across channels and time points).  

Then, to test whether MMN amplitudes differed between stimulus features, ERP data were entered 

into a flexible-factorial GLM with one random factor (participant) and two fixed factors (mismatch: 

deviant vs. standard; feature: pitch, duration, ILD, and vowel), corresponding to a repeated-

measures 2 × 4 ANOVA. Statistical significance thresholds were set as above.  

Finally, to test whether mismatch responses can be used to decode the violated acoustic features, 

we subjected the data to a multivariate analysis. Prior to decoding, we calculated single-trial 

mismatch response signals by subtracting the EEG signal evoked by each standard from the signal 

evoked by the subsequent deviant. Data dimensionality was reduced using PCA (principal 

component analysis), resulting in spatial principal components (describing channel topographies) 

and temporal principal components (describing voltage time-series), sorted by the ratio of 

explained variance. Only those top components which, taken together, explained 95 % of the 

original variance, were retained for further analysis. In decoding acoustic features, we adopted a 

sliding window approach, integrating over the relative voltage changes within a 100 ms window 

around each time-point (Wolff et al., 2020). To this end, per channel and trial, the time segments 

within 100 ms of each analysed time-point were down-sampled by binning the data over 10 ms 

bins, resulting in a vector of 10 average voltage values per component. Next, the data were de-

meaned by removing the component-specific average voltage over the entire 100 ms time window 

from each component and time bin. These steps ensured that the multivariate analysis approach 

was optimised for decoding transient activation patterns (voltage fluctuations around a zero mean) 
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at the expense of more stationary neural processes (overall differences in mean voltage) (Wolff et 

al., 2020).  

The binned single-trial mismatch fluctuations were then concatenated across components for 

subsequent leave-one-out cross-validation decoding. Per trial and time point, we calculated the 

Mahalanobis distance (De Maesschalck et al., 2000) (scaled by the noise covariance matrix of all 

components) between the vector of concatenated component fluctuations of this trial (test trial) 

and four other vectors, obtained from the remaining trials, and corresponding to the concatenated 

component fluctuations averaged across trials, separately for each of the four features. The 

resulting Mahalanobis distance values were averaged across trials, separately for each acoustic 

feature, resulting in 4 × 4 distance matrices. These distance matrices were summarized per time 

point and participant as a single decoding estimate, by subtracting the mean off-diagonal from 

diagonal terms (Figure. 3(A)). 

In a final analysis, since we have observed univariate mismatch responses as well as multivariate 

mismatch-based feature decoding at similar latencies (see Results), we have tested whether these 

two effects are related. To this end, we performed a correlation analysis between single-trial 

decoding estimates (i.e., the relative Mahalanobis distance values between EEG topography 

corresponding to mismatch responses following violations of the same vs. different features), and 

single-trial MMN amplitudes. We calculated Pearson correlation coefficients across single trials, 

per channel, time point, and participants. The resulting correlation coefficients were subject to 

statistical inference using statistical parametric mapping (one-sample t-test; significance 

thresholds as in the other univariate analysis, corrected for multiple comparisons across time points 

and channels using family-wise error). 
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3. Results 

Taken together, in this study, we tested whether auditory mismatch responses are modulated by 

violations of independent acoustic features.  First, consistent with previous literature (Doeller et 

al., 2003; Garrido et al., 2008), we observed overall differences between the ERPs evoked by 

deviant stimuli vs. standard stimuli, in a range typical for MMN responses as well as at longer 

latencies (Figure 2. (A)). Specifically, the univariate ERP analysis confirmed that EEG amplitudes 

differed significantly between deviants and standards when pooling over all the acoustic features 

tested. This effect was observed over two clusters: the central EEG channels showed a significant 

mismatch response between 115 and 182 ms (cluster-level pFWE < 0.001, Tmax = 3.94), while 

posterior channels showed a significant mismatch response between 274 and 389 ms (cluster-level 

pFWE < 0.001, Tmax = 5.46), within the range of a P3b component. A control analysis, in which 

we controlled for single-trial adaptation effect to the standard tones, yielded a virtually identical 

pattern of results as the original analysis (two significant clusters of differences between responses 

to deviants vs. standards: an earlier cluster between 130 and 143 ms over central channels, cluster-

level pFWE < 0.001, Tmax = 15.48, and a later cluster between 317 and 327 ms over posterior 

channels, cluster-level pFWE < 0.001, Tmax = 17.48). 

Although the ERP time-courses differed between deviant and standard stimuli when pooling over 

violations of different acoustic features, a univariate (channel-by-channel) analysis revealed no 

significant differences in the amplitudes or time-courses of mismatch responses between 

independent stimulus features (Figure 2. (B)). These results are consistent with a previous study 

(Phillips et al., 2015) which found that multiple deviant stimulus features (frequency, intensity, 

location, duration, and silent gap) were not associated with differences in activity in the auditory 
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regions, but instead were reflected in more distributed activity patterns (frontotemporal 

connectivity estimates).  

 

 

Figure 2. (A) The topography (left) and time-course (right) of the mismatch response. The 
highlighted topography cluster represents the significant difference between deviants and 
standards. Based on this cluster, the average waveform of the evoked response is plotted separately 
for auditory standards (blue) and deviants (red). The horizontal bars (black) indicate time points 
with a significant difference between deviants and standards. Shaded areas denote SEM (standard 
error of the mean) across participants. (B) The average response to acoustic standards (blue) and 
deviants (red) for different feature conditions, extracted from the same cluster as in (A). No 
interaction effects were significant after correcting for multiple comparisons across channels and 
time points.  

The resulting decoding time-courses of each participant were entered into a GLM and subject to 

one-sample t-tests, thresholded at an uncorrected p < 0.05 and correcting for multiple comparisons 

across time points at a cluster-level pFWE < 0.05.  In this analysis, significant acoustic feature 

decoding was observed between 247 and 350 ms relative to tone onset (cluster-level pFWE = 0.000, 
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Tmax = 2.77). (Figure 3. (B)). Thus, when pooling information from multiple EEG channels, 

acoustic features could be decoded from the topography of mismatch responses, although at later 

latencies than typical for MMN. 

Since we have observed both univariate mismatch responses and multivariate mismatch-based 

feature decoding at late latencies (univariate: 274 - 389 ms; multivariate: 247 – 350 ms), we have 

performed an additional single-trial correlation analysis to test whether these two effects are related. 

This analysis (Figure 3. (C)) has yielded no significant clusters of correlation coefficients between 

single-trial mismatch amplitudes and decoding estimates, while correcting for multiple 

comparisons across channels and time points (Tmax = 3.74, all pFWE > 0.005). 

 

Figure 3. (A) Decoding methods. Left panel: for each trial, we calculated the Mahalanobis distance, 
based on multiple EEG components (here shown schematically for two components), between the 
mismatch response in a given (test) trial (empty circle) and the average mismatch responses based 



 

76 
 

on the remaining trials (black circle: same feature as test trial; grey circles: different features). 
Right panel: after averaging the distance values across all trials, we obtained 4 by 4 similarity 
matrices between all features, such that high average Mahalanobis distance corresponded to low 
similarity between features. Based on these matrices, we summarized feature decoding as the 
difference between the diagonal and off-diagonal terms. (B) Multivariate analysis. The average 
time course of the decoding of acoustic features based on single-trial mismatch response. The gray-
shaded area denotes the SEM across participants, and the horizontal bar (black) shows the 
significant time window. (C) Decoding vs. MMN correlation analysis. Plot shows the time-series 
of mean correlation coefficients between single-trial decoding estimates and single-trial MMN 
amplitudes, calculated for Cz/Cpz channels and averaged across participants (shaded areas: SEM 
across participants). No significant correlations were observed when correcting for multiple 
comparisons across channels and time points.  

 

4. Discussion 

In this study, since a univariate analysis of interactions between mismatch signals and acoustic 

features might not be sensitive enough to reveal subtle and distributed amplitude differences 

between conditions, we adopted a multivariate analysis aiming at decoding the violated acoustic 

feature from single-trial mismatch response topographies. This demonstrated that acoustic features 

could be decoded from the topography of mismatch responses, although at later latencies than 

typical for MMN (Figure 3. (B)). An earlier oddball study (Leung et al., 2012) examined ERP 

differences to violations of four features (frequency, duration, intensity, and interaural difference). 

The study found that frequency deviants were associated with a significant amplitude change in 

the middle latency range. This result indicated that deviant feature detection may be subserved by 

a different process than general mismatch detection. Consistent with this notion, another study has 

used magnetoencephalography to identify mid-latency effects of local prediction violations of 

simple stimulus features, and contrasted them with later effects of global prediction violations of 

stimulus patterns (Recasens et al., 2014). Taken together, these studies would suggest that, in 

paradigms where multiple acoustic features vary independently (such as here), a plausible pattern 
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of results would be that independent feature predictions should be mismatched at relatively early 

latencies, since an integrated representation is not required. Here, however, we found feature-

specificity in the late latency range, rather than in the mid-latency range. The discrepancy between 

our results and the previous studies might be explained by different stimulus types. While the 

previous studies used simple acoustic stimuli, here we used complex syllable stimuli, possibly 

tapping into the later latencies of language-related mismatch responses, as compared to MMN 

following violations of non-speech sounds.  

Speech sounds have been hypothesized to be processed in separate streams which independently 

derive semantic information (“what” processing) and sound location (“where” processing) (Kaas 

and Hackett, 2000; Tian et al., 2001; Schubotz et al., 2003; Camalier et al., 2012; Kusmierek and 

Rauschecker, 2014). In most animal studies, the hierarchical organization of the auditory cortex 

has been linked to a functional distribution of stimulus processing, such that core (hierarchically 

lower) regions respond preferentially to simple stimuli, whereas belt and other downstream 

(hierarchically higher) regions respond to more complex stimuli such as band-passed noise and 

speech (Rauschecker et al., 1995; Recanzone et al., 2000; Rauschecker and Tian, 2004; Kusmierek 

and Rauschecker, 2009; Rauschecker and Scott, 2009). This is supported by evidence functional 

magnetic resonance imaging (fMRI) studies in humans (Binder et al., 2000) showing that earlier 

auditory regions (Heschl’s gyrus and surrounding fields) respond preferentially to unstructured 

noise stimuli, while progressively more complex stimuli such as frequency-modulated tones show 

more lateral response activation patterns. In that study, speech sounds showed most pronounced 

activations spreading ventrolaterally into the superior temporal sulcus. This result supports a 

hierarchical model of auditory speech processing in the human auditory cortex based on 

complexity and integration of temporal and spectral features. Based on this notion, the relatively 
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long latency of neural responses compared to previous studies using pure tones might be partially 

explained by the fact that we used spectrally and temporally complex speech stimuli. 

However, our results can also be explained in terms of a hierarchical deviance detection system 

based on predictive coding (Kiebel et al., 2008).  On this account, neural responses supporting the 

lower and higher hierarchical stages communicate continuously through reciprocal pathways. 

When exposed to repetitive stimuli, the bottom-up (ascending) sensory inputs can be “explained 

away” by top-down (descending) connections mediating prediction signaling, resulting in weaker 

prediction error signaling back to the hierarchically higher regions. Substituting the predicted 

standard with unpredicted deviant results in a failure of top-down suppression by prior predictions. 

This leads to an increased prediction error signaling back to higher regions, providing an update 

for subsequent predictions. As a result, the later and more distributed activity patterns might reflect 

higher-order prediction errors, signalled to regions integrating multiple stimulus features and 

representing the entire range of stimuli likely to appear in a particular context. 

In conclusion, the present study identified functional dissociations between deviance detection and 

deviance feature detection. First, while mismatch responses were observed at latencies typical for 

the MMN as well as at longer latencies, channel-by-channel analyses revealed no robust 

differences between mismatch responses following violations of different acoustic features. 

However, we demonstrate that acoustic features could be decoded at longer latencies based on 

fine-grained spatiotemporal patterns of mismatch responses. This finding suggests that deviance 

feature detection might be mediated by later and more distributed neural responses than deviance 

detection itself.   
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Abstract 

Learning of new auditory stimuli often requires repetitive exposure to the stimulus. Fast and 

implicit learning of sounds presented at random times enables efficient auditory perception. 

However, it is unclear how such sensory encoding is processed on a neural level. We investigated 

neural responses that are developed from a passive, repetitive exposure to a specific sound in the 

auditory cortex of anesthetized rats, using electrocorticography. We presented a series of random 

sequences that are generated afresh each time, except for a specific reference sequence that remains 

constant and re-appears at random times across trials. We compared induced activity amplitudes 

between reference and fresh sequences. Neural responses from both primary and non-primary 

auditory cortical regions showed significantly decreased induced activity amplitudes for reference 

sequences compared to fresh sequences, especially in the beta band. This is the first study showing 

that neural correlates of auditory pattern learning can be evoked even in anesthetized, passive 

listening animal models. 

1 Introduction 

Sensory perception requires correctly recognizing incoming sensory stimuli by extracting relevant 

information from memory. Such memory can be formed by implicit learning of sensory input 

through repetitive exposure. Fast memory formation by capturing unique features of sensory 

signals is thus one key factor for efficient sensory perception, which requires active involvement 

of primary sensory cortices (Harris et al., 1999; Bao et al., 2004; Gavornik and Bear, 2014; 

Rosenthal et al., 2016). 

In hearing, a series of recent studies reported fast and robust learning of abstract sounds, using a 

novel experimental paradigm that resembles unsupervised implicit learning of newly presented 
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acoustic stimuli in auditory scenes (Agus et al., 2010; Luo et al., 2013; Andrillon et al., 2015). In 

this paradigm, participants were simply asked to detect a within-sequence repetition in random 

noise samples. Unbeknownst to them, one specific noise sample would re-occur occasionally, and 

even though the subjects were unaware of this, they nevertheless showed fast, selective 

improvement in processing the frozen “reference” stimulus, which implies rapid and robust 

memorization of random features of complex sounds. Such behavioral improvement for the re-

occurring sound was supported by increased inter-trial coherence of brain responses for the re-

occurring stimulus compared to other random stimuli measured by subsequent EEG and MEG 

studies in humans (Luo et al., 2013; Andrillon et al., 2015). Interestingly, increases in neural 

coherence could even be observed when the human subjects were in Rapid Eye Movement (REM) 

or light non-REM sleep during the experiment (Andrillon et al., 2017), suggesting that a neural 

index related to learning new sounds can be traced even following passive exposure. While these 

findings provided insights into the neural correlates of implicit learning of new auditory stimuli, 

further investigations using invasive measurements will be needed to understand the underlying 

mechanisms. The present study aimed at investigating neural responses shaped by passively 

presented re-occurring sounds in the auditory cortex using rats as an animal model.  

Previous electrophysiological studies have investigated how neurons adapt to re-occurring sounds 

to understand memory and adaptation processes, by using a simplified experimental paradigm, in 

which a series of standard sounds (usually pure tones) is disrupted by a presentation of a deviant 

sound (Garrido et al., 2009a; Malmierca et al., 2014; Nieto-Diego and Malmierca, 2016). Under 

such paradigms, stimulus specific adaptation (SSA) has been widely reported using comparisons 

between habituated neural responses to a standard sound against the typically greater responses 

for a novel, deviant sound. SSA effects have been observed along the auditory pathway, first in 
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the primary auditory cortex (AC), and then also in non-lemniscal subdivisions of the inferior 

colliculus (IC) and the medial geniculate body (MGB; Anderson et al., 2009; Ayala and Malmierca, 

2013; Parras et al., 2017; Ulanovsky et al., 2003). A more recent study further reported stronger 

SSA in non-primary AC fields compared to primary AC (Nieto-Diego and Malmierca, 2016). 

Another study using more complex and realistic sounds has suggested that higher-order regions in 

the AC, rather than primary fields, may be uniquely susceptible to the adaptation to repeatedly 

presented realistic auditory inputs (Lu et al., 2018). The study further reported that the adaptation 

effect was retained after the disruption period from another repetitive presentation of the other 

sound input in the AC. These results point to the active involvement of the AC in learning and 

adaptation to ongoing or predictable sounds, which is thought to play a role not only in encoding 

stimuli, but also their context (Bar-Yosef et al., 2002; Skipper, 2014; Lu et al., 2018), as well as 

the prefrontal cortex (Casado-Roman et al., 2020). However, while previous studies compared 

neural responses evoked by occasional deviants relative to consecutively presented standards, such 

constant presentation of a single sound is not sufficient to fully explain our ability of fast implicit 

learning for newly presented sounds. Instead, recognizable re-occurring sounds typically appear 

occasionally, interspersed with other random, non-repeating sounds, and yet listeners learn them 

without much effort.  

In the present study, instead of the classical paradigm of constant representations of a single sound, 

we adapted an experimental paradigm (Agus et al., 2010) to intermittently present frozen 

“reference” sequences among other random sequences. The aim of the present experiment was to 

look for a physiological correlate of the “learning” of the frozen sequence that can occur even 

during passive exposure in the AC of anesthetized rats, using electrocorticography (ECoG) as a 

first step for identifying neurophysiological markers. We focused on investigating neural 
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characteristics that emerged by learning re-occurring auditory patterns across primary and non-

primary auditory fields within the AC. We particularly controlled for physical differences between 

stimuli by comparing pure induced neural responses, non-phase locked responses to the stimulus 

computed after the time-frequency decomposition rather than evoked neural responses. By doing 

so, we could minimize any observed effect to be drawn from characteristics of the stimulus itself 

and focus on the neural modulations induced by higher-order processing (Klimesch et al., 1998; 

David et al., 2006). Our results show more attenuated induced activity amplitudes for the re-

occurring sounds compared to other sounds, in both primary and non-primary fields, especially in 

the beta frequency band.   

2 Methods 

2.1 Animal Subjects 

Six female adult Wistar rats (age = 8 - 21 weeks, mean = 12.5, std = 4.42, weight = 257 – 315 g) 

were acquired from the Chinese University of Hong Kong. Experimental procedures were 

approved by the City University Animal Research Ethics Sub-Committee and conducted under 

license by the Department of Health of Hong Kong [Ref. No. (19-31) in DH/SHS/8/2/5 Pt.5].  

2.2 Stimuli 

We generated sequences of acoustic stimuli shown schematically in Fig. 1A. Each sequence 

consisted of five segments. Sequences could be made up either of 0.24 s long dynamic random 

chords (DRCs) or of 0.2 s long white noise (WN) snippets. Sequences either consisted of the same 

segment repeated five times (repeated sequence, RS), or they were non-repeating, random 

sequences (S). To make it easier to distinguish neural signatures of repetition detection from simple 
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onset or offset responses, sequences were bracketed with additional “head” and “tail” segments, 

which were always generated afresh, and ramped on or off linearly. Segments were joined with 5 

ms ramping overlaps to avoid transients. Sequences were presented in blocks with inter-sequence-

interval of 0.6. One block contained 100 unique RS and S sequences each, as well as one “frozen 

RS” and one “frozen S” sequence, which were presented 100 times each in each block. Adopting 

the nomenclature of Agus et al. (2010) we refer to the frozen sequences as “references”, or “RefRS” 

and “RefS” respectively. Thus one block consisted of a shuffled series of 400 stimuli, with 100 

different S and RS sequences and 1 unique RefS and RefRS sequence being presented in random 

order (see Fig. 1B).  For each block, sequences were generated anew with new random seeds. 

 

Figure 1. A: Sequences were composed of random spectral pattern (DRC or white noise) segments 
(marked by red vertical lines) which were either repeated 5 times in a row (RS sequence) or non-
repeating (S sequence). Ramped, random “head” and “tail” segments bracketed each sequence. B: 
sequences were presented in blocks of 400 trials. Each block contained 100 sequences, each of 
unique R and S sequences as well as repeated “reference” RefRS and RefS sequences, which were 
presented in random order.  

DRC sequences consisted of 12 chords of superimposed 20 ms pure tones at 15 log-spaced 

frequencies from 500 to 20,000 Hz. The level of each tone was randomly drawn from a uniform 

50-90 dB SPL range to have mean 70 dB SPL, generating random spectro-temporal patterns 
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characteristic of each DRC. The WN sequences consisted of Gaussian noise snippets, generated 

from different random seed values. As DRC segments comprise more salient spectral contrasts 

than WN segments, we expected within-sequence repetition to be easier to detect in DRC than in 

WN sequences. 

2.3 Experimental procedure 

We recorded responses to five blocks of DRC sequences and five blocks of WN sequences from 

ECoG arrays placed onto the right auditory cortex (AC). Anesthesia was induced using Ketamine 

(80 mg/kg) and Xylazine (12 mg/kg, Intraperitoneal injection; i.p.) and maintained with Urethane 

(20%, 7.5 µl/g, i.p.). Urethane anesthesia minimizes NMDA receptor blockage and closely 

resembles REM and stage II nREM sleep-like status (Pagliardini et al., 2012). Dexamethasone (0.2 

mg/kg, i.p.) was injected to prevent inflammation. Adequate anesthesia was confirmed by regular 

testing for the suppression of the toe pinch withdrawal reflex. Body temperature was kept at 36 ± 

1 °C with a heating pad. The rat was placed in a stereotaxic frame and the head was fixed with 

hollow ear bars to allow the delivery of auditory stimuli. We measured the auditory brainstem 

responses (ABRs) in each ear to confirm that the rats had normal hearing sensitivity (click 

thresholds < 20 dB SPL). The right AC was exposed by a rectangular 5 x 4 mm craniotomy which 

extended from 2.5 to 7.5 mm posterior from Bregma, with its medial edge 2.5 mm from the midline 

(Polley et al., 2007). A 61-channel ECoG array (Woods et al., 2018) was connected to a Tucker 

Davis Technologis (TDT) PZ5 neurodigitizer and RZ2 real-time processor, and placed on the 

exposed cortex. Sound stimuli were presented via a TDT RZ6 multiprocessor through the hollow 

ear bars at a sampling rate of 48,828 Hz, and ECoG responses were recorded at 24,414 Hz using 

BrainWare software.  
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The correct placement of the ECoG array was confirmed by recording frequency responses to 100 

ms pure tones at frequencies (500 – 32k Hz, ¼ octave steps) at 70 dB SPL to obtain frequency 

tuning curves of individual electrodes and a mapping of the best frequency across at the recording 

site. Given that the ECoG electrodes are rather large and their spacing is relatively wide relative 

to the reported dimensions of tonotopic fields of the rat described in the literature, the FRA maps 

obtained did not show clear tonotopic gradients, but they nevertheless revealed physiological 

features of a frequency response topography of the AC, which were reproducible from animal to 

animal. In particular, we were able to verify that tentative A1 areas have distinct frequency 

gradients from low to high frequencies, while the tentative non-A1 areas (SRAF) have frequency 

gradients from high to low frequencies (from caudal to rostral; Fig. 2). These findings are 

consistent with previous studies from other laboratories (e.g., Nieto-Diego and Malmierca, 2016).  

 

Figure 2. A: An example of frequency tuning curves for each electrode at the recording site to 100 
ms pure tone at different frequencies at 70 dB SPL. B: An example central frequency gradient 
across the recorded AC site. Tonotopic gradients of tentative A1 (low to high characteristic 
frequency from caudal to rostral) and non-A1 (high to low characteristic frequency from caudal to 
rostral) areas were observed. 
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2.4 Data analyses   

Acquired neural responses were pre-processed to obtain event-related potentials (ERPs) for each 

channel and condition for each rat. ERPs were used to look for differences across the four 

conditions (S, RS, RefS, RefRS), using the time-frequency analysis described below. To calculate 

ERPs of each channel, ECoG signals were low-pass filtered (2nd order zero-phase Butterworth) at 

45 Hz, downsampled to 1,000 Hz, and re-referenced to the common mean. Time points at which 

signal values exceeded ± 3 std of the mean signal across time were identified as outliers and 

removed (i.e. replaced by linear interpolation from neighboring points, and detrending as described 

in (de Cheveigne and Arzounian, 2018). Signals for each trial were then epoched from -100 ms to 

1600 ms relative to the onset of each sequence. Epochs for each condition were averaged to 

compute mean ERPs for each channel. To reduce data dimensionality, as well as minimize the 

effect of individual variations in electrode placement between rats, we subjected each rat’s 

channel-by-time ERP matrix (averaged across conditions) to a principal component analysis (PCA) 

and ordered components from the highest to the lowest amount of variance. We selected the top 

components (in order of variance explained) describing at least 99% variance and calculated the 

weighted sum of the spatial components to quantify the evoked response topography with reduced 

variabilities across rats. A visual inspection of regional response differences per rat from the 

obtained topography revealed that channels with the lowest response weights were mainly around 

A1 areas while channels with the highest response weights were mainly around non-A1 areas. 

Thus, we grouped top response-weighted channels as a tentative non-A1 cluster, and the bottom 

response-weighted channels as a tentative A1 cluster for further analysis of regional differences. 

Since the number of channels included in each group did not affect the result, we grouped the 

channels into the top 30 channels for the non-A1 cluster and the rest for the A1 cluster.  
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Next, to characterize the differences in induced responses to reference sequences (RefRS and RefS) 

compared to fresh sequences (RS and S), we ran a time-frequency analysis of single-trial ECoG 

signals using Morlet wavelets implemented in the FieldTrip toolbox for Matlab (frequency range: 

4 - 80 Hz in 2 Hz steps; 400 ms fixed time window; Billig et al., 2019) for each rat. The time-

frequency power spectrum of each trial was rescaled by subtracting the time-frequency spectrum 

of the average ERP for the same condition (i.e., evoked power) on a logarithmic scale. This 

subtraction yielded an estimate of induced activity amplitude, whereby the responses in each 

individual trial did not have to be precisely time-locked to the stimulus (Hartmann et al., 2012). 

Therefore, the induced response differs from the ERP by focusing on the oscillation of spectral 

power rather than on phase-locked responses to the stimuli. The resulting single-trial induced 

responses were log-scaled and averaged across trials. After obtaining average time-frequency 

power spectra for each rat, channel group, and stimulus condition, we ran two cluster-based 

permutation paired t-tests (as implemented in FieldTrip) on RefRS vs. RS stimuli and on RefS vs. 

S across rats as independent observations, with 1000 iterations per test. The results of this statistical 

analysis would then suggest that the observed effects would be largely consistent across rats.  

3 Results 

First, a cluster-based permutation paired t-test with 1,000 iterations revealed no significant 

differences of ERP amplitudes (averaged across channels) between RefRS and RS conditions or 

RefS and S conditions, either for DRC or for WN sequences.  

For both DRC and WN stimuli, channels presumed to be primary auditory cortex (A1) showed 

lower evoked response weights (averaged across all trials and conditions) than channels presumed 

to be non-primary auditory cortex, mainly from around suprarhinal auditory field (SRAF; Fig. 3A). 
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Based on the evoked response weights, we grouped channels into two clusters, A1 and non-A1 

clusters, based on the evoked response weights for further analyses on comparing induced activity 

amplitudes differences across conditions. A time-frequency analysis of induced activity revealed 

robust differences between pairs of Ref and non-Ref conditions for both clusters for DRC, but not 

for WN.  
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Figure 3. A: Spatial topography maps (methods of Nieto-Diego and Malmierca, 2016 and Polley 
et al., 2007) of average evoked responses collected by 8 x 8 ECoG for DRC (left) and WN (right) 
sequences respectively. Each pixel represents individual ECoG channel of a 8 x 8 grid placed over 
the AC area. Colorscale is fixed for both sound types. Tentative subfields of the AC are marked 
with relevant labels (A1, VAF, AAF, and SRAF). The main A1 cluster (white line) shows slightly 
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lower evoked response weights, and the putative SRAF cluster (black line) showed generally 
greater evoked response weights. Overall evoked responses to DRC sequences were stronger than 
for WN. In both cases, greater evoked responses were generally found in the non-A1 clusters.  B: 
Differences in average time-frequency induced power spectra for RefRS minus RS (left) and RefS 
minus S (right) pairs for DRC (top) and WN (bottom). Black solid vertical lines indicate sound 
onset and offset, dashed vertical lines indicate reference sequence onset and offset, and dotted 
vertical lines on the left panel indicate within-sequence segment boundaries. Black contours in 
DRC spectra indicate time-frequency areas where a significant difference between conditions was 
observed for the non-A1 cluster, and white contours indicate the areas with a significant difference 
observed for the A1 cluster (cluster-based p < 0.05). No significant power difference was observed 
for both pairs in WN. 

We first focused on neural activity in the non-A1 cluster induced by DRC stimuli, based on the 

hypothesis that perceptual learning of complex stimuli may primarily modulate activity in higher-

order regions. When comparing time-frequency responses between RefRS and RS conditions, we 

observed significantly decreased power for RefRS vs. RS during the sequence presentation, 

emerging from the onset of RefRS mostly in the beta band (10 – 40 Hz; Tmin = -19.41, Tmax = -

2.57, all cluster-based p’s < 0.05). This was especially pronounced during the first three segments 

of the sequences (Fig. 2B). In the RefS vs. S comparison, decreased power for RefS was also 

observed from the RefS onset to the sound offset across the theta, alpha, and beta band (4 – 30 Hz; 

Tmin = -8.54, Tmax = -2.58, all cluster-based p’s < 0.05). In the A1 cluster, power decrease for 

RefRS vs. RS was observed in a similar frequency range (4 – 30 Hz; Tmin = -19.82, Tmax = -2.58, 

all cluster based p’s < 0.05) to the non-A1 cluster, but persisted for a longer time period (from 

sequence onset to sound offset), mostly in the beta band. Power decrease for RefS vs. S was 

observed for similar time period and frequency bands to the non-A1 cluster (4 – 30 Hz; Tmin = -

9.98, Tmax = -2.57, all cluster-based p’s < 0.05). For WN sequences, we did not observe any 

significant differences in time-frequency response spectra between either RefRS vs. RS or RefS 

vs. S comparisons.  
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4 Discussion 

We assessed distinct neural correlates of implicit learning processes through repetitive passive 

exposure to a specific auditory sequence. We compared neural dynamics of re-occurring sequences 

with the same acoustic characteristics (RefRS and RefS) and a group of other sequences that were 

presented only once (RS and S), by computing induced activity amplitude of neural signals 

recorded from primary (A1) and higher-order auditory cortex. We observed decreased induced 

activity amplitude throughout the stimulus sequence for RefRS and RefS compared to RS and S, 

mainly in the beta band, both for A1 and non-A1 channel clusters, but only for DRC stimulus 

sequences which contain more salient acoustical features compared to WN. This finding suggests 

an active involvement of both primary and non-primary AC in the implicit learning of complex 

auditory patterns.  

Unlike most previous studies that computed differences between evoked responses as an index of 

learning (Lim et al., 2016; Lu et al., 2018), we did not observe any significant difference in ERPs 

across conditions. This result, however, was expected in our study as Ref sequences were presented 

in a passive listening setting with a complex and unpredictable experimental design. Previous 

neuroimaging studies in humans under similar paradigms also mainly focused on comparing inter-

trial coherence rather than ERP differences between RefRS and RS or RefS and S as similar ERPs 

for RefRS and RS were observed in most cases (Andrillon et al., 2015; 2017; Luo et al., 2013). 

Thus, we focused on comparing induced response power obtained from each trial after the time-

frequency decomposition. We found distinct response patterns for both of re-occurring sequences 

(RefRS and RefS) from the beginning of the sequence presentation when compared to fresh 

sequences (RS and S) for DRC. Each test block contained different, randomly generated re-



 

94 
 

occurring sequences, thus there was no build-up effect along successive blocks. Such difference 

suggests that within-sequence repetitions are not a requirement for the learning process, as long as 

the sequence contains salient information to be learned. Both effects in our study were observed 

mostly in the beta band, which has been implicated in sensory memory (Haenschel et al., 2000; 

Scholz et al., 2017) and sensory predictions (Pearce et al., 2010; Auksztulewicz and Friston, 2016; 

Auksztulewicz et al., 2017).  

The effect of attenuated induced activity amplitude for RefRS over RS and RefS over S was found 

from both A1 and non-A1 channel clusters. The effect mostly overlapped between the two clusters, 

especially for RefS. Interestingly, for RefRS, significant power differences in the non-A1 cluster 

started to diminish already after the first three segment repetitions – unlike the power difference 

in the A1 cluster which lasted towards the end of the sequence (Fig. 2B). Although further 

investigation is required, we hypothesize that repeated segments within RS may also have been 

learned, resulting in no distinctive difference between RefRS and RS to be observed towards the 

end of the sequence. It could be possibly due to increased suppression to re-occurring segments in 

putative non-lemniscal (non-A1) clusters relative to lemniscal (A1) clusters (Parras et al., 2017). 

could further indicate that acoustic features presented in re-occurring brief segments that are as 

short as 200 ms can be effectively learned and recognized. Such characteristic was only observed 

in the non-A1 cluster, suggesting a hierarchical structure of the auditory cortex and indicating a 

role of higher-order regions in repetition suppression and prediction in a shorter time frame 

(Auksztulewicz and Friston, 2016; Lim et al., 2016; Lu et al., 2018). The present finding provides 

further insights into neural responses mediating RefRS learning within a short timeframe. Whether 

such characteristics remain in a longer-term memory can also be further studied.  
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One caveat of the present study is that we did not observe a gradual development of the effect 

across trials, which is one of key factors that confirms the effect as an outcome of learning. Since 

the data were recorded with ECoG as a first step to verify whether any difference emerges in the 

AC, the present study focused on the signals accumulated over multiple trials. Further investigation 

with single and multi-unit recordings would be beneficial to study changes of neuronal activities 

on a trial by trial level, by separating units which are selective to the Ref sequences from non-

selective ones to increase the signal to noise ratio (e.g., Lu et al., 2018). 

Finally, although a previous study using the similar paradigm showed neural correlates of RefRS 

using WN as stimuli (Luo et al., 2013; Andrillon et al., 2015), we did not observe any distinctive 

characteristic of RefRS and RefS for WN. The repeating segment length of WN in the present 

study (200 ms) was shorter than previous studies that used WN (500 ms; e.g., Agus et al., 2010). 

This could be due to a greater saliency that DRC could generate for its recognition compared to 

WN, especially when such short repeating segment was presented. Other factors such as the 

segment duration or seamless presentation could also have affected the saliency of the Ref 

sequence (Agus et al., 2010; Andrillon et al., 2017; Kang et al., 2017), which requires further 

investigation to study features that make certain sequences more ‘memorable’ than others.  

The present experiment was conducted under anesthesia. Anesthetics could affect certain aspects 

of auditory processing such as spike timing, population activity or frequency tuning, depending on 

the type of anesthetics (Zurita et al., 1994; Gaese and Ostwald, 2001; Huetz et al., 2009; Noda and 

Takahashi, 2015). However, a large amount of previous physiology research investigating neural 

adaptation for re-occurring sounds or information processing has been conducted on animals under 

anesthesia (e.g.,  Anderson et al., 2009; Bao et al., 2004), especially using Urethane (e.g., 
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Astikainen et al., 2011; Astikainen et al., 2014; Lipponent et al., 2019). These studies, as well as 

our results, suggest that neural responses under anesthesia carry important information that are 

highly correlated with sensory perception. In the present study, the usage of Urethane was chosen 

to minimize any effect from anesthetics (Capsius and Leppelsack, 1996; Hara and Harris, 2002; 

Curto et al., 2009). Furthermore, our findings suggesting distinct neural traces for Ref sequences 

over the AC in rats under anesthesia are comparable to the findings observed from human 

neuroimaging study during REM sleep (Andrillon et al., 2017). Thus, the present findings provide 

important initial findings on neural correlates during such passive, implicit learning in AC. Certain 

discrepancies between the present findings and previous human studies (e.g., no significant 

difference found from WN presentations) could be further studied by conducting experiments in 

awake animals.  

In summary, the present study showed distinctive neural traits for re-occurring abstract auditory 

patterns that provide salient acoustic features (DRC) in the auditory cortex. While decreased 

induced activity amplitudes in the beta band observed throughout the auditory cortex suggests that 

both A1 and non-A1 areas are involved in encoding the information of re-occurring acoustic 

stimuli, such memory encoding in non-A1 areas could be processed in a shorter time frame. In this 

study we report, for the first time, a neural correlate of this type of memory formation in an easy 

to use, passive listening animal model, which should greatly facilitate further investigation into 

underlying neural mechanisms.  
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Chapter 5  

Summary & Conclusions 

     The major findings of my thesis can be summarized as follows: 

1. Mismatch responses to prediction violations along different acoustic features are more 

heterogeneous than sound-evoked responses.  

In auditory processing, MMN reflects the neural signal resulting from a comparison 

between previous sensory experience and a novel auditory input. Although previous 

studies have reported differences in MMN depending on the acoustic features of the 

deviant (Ahmed et al., 2011; Mahmoudzadeh et al., 2017; Lipponen et al., 2019), they 

did not compare the mismatch response between regions. This study 

investigates  whether violations of different acoustic features can be mapped onto 

different regions in the auditory cortex.  

a) This study found that mismatch responses were more spatially distributed 

across conditions than evoked responses;  

b) While mismatch and evoked responses showed a similar heterogeneity of 

topographies across animals, mismatch responses were more heterogeneous 

across acoustic features than evoked responses. 

Thus, the mismatch responses to different acoustic features are likely subserved by 

different but idiosyncratically distributed neural populations.  

 

2. Deviance feature detection mechanism is dissociable from general mismatch detection.  
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Building upon the previous study, we tested whether the MMN response shows feature 

specificity in humans. Most previous studies using different acoustic features were not 

behaviorally matched across features and were limited to relatively specialized stimulus 

characteristics (Giard et al., 1995; Schröger, 1995; Paavilainen et al., 2001; Caclin et al., 

2006; Phillips et al., 2015; Rosburg et al., 2018). This study used behaviorally matched 

deviant stimuli across different features to decode acoustic features from the MMN 

topography in a multivariate analysis.  

a)    This study showed that, in a univariate analysis, EEG amplitude significantly 

differed between deviant and standard stimuli (in an earlier cluster over central 

channels and later cluster over posterior channels) but not between acoustic 

features. 

b)    In a multivariate analysis, decoding of acoustic features was observed at later 

latencies than typical for MMN.  

 Thus, there is a functional dissociation between deviance detection and deviance feature 

detection. 

 

3. Neural correlates of auditory learning can be developed from the passive condition.  

Auditory memory can be formed by implicit learning due to repeated exposure to 

auditory stimuli. Previous studies have attempted to explain how neurons adapt to 

repetitive sounds and form a memory representation (Garrido et al., 2009a; Malmierca et 

al., 2014; Nieto-Diego and Malmierca, 2016). However, the studies compared neural 

responses evoked by very simple sounds forming unrealistically simple auditory scenes. 
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This study focused on investigating neural correlates of learning following re-occurring 

complex auditory patterns in auditory cortical regions.  

a)    We observed decreased amplitude of activity induced by the repeated acoustic 

stimuli (reference sequences) compared to those presented  only once (fresh 

sequences). This result was restricted to the beta frequency band in both primary 

and higher-order regions of the auditory cortex. 

Thus, both primary and higher-order auditory cortical regions are actively involved in 

implicit sensory learning of complex auditory patterns.  
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