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Abstract  
In order for a sensory system to display adaptive behavior in response to external 

stimuli, it is advantageous to employ mechanisms capable of learning and encoding the 

probabilities present in ongoing stimulus streams. Because real-world stimuli tend to 

contain repetitive features, sensory systems have evolved to become highly sensitive to 

such regularities in order to detect deviations, while simultaneously "tuning out" stimuli 

features which do not require constant attendance owing to those regularities. This 

manner of efficient sequence processing relies on the ability to encode stimuli into short 

term memory, form predictions about upcoming stimulus features based on those that 

come before, and to make comparisons in order to update those assumptions when a 

deviant event is detected. 

In this thesis, I investigate neural correlates during auditory sequence processing, 

used as a platform to probe and decode auditory sensory memories, predictions, and 

implicit learning in the auditory system. In the first experiment, I show that auditory 

sensory memory contents can be decoded from electrophysiological signals recorded in 

awake humans and anesthetized rats using homologous methods, suggesting that the 

mechanisms of sensory memory encoding are evolutionarily conserved across species. 

In the second experiment, I show that mnemonic and predictive representations of 

auditory stimuli can be simultaneously decoded from neural activity in anesthetized rats 

at overlapping latencies, but based on largely uncorrelated data features. Predictive 

representations are dynamically updated over the course of stimulation, suggesting a 

gradual formation of prediction. In the third experiment, conducted in awake humans, I 

show that neural correlates of prediction errors to unexpected sound contents are 

modulated by time-based predictions in a contextually congruent manner, such that local 
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(vs. global) time-based predictions amplify prediction errors to unexpected sequence 

elements (vs. chunks). These modulations were shared between contextual levels in 

terms of the spatiotemporal distribution of neural activity, suggesting the brain integrates 

different predictions with a high degree of contextual specificity, but in a shared and 

distributed cortical network. 

The experiments comprising this thesis explore phenomena that are integral to our 

understanding of cognitive processing and the mechanisms by which we interface with 

the outside world. As external stimuli contain incessant streams of complex regularities, 

the brain must find ways to parse meaningful information in the most efficient manner. 

The mechanisms responsible for this process rely on the brain’s intrinsic ability to learn 

such regularities, form a model allowing it to predict what events are likely to occur, and 

encode features into memory for comparison in order to update that model when deviants 

are detected. The following chapters detail the background of these mechanisms and 

three experiments which probe the resultant phenomena.  
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Chapter 1. Introduction  
 
1.1 Sequence Learning 

As an integral component of adaptive behavior, the ability to perceive and learn 

regular patterns present in the environment is a trait shared across species, suggestive 

of a mechanism so useful that it has been evolutionarily conserved (Henin et al., 2021; 

Kikuchi et al., 2018, 2017). While sequence learning takes place across sensory domains, 

the focus of this thesis is on the brain's ability to learn and process regularities from 

sequences of sounds. Interestingly, research has demonstrated that the ability to 

recognize sequential patterns to an extent persists across differing states of attention and 

wakefulness (Denham and Winkler, 2020; Tivadar et al., 2021) - that is to say, such 

regularities can be learned as a result of the statistical regularities present in a given 

stimulus stream. Previous studies have established neural markers corresponding to the 

detection of deviant elements in sequences learned under both active and passive 

exposure - e.g., during attended and unattended stimuli (Tivadar et al., 2021). Importantly, 

such markers have also been observed in different forms of wakefulness - e.g., fully 

awake (during active and passive exposure) and in various states of consciousness 

(anesthesia, coma, sleep) (Tivadar et al., 2021).  

Auditory sequences can contain multiple types of regularities, which are in turn 

encoded and processed by the auditory system in multiple ways. The neural 

representations of these regularities have been proposed to fall into a taxonomy wherein 

five mechanisms are responsible for encoding the corresponding regularities within 

sequence streams (Dehaene et al., 2015). In the aforementioned framework, the first type 

of sequence processing would rely on the processing of timing and transition information, 
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where the identify and onset of subsequent tokens within a sequence are established, 

while chunking occurs when several tokens are grouped into a single unit which can then 

be stored or manipulated as a whole. Ordinal knowledge would entail the understanding 

of the order in which individual tokens belong within a given sequence (e.g. first, third, 

last). A further level of abstraction is described as “algebraic patterns”, wherein 

relationships between chunked tokens are processed – for instance, AAB and XXY 

contain similar patters of two identical items followed by a third item which is different. 

Nested tree structures are a higher level of abstraction still, relying on symbolic rules such 

as those present in language processing in the form of grammar and meaning.  Owing to 

the complexities that can be contained within sequences, hierarchal processing as a 

cognitive method allows for the organization of information into hierarchical structures, or 

so-called “chunks of chunks” wherein layers of sequence features can be more efficiently 

processed (Dehaene et al., 2015). Intracranial recordings in humans have revealed 

separable neural patterns and anatomical segregation in hierarchical processing, with 

low-level processing associated with sensory areas and higher-level processing 

associated with frontal and anterior lobes (Henin et al., 2021). This distributed network of 

hierarchical sequence processing is not limited to the sensory cortices, and the role of the 

hippocampus in mnemonic and temporal processing during sequence processing is well 

established (Bellmund et al., 2020). 

In the context of sequence processing, “mnemonic representations” entail a 

memory of past sequence elements, independent of the currently processed element, 

while “predictive representations” entail a specific prediction of which sequence element 

is expected at a given time - as well as the comparison of this prediction with the currently 
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processed stimulus. These representations are intrinsically linked, as prior mnemonic 

representations service the accrual of information across previously learned patterns, 

while predictive representations can be seen as a form of memory retrieval used to predict 

the current or future sensory states (Baumgarten et al., 2021). Indeed, sequence learning 

has been shown to mediate predictive mechanisms in sensory cortices (Luft et al., 2015) 

and associative regions (Baumgarten et al., 2021) by reactivating sensory 

representations. Recent studies have successfully paired concepts of statistical learning 

and predictive coding by investigating neural correlates of melodic expectation to 

naturalistic music, observing that neural responses to statistically less likely notes elicit 

markers consistent with their level of statistical predictability (Di Liberto et al., 2020). 

Human fMRI studies in the visual domain have further established the role of temporal 

regularity in sequence learning and their resultant effects on the decodability of 

predictable stimuli (Luft et al., 2015) and a recent psychophysics study has shown that 

human observers can not only automatically extract implicit information about recurring 

stimulus sequences, but that they can also store this information in long-term memory 

(Bianco et al., 2020). The neural mechanisms thought to be responsible for predictive and 

mnemonic processing in these contexts, as well as their associated neural markers, will 

be discussed in the following sections.  
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Figure 1.1 Illustration of a partial taxonomy of sequence knowledge. (Top) Transitions between specific 

items at a specific time delay. (Bottom) A sequence of “chunks”. Adapted from Dehaene et al., 2015. 

 

1.2 Auditory Sensory Memory Encoding 

When the brain is exposed to sensory stimuli, either as part of a repetitive series 

or as an isolated event, a passive "buffer" exists within the sensory modality allowing the 

stimulus to be automatically stored before that buffer is overwritten (Spector, 2011). 

Although the length of this buffer in the auditory system has been broadly defined in the 

literature (generally accepted as under 5 seconds with some estimates upwards of 10 

seconds) we can conceive of auditory sensory memory as a temporary store of auditory 

stimulus that operates without the need for cognitive maintenance (Nees, 2016), and as 

such one that persists in different attentional states (Pasternak and Greenlee, 2005). This 

buffer allows the opportunity for subsequent processing, such as being moved into longer-

term storage or active maintenance. Indeed, such a capacity is of great practical benefit, 

as the auditory system experiences stimulus momentarily - individual sound events do 

not persist in the environment in the same way as objects viewed by the visual system, 

which can be re-scanned by the retina. Auditory sensory memory (ASM), as such, is a 

vital component of sensory processing with implications across the scope of this thesis. 
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Owing to the loosely defined nature of its time windows, the terms ASM, working memory 

(WM), and more broadly short-term memory (STM)  are often used interchangeably when 

speaking about the maintenance of mnemonic information in temporary storage, with the 

practical differences largely coming down to retention time scale and active manipulation 

of memory contents.    

Classical psychometric studies have measured sensory memory storage primarily 

through the use of delayed match-to-sample tasks (DMTS), wherein a sensory item is 

presented and, after a period of time, the participant is asked to match their memory of 

the presented item against a provided sample (Daniel et al., 2016; Nees, 2016) to 

establish psychometric functions of memory retention. Sustained neural activity in the 

prefrontal cortex (PFC) during retention periods has been observed in WM studies, with 

numerous theoretical models having been proposed to account for the role of such activity 

in sensory memory maintenance (Stokes, 2015). For instance, “synaptic reverberation” 

has been proposed as the underlying mechanism responsible for WM retention, wherein 

neural activity is sustained by recurrent excitatory loops mediated by NMDA receptor 

dynamics (Wang, 2001). However, sensory memories are not always reflected in 

sustained neural activity, despite the ability for them to be retrieved after extended periods 

in DMTS tasks. A recent study has shown that memories held without conscious 

awareness did not elicit sustained neural activity until tasks requiring active manipulation 

of memory contents were performed, and numerous studies have observed similar 

phenomena (Stokes, 2015; Trübutschek et al., 2018). A contemporary theory posits that 

such memory items are stored in "activity-silent" states - that information is stored in such 

a way (e.g., encoded into synaptic weights, see Figure 1.2.2) that sustained neural activity 
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is not required for their retention (Stokes, 2015). Recent studies have demonstrated that 

the neural traces responsible for this retention can be reactivated through the use of 

sensory "impulses" consisting of broadband probe stimulus presented during the activity-

silent period (Wolff et al., 2019, 2015).  

While the PFC has been widely implicated in working memory maintenance, as 

evident from numerous lesion and imaging studies (Stokes 2015), sensory areas have 

also been found to play a crucial role in STM processing. A recent study found that 

optogenetic suppression of neurons in the auditory cortex (AC) of rodents early in the 

delay period impaired WM performance, while suppression in later delay periods did not 

(Yu et al., 2021)This is of particular interest, as it establishes the role of the AC in early 

encoding of auditory mnemonic representations before upstream processing in the PFC. 

Indeed, this finding is consistent with past human research demonstrating lesions in the 

AC resulted in impaired auditory discrimination and reduced mismatch negativity (MMN) 

amplitudes (Alain et al., 1998) when compared to healthy control subjects.  

The latter finding indicates another method of tapping into ASM. In addition to 

DMTS paradigms, a traditional method to measure the neural correlates of ASM includes 

the use of so-called oddball paradigms, where the brain's response to a deviant and 

unexpected stimulus elicits a measurable "mismatch response" (MMR) (Winkler et al., 

1993). The MMN, measured with electroencephalography (EEG), is a prime example of 

an MMR. This response is so fundamental to cognition that its absence is often used to 

predict the outcome of comatose patients (Morlet and Fischer, 2014). The results of 

previous MMR studies are largely compatible with silent-coding theories, as MMR has 

been postulated to result from the processing of deviant stimuli in comparison to an 
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existing ASM trace (Näätänen et al., 2005). In order for a stimulus to be deviant in this 

context, the brain must first form a prediction about what event was expected in order to 

make a comparison to the stimulus that actually occurred. The next section will therefore 

discuss the notion of predictive processing.  

 

 
 

Figure 1.2.1 Hypothetical availability of an ASM trace for two retention intervals. Adapted from Nees, 2016.       
 

 

 
Figure 1.2.2 Schematic of the synaptic model of WM, adapted from Stokes, 2015. Task-relevant input (left-

side horizontal arrows) drives a stimulus-specific activity state (filled circles) that in turn triggers a specific 

pattern of short-term synaptic plasticity between cells (bold arrows). Memory is read out from this synaptic 



 
8 

 

trace via the context-dependent response at retrieval (black filled circles). The probe-driven response will 

be patterned by the hidden state of synaptic efficacy, resulting in a discriminable output pattern (right-side 

horizontal arrows). 

 

 

1.3 Predictive Coding 

The presence of multiple stimulus streams in natural environments presents a 

unique challenge to our perceptual systems, as monitoring all of these streams in real 

time to extract useful information would require a tremendous amount of cognitive 

resources that our brains might otherwise use in service of other tasks. The predictive 

coding framework outlines one approach which our brains use to make this challenge 

more manageable (Friston, 2005; Heilbron and Chait, 2018). Stimulus streams often have 

consistent, repetitive, or otherwise predictable features – e.g. statistical regularities similar 

to those responsible for sequence learning. Sensory systems thus can make the parsing 

of incessant streams of sensory information more efficient by forming predictions based 

on regularities detected or rules discovered in the course of sensory experience. These 

predictions allow the brain to create a probable model of the outside world, which can be 

updated when errors are detected between the model predictions and external inputs 

(Fairhall et al., 2001; Friston et al., 2006; Rubin et al., 2016; Schröger et al., 2014). In the 

auditory system, explanations based on predictive coding have been applied to several 

phenomena, such as MMN responses, temporal expectation, and so-called omission 

responses (Denham and Winkler, 2020; Heilbron and Chait, 2018). In such contexts, 

experimental paradigms typically employ the use of repetitive stimulus streams which 

allow a build-up of predictions, based on memory of recent stimulation. Within the 

predictive coding framework, memory is intrinsically linked with predictive mechanisms in 
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the form of adaptive memory traces employed in downstream error correction (Wacongne 

et al., 2012). Interestingly, a recent study on auditory associative learning in awake mice 

showed that neural activity evoked by a predicted stimulus contains information both 

about its most likely predictor and its actual past, but that this information relies on 

dissociable neural codes, suggesting that mnemonic and predictive representations 

coexist within sensory cortices (Libby and Buschman, 2021). 

The present literature on animal models of predictive processing is largely within 

the context of stimulus specific adaptation (SSA), and employs mismatch or omission 

designs reliant on repetition of the same stimulus token, making it difficult to separate 

predictive from simple adaptive mechanisms. A recent study (Parras et al., 2017) 

attempted to disentangle adaptive and predictive effects using an oddball paradigm in 

single-unit recordings from awake and anesthetized animals, demonstrating that 

predictive effects are organized hierarchically and suggestive of underlying MMN 

mechanisms. Although different models of the mechanisms underlying predictive coding 

exist, the most widely accepted model postulates that neurons responsible for making 

predictions reside in deep cortical layers, while neurons responsible for error detection 

reside in superficial cortical layers. Within this framework, information about predictions 

relies on backward connections and information about detected errors relies on forward 

connections, with the underlying predictive model being update by errors as a result of 

this cortical loop (Heilbron and Chait, 2018, see Figure 1.3). Further animal studies 

(Malmierca et al., 2019) have investigated neuronal pattern sensitivity with findings 

compatible with predictive coding frameworks reliant on temporal and spectral regularities 

entrained at the single-unit level, and have provided compelling evidence for a prediction-
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error-signaling-based explanation of hierarchical deviance detection gradient between 

auditory subcortical and cortical regions, and prefrontal cortices (Casado-Román et al., 

2020). However, studies employing animal models and different attention states to 

investigate predictive mechanisms beyond mismatch signaling have been largely lacking 

(Heilbron and Chait, 2018), and one goal of the research presented herein is to partially 

address that gap in the literature.  

 
Figure 1.3 Arrangements of error and expectation neurons in the auditory cortex implied by the standard 

model of predictive coding. Adapted from Heilbron and Chait, 2018. 

 

Oddball paradigms and MMR analyses have traditionally been employed to 

investigate mnemonic predictive processing. However, auditory streams contain 

information not only about the content of events, but also about the timing at which those 

events occur. Mnemonic and temporal predictions have been postulated as relying on 

dissociable neural correlates and partially separable underlying mechanisms (Friston and 

Buzsáki, 2016; Hsu et al., 2013), while both play a role in the modulation of stimulus-

evoked activity in the superior temporal gyrus (Auksztulewicz et al., 2018). A recent 

human electrocorticography study found that temporal and mnemonic predictions engage 

overlapping but separable brain regions at different latencies, with computational 

modelling revealing increased plasticity in auditory regions during mnemonic processing 

and increased synaptic gain in motor regions during temporal processing (Auksztulewicz 

et al., 2019). It has also been proposed that interactions between mnemonic and temporal 
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predictions are inherent to the processing of musical sequences (Musacchia et al., 2014). 

In this context, it has been suggested that neural entrainment along the non-lemniscal 

(secondary) auditory pathway (sensitive to the rhythmic sequence structure) can 

modulate activity in the lemniscal (primary) pathway (encoding stimulus contents), 

including MMR processing. Such modulatory effects are perhaps unsurprising, as 

temporal information is essential to sequence processing and its underlying mnemonic 

and predictive mechanisms, while MMR remains a reliable neurological marker of 

sequence deviants. 
 
 

1.4 Thesis Overview 

This thesis investigates the mechanisms underlying the brain's ability to learn 

regularities in ongoing stimuli sequences, make predictions about future events, and 

encode features into memory. Experimental Chapters 2-4 convey research that I have 

undertaken throughout my PhD studies to investigate the individual phenomena that 

comprise these mechanisms. 

Chapter 2: In the first study, a cross-species approach was employed to test 

whether auditory memory contents can be decoded from electrophysiological signals 

recorded in different species. Awake human volunteers (N=21) were exposed to auditory 

pure tone and noise burst stimuli during an auditory sensory memory task using EEG. In 

a closely matching paradigm, anesthetized female rats (N=5) were exposed to 

comparable stimuli while neural activity was recorded using electrocorticography (ECoG) 

from the auditory cortex. In both scenarios, acoustic frequency of recent tokens could be 

decoded from neural activity evoked by pure tones as well as that evoked by neutral 

frozen noise burst stimuli used to probe mnemonic representations held in silent-state 
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storage, suggesting that the mechanisms of sensory memory encoding are evolutionarily 

conserved across species.  

Chapter 3: In the second study, neural activity elicited by repeated stimulus 

sequences was recorded using ECoG in the auditory cortex of anesthetized female rats 

(N=8), where events within the sequence were occasionally replaced with a broadband 

noise burst or omitted entirely. The results show that both stimulus history and predicted 

stimuli can be decoded from neural responses to broadband impulses, at overlapping 

latencies, but based on uncorrelated data features. The results also demonstrate that 

predictive representations are dynamically updated over the course of stimulation in a 

manner consistent with standard learning curves, suggesting these mechanisms are 

retained independently of attentional state. 

Chapter 4: In the third study, we disambiguate neural correlates of “what” and 

“when” predictions by independently manipulating the predictability of temporal onset and 

acoustic contents at two contextual levels (single stimuli and stimulus pairs). Healthy 

volunteers (N=20) performed a repetition detection task while we recorded their neural 

activity using EEG. The results reveal that “what” and “when” predictions interactively 

modulated stimulus-evoked response amplitude in a contextually congruent manner, 

such that faster “when” predictions modulated the amplitude of mismatch responses to 

unexpected single stimuli, while slower “when” predictions modulated the amplitude of 

mismatch responses to unexpected stimulus pairs. We also find that the neural effects of 

these modulations were shared between the two contextual levels of prediction signaling 

in terms of the spatiotemporal distribution of EEG signals. Furthermore, by analyzing the 

entrainment of low frequency neural activity to the stimulus stream, we found evidence 
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for a gradual increase of entrainment to slow temporal predictions (regarding the timing 

of stimulus pairs).  
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Chapter 2. Decoding The Content of Auditory Sensory Memory Across Species  
 
2.1 Abstract 

 In contrast to classical views of working memory maintenance, recent research 

investigating activity-silent neural states has demonstrated that persistent neural activity 

in sensory cortices is not necessary for active maintenance of information in working 

memory. Previous studies in humans have measured putative memory representations 

indirectly, by decoding memory contents from neural activity evoked by a neutral impulse 

stimulus. However, it is unclear whether memory contents can also be decoded in 

different species and attentional conditions. Here, we employ a cross-species approach 

to test whether auditory memory contents can be decoded from electrophysiological 

signals recorded in different species. Awake human volunteers (N=21) were exposed to 

auditory pure tone and noise burst stimuli during an auditory sensory memory task (ASM 

task) using electroencephalography. In a closely matching paradigm, anesthetized 

female rats (N=5) were exposed to comparable stimuli while neural activity was recorded 

using electrocorticography from the auditory cortex. In both species, acoustic frequency 

could be decoded from neural activity evoked by pure tones as well as neutral frozen 

noise burst stimuli. This finding demonstrates that memory contents can be decoded in 

different species and different states using homologous methods, suggesting that the 

mechanisms of sensory memory encoding are evolutionarily conserved across species.  

 

2.2 Introduction  

As a crucial component of adaptive intelligence, working memory (WM) allows for 

the temporary retention of information, breaking the immediacy of sensations and 
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allowing for actions that are not reflexive. Sensory WM refers to an organism’s ability to 

retain information from a specific sensory modality (Spector, 2011). Auditory sensory 

memory (ASM) is a low-level subset of auditory WM wherein features of acoustic events 

are automatically maintained for a short period of time without the need for active 

cognitive retention (Pasternak and Greenlee, 2005). In comparison to auditory WM, which 

is actively maintained over longer periods of time, ASM can be thought of as a passively 

retained “buffer” that decays over time and is “overwritten” by new auditory sensory input 

(Pasternak and Greenlee, 2005), serving as a temporary store before relevant information 

can be moved into higher-level memory systems when required. The auditory system 

cannot “re-hear” acoustic events, and as such automatic retention of such events is 

essential for higher-level cognitive processes (e.g., active maintenance of auditory WM 

or long-term storage). ASM is a vital, low-level, function of the memory system upon which 

our understanding of higher-level auditory memory functions is built.  

Early findings demonstrated that maintenance of WM was accompanied with 

persistent neural activity in frontal areas (Huang et al., 2016; Tark and Curtis, 2009). 

Recent studies have demonstrated that WM is not always reflected in sustained neural 

activity. This has led to new conceptualizations as to how WM maintenance takes place 

in the brain (Fries, 2005; Kamiński and Rutishauser, 2019; Mongillo et al., 2008; Stokes, 

2015). One possibility is that WM is instantiated by “activity-silent” neural states, whereby 

sensory cortical regions do not show sustained activity during the retention period despite 

clearly observed activity during encoding and recall periods (Stokes, 2015). It has been 

shown that those activity-silent neural states can be probed by measuring “impulse 

responses” to a standardized broad-band probe stimulus during the activity-silent period 
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and decoding the resultant neural response to make inferences about its contents (Wolff 

et al., 2019, 2015).    

Existing research on silent-coding of WM has focused on higher-level auditory 

processes such as active retention of auditory features during WM maintenance, or lower-

level processes in the visual system (Wolff et al., 2020, 2015). Despite cross-species 

studies enjoying the benefits of established research methods developed and refined for 

each species (Mishra and Gazzaley, 2016), additional research in neural correlates of 

WM, particularly those which employ paradigms for activity-silent coding, focus either on 

the prefrontal cortex or employ single-species and single-conscious-state models 

(Bigelow et al., 2014; Constantinidis and Procyk, 2004; Murray et al., 2017; Spaak et al., 

2017; Stokes, 2015). Thus, whether the mechanism subserving WM is preserved across 

species, conscious states and hierarchical levels remains unknown. To begin to address 

this, here we capitalize on cross-species investigations, and on understanding low-level 

memory processes which we see as integral to understanding higher-level functions in 

the auditory WM system and, as such, focus on silent-state activity during the auditory 

sensory memory period. We use a multivariate decoding method to analyze data acquired 

from EEG recordings in awake humans and ECoG recordings in anesthetized rats, 

decoding stimulus features from neural activity evoked by both the stimuli and frozen 

noise bursts presented during the ASM period. Such an approach allows us to bring 

invasive techniques to bear that help with precise localization, and allow for the 

investigation of causal mechanisms using methods that aren't available in human 

subjects alone. By testing whether the neural response to frozen noise bursts contain 

information about the stimulus feature held in ASM, we hope to establish grounding for 
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new models of ASM research by demonstrating the efficacy of cross-species and cross-

attention-state approaches, elaborating on existing decoding research in a field whose 

limits have yet to be defined.  

 

2.3. Methods and Materials 

2.3.1 Human Electroencephalography 

Participant Sample: 

Participants (N = 21, 12 male, 9 female, median age = 25, age range = 22 - 50) 

volunteered to take part in the study upon written consent. The work was conducted in 

accordance with protocols approved by the Human Subjects Ethics Sub-Committee of 

the City University of Hong Kong. All subjects were self-reported as healthy with no 

hearing impairment.   

Behavioral Paradigm and Stimulus Design  

Stimuli were presented in 10 separate blocks, where participants responded to 

stimulus pairs. Prior to task blocks, participants were given the opportunity to modify the 

playback volume from its default level of 83 dB SPL if they judged it to be too loud or too 

soft, with levels adjusted by the researcher within +/- 5 dB SPL to a comfortable setting 

for each participant. 

During blocks, participants were presented with a pair of pure tones separated by 

an auditory burst of frozen pink noise (a full-bandwidth noise signal with equal power in 

proportionately wide bands and a power density decreasing at 3 dB per octave) (Figure 

2.1A). Tones preceding the frozen noise burst (T1) were randomly drawn from a set of 
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six semitones, from a half-octave chromatic scale, starting at 440 Hz. Tones following the 

frozen noise burst (T2) were detuned per trial by picking at random one of 10 possible 

frequencies from a set that extended one semitone above to one semitone below T1 in 

steps of 22.22% of a semitone. The same frozen noise burst stimulus was used across 

trials and participants.  Each of the three events within the stimulus sequence were 200 

ms in duration, with pure tones tapered by 5 ms linear on and off ramps. Stimulus events 

within each sequence were separated by randomly-selected gaps of silence, uniformly 

distributions of both gaps across trials. Gaps between T1 and frozen noise burst ranged 

between 0.6-1.6 s, and the gaps between frozen noise burst and T2 ranged between 0.3-

0.8 s, consistent with the lower range of time intervals used in ASM paradigms (Nees, 

2016). Gap durations, tone frequencies, and detuning values were assigned at random 

for each trial, with T2 always being a detuning of T1, for an average of 100 presentations 

for each T1 frequency per subject. A 600 ms wait time was employed after a “start trial” 

button press, and before the presentation of stimuli, in order to separate T2 traces and 

motor activity from the neural response to T1.  

During blocks, a black screen with white fixation cross was presented. Participants 

were instructed to press the “Start” button on a USB joypad to begin each trial and tasked 

with identifying if T2 was a higher or lower frequency than T1 by pressing buttons labeled 

either “Higher” or “Lower”. A short break at the participant’s discretion was given every 

60 trials, with the percentage of correct responses over the last 60 trials displayed on 

screen during the break. Note that our primary research question focused on “silent” 

neural activity related to the echoic memory of T1 during the period in which the frozen 

noise burst was presented, and the task and performance feedback served merely to 
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incentivize participants to continue with the task through the blocks with similar levels of 

attention and engagement throughout. Although task presence can be thought to 

introduce an element of active retention (thus bringing the paradigm into the purview of 

WM), we are differentiating ASM vs WM in the context of time scales rather than task 

requirements. No feedback was given on a trial-by-trial basis, nor were rewards or 

punishment employed. In total, participants completed 600 task trials. 

Figure 2.1 Stimuli and recording techniques. (A) Human volunteers were exposed to homologous stimulus 

streams in an auditory sensory memory task, in which they were asked to report whether the frequency of 

the sample tone was higher or lower than the frequency of the probe tone. (B) Rats were exposed to 

stimulus streams under anesthesia (adapted from Polley, 2007).  
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Neural Data Acquisition and Pre-processing 

         Neural data was collected via an ANT Neuro EEGo Sports 64 channel 10-20 

electroencephalogram (EEG), grounded at the nasion and referenced to the Cpz 

electrode, at a sampling rate of 1000 Hz. Each participant completed 10 blocks (~1.5 

hours), recorded in succession with short breaks. Participants were seated in a quiet 

room, fitted with Brainwavz B100 earphones, which delivered the audio stimuli via a 

MOTU Ultralite MK3 USB soundcard at 44.1 kHz, 16 bit. Data from all 21 subjects were 

included in EEG analysis, with 17 subjects being included in behavioral analysis due to 

inaccuracies in recording incorrect responses for the initial four subjects. EEG data was 

pre-processed using the SPM12 Toolbox (Wellcome Trust Centre for Neuroimaging, 

University College London; RRID: SCR_007037) for MATLAB (The MathWorks; RRID: 

SCR_001622). Continuous data were high-pass filtered at 0.2 Hz and downsampled 

(using antialiasing filtering) to reduce the source sampling rate to 300 Hz for 

computational efficiency. A notch filter was then applied between 48 Hz and 52 Hz before 

low-pass filtering at 90 Hz. All filters were 5th order zero-phase Butterworth. Eyeblink 

artefact detection was performed using channel Fpz for all but one subject (for whom Fz 

was substituted as a result of a bad Fpz channel on that subject’s recording), and the 

eyeblink artefacts were removed by subtracting their two spatiotemporal principal 

components from all EEG channels (Ille et al., 2002). Data were then re-referenced to the 

average of all channels, segmented into epochs ranging from -100 ms before to 500 ms 

after stimulus onset for all stimulus events of interest (Sample Tone, frozen noise burst 

and Probe Tone), and denoised using the “Dynamic Separation of Sources” (DSS) 

algorithm (de Cheveigné and Simon, 2008). This denoising procedure is commonly 
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applied to maximize reproducibility of stimulus-evoked responses across trials, while 

preserving differences between responses evoked by different stimulus types (de 

Cheveigné and Parra, 2014; de Cheveigné and Simon, 2008). For each subject, epoched 

data were linearly detrended, and the first seven DSS components (constituting the most 

reproducible components, as determined based on data ranging from −100 to 500 ms 

relative to tone/frozen noise burst onset) were retained and used to project both the tone-

evoked and frozen noise burst data back into sensor-space. 

2.3.2 Animal Electrocorticography 

Subjects, Experimental Apparatus and Surgical Procedures 

Five adult female Wistar rats, acquired from the Chinese University of Hong Kong, 

were used as subjects. Naive rats aged between 16 and 24 weeks (median age = 20 

weeks) with weights between 257 and 345 g (median weight = 285 g) were tested for 

normal hearing (click auditory brainstem response thresholds < 20 dB) and received no 

prior stimulus exposure. A mixture of ketamine (80 mg/kg, intraperitoneal injection; i.p) 

and xylazine (12 mg/kg, i.p) was used to induce anesthesia at the outset of the 

experiment. Dexamethasone (0.2 mg/kg, i.p) was delivered before surgery as an anti-

inflammatory. Anesthesia was maintained throughout the experiment via urethane 

injections (0.75 mg/kg, i.p) one hour after the initial dose of ketamine and xylazine with 

supplementary doses (0.2 - 0.5 ml) delivered based on the presence of a withdrawal reflex 

when the animals’ toes were pinched. Based on previous rodent studies (Malmierca et 

al., 2019), this protocol allowed for faster induction of anesthesia via the initial 

administration of ketamine and xylazine, while avoiding subsequent NMDA-specific 
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inhibitory effects of ketamine through the use of urethane to maintain anesthesia for 

electrocorticography (ECoG) recordings. The anesthetized animal was placed in a 

stereotaxic frame to allow hollow ear bars to be placed for sound delivery and fix the 

animals’ head for craniotomy. Body temperature was maintained at 36 ± 1°C with an 

electric heating pad throughout the procedure and monitored via rectal thermometer. 

During surgery the skin was cut and muscle tissue over the temporal lobe of the skull was 

removed to allow for a unilateral craniotomy exposing a 5×4 mm region over the right 

primary auditory cortex, leaving the dura intact. The cranial window started 2.5 mm 

posterior from the Bregma, and ventral from the temporal edge of the lateral skull surface, 

in order to locate the auditory cortex during craniotomy (Figure 2.1B). The ECoG array 

was placed over the exposed cortex and a cotton roll was placed between the skin and 

the array to keep impedance low and the array securely in place.  

Correct placement of the ECoG array was verified by recording a set of Frequency 

Response Areas (FRAs) from each site by collecting responses to 100 ms pure tones 

varying in sound level (30 - 80 dB SPL) and frequency (500 - 32k Hz, ¼ octave steps). 

Each tone was presented 10 times, in a randomly interleaved fashion, with an onset-to-

onset ISI of 500 ms. FRA maps for each ECoG array placement were used to verify the 

placement of the array was similar across subjects. Note also that the spatial PCA 

analysis (described below) which underpins our analysis was performed separately for 

each subject, which minimizes any effects of the array misalignment between subjects. 
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Experimental Paradigm and Stimulus Design  

For the main experiment, the stimulus sequence closely matched the sequence 

administered in the human study but was adjusted for the rat hearing range and passive 

delivery. Audio sequences consisted of tones followed by the same frozen pink noise 

bursts used in the human paradigm, each separated by gaps of silence with a duration 

chosen randomly from the interval 0.5-1 s. Tones were randomly drawn from a set of six 

frequencies spaced seven semitones apart, beginning with 1100 Hz. The lower limit of 

1100 Hz ensured that all tones were well above the lower limit of the rat’s frequency 

range, and the seven semitone spacing (just over half an octave) was chosen to ensure 

that the tones should relatively easily discriminable for the rat’s auditory system, but we 

also wanted to avoid frequency steps corresponding to integer number of octaves so that 

all tones differed not just in pitch height but also in pitch chroma. To our knowledge there 

is currently no evidence that the rat auditory system is sensitive to pitch chroma or 

designed to perceive octave equivalence, but ensuring that there could be no “issues 

chroma confusion” if they did was an easy precaution to take. Each tone was presented 

binaurally in a random order 50 times each per block, with the two animals exposed to 

two blocks and the remaining exposed to three blocks. Both tones and noise bursts were 

200 ms in duration, with tones tapered with 5 ms cosine on/off ramps (Figure 2.1B).  

Neural Data Acquisition and Pre-processing 

ECoG signals were acquired at a sampling rate of 24,414 Hz using a 8 x 8 Viventi 

ECoG electrode array (Woods et al., 2018) with 400 µm electrode spacing, three ground 

channels located in the corners of the array, and a common reference. The array was 

connected to a Tucker Davis Technologies (TDT) PZ5 neurodigitizer and recorded via a 



 
24 

 

RZ2 processor (controlled by BrainWare software). Acoustic stimuli were delivered by a 

TDT RZ6 multiprocessor at a playback sampling rate of 48,828 Hz. To extract neural 

activity evoked by acoustic stimuli, the recorded electrode signals were first low-pass 

filtered using a cutoff frequency of 90 Hz using a 5th order Butterworth filter, and 

downsampled to 300 Hz. We decided to analyze low-frequency (local field) potentials 

rather than high-gamma-band activity, as they provide a closer homologue to human EEG 

signals. As for the human EEG data, the pre-processed signals were then re-referenced 

to the average of all channels, as commonly used in ECoG studies (Ball et al., 2009), and 

segmented by extracting 600 ms long voltage traces from −100 ms to +500 ms relative 

to the onset of each tone or frozen noise burst stimulus. The epoched traces were 

baseline-corrected by subtraction of the mean pre-stimulus voltage values, and linearly 

detrended (Salisbury, 2012). 

2.3.3 Univariate analysis: summarizing tone-evoked and frozen noise burst-evoked 

activity  

As an initial step, EEG and ECoG data were subject to univariate analyses, to 

assess whether tone frequency modulated tone- and frozen noise burst-evoked activity 

on a channel-by-channel basis. Epoched data were averaged across trials, separately for 

each tone frequency. First, to visualize the evoked responses, event-related potentials 

(ERPs) were concatenated across tone frequencies and participants/animals, resulting in 

two-dimensional matrices with single channels along one dimension and concatenated 

time points, tone frequencies, and participants/animals along the second dimension. 

These matrices were then subject to principal component analysis using singular value 

decomposition, resulting in spatial principal components (describing channel 
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topographies) and temporal principal components (describing voltage time-series 

concatenated across tone frequencies and participants/animals), sorted by the ratio of 

explained variance. The top principal components explaining 95% of the original variance 

were summarized by calculating their weighted average, weighted by the proportion of 

variance explained. The resulting summarized voltage time-series were then averaged 

per tone frequency across participants/animals. In an identical procedure, frozen noise 

burst-evoked single-trial data were averaged across trials, separately for each preceding 

tone frequency, and subject to principal component analysis as described above. 

Next, to test whether any time points and channels show significant amplitude 

correlations with tone frequency, single-participant ERP data in the original sensor space 

(i.e., prior to the principal component analysis, which was only used for visualization 

purposes) were converted into three-dimensional images (two spatial dimensions and 

one temporal dimension) and entered into a general linear model (GLM), separately for 

each species (humans, rats) and stimulus type (pure tone, neutral frozen noise burst). 

Each GLM was based on a flexible factorial design with one random factor (participant / 

rat) and one fixed factor (tone frequency / preceding tone frequency). A parametric linear 

contrast across six frequencies was designed to test for the effect of tone frequency on 

ERP amplitude. The resulting statistical parametric maps were thresholded at p<0.05 

(two-tailed) and corrected for multiple comparisons across spatiotemporal voxels at a 

family-wise error (FWE)-corrected p = 0.05 (cluster-level) (Kilner et al., 2005). 

The human EEG data were additionally source-localized, to infer the most probable 

cortical sources contributing to the sensor-level effects. Specifically, since we observed 

a significant univariate effect of tone frequency on the amplitude of tone-evoked 
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responses (but not noise-evoked responses; see Results), we focused on estimating the 

source activity underlying the sensor-level effects of tone frequency on tone-evoked 

responses. To this end, we used the multiple-sparse-priors approach to source 

localization under group constraints (Litvak and Friston, 2008). For each tone frequency 

and participant, the entire time epoch (from 100 ms before to 500 ms after tone onset) of 

sensor-level tone-evoked responses over all EEG channels were subject to source 

localisation. The resulting source estimates within the time window in which we observed 

significant results (113-260 ms relative to tone onset; see Results) were converted into 

3D images (in MNI space), smoothed with a 6×6×6 mm Gaussian kernel, and entered 

into a general linear model with one within-subjects factor (Tone Frequency) and one 

between-subjects factor (Participant). Following estimation of the general linear model, 

we obtained statistical parametric maps for parametric linear contrasts between which 

were then thresholded at p < 0.05 (two-tailed, uncorrected). Significant effects were 

inferred at a cluster-level p < 0.05 (FWE, small-volume corrected), correcting for multiple 

comparisons across voxels under random field theory assumptions (Kilner et al., 2005). 

Sources were labeled using the Neuromorphometrics atlas, as implemented in SPM12. 

2.3.4 Multivariate analysis: decoding sensory and mnemonic tone frequency information 

To test whether information about tone frequency can be decoded from the pattern 

of tone-evoked and frozen noise burst-evoked activity observed across multiple channels 

and time points, we subjected the data to multivariate analyses. To this end, we adapted 

methods established in previous research on multivariate EEG decoding of visual 

stimulus orientation during visual WM tasks (van Ede et al., 2018; Wolff et al., 2017, 2015) 
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and similar approaches in decoding active retention of auditory stimuli (i.e. pure tones) 

during WM (Wolff et al., 2019). 

A multivariate decoding method was employed in analyzing data acquired from both 

species to decode the frequency of the preceding T1 stimulus from neural activity evoked 

by the frozen noise bursts which did not carry any overt information about the sample 

tone given that the noise tokens used were always identical and were presented well after 

sample tone-evoked responses returned to baseline (i > 600 ms following the offset of 

sample tone in humans and 500 ms in anesthetized rats). Channels with an average 

signal-to-noise ratio (SNR; defined as the ratio of root-mean-square values of post-

stimulus and pre-stimulus amplitudes) lower than 8 dB (Alaerts et al., 2009) were 

discarded from analysis. This resulted in discarding 3.17% ± 1.53% EEG channels (mean 

± SD) from subsequent multivariate decoding. All ECoG channels in all rats fulfilled the 

SNR criterion and were used in subsequent decoding. Prior to decoding, single trial tone-

evoked responses were sorted by tone frequency, and single-trial frozen noise burst-

evoked responses were sorted by preceding tone frequency. 

We sought to determine whether activity evoked by the sample tone (probing the 

sensory trace), and/or by the frozen noise burst (probing ASM contents), contained 

information about the sample tone feature (Figure 2.2). To estimate decoding time-

courses, we adopted a sliding window approach, integrating over the relative voltage 

changes within a 100 ms window of each time-point (Wolff et al., 2019). This approach is 

a direct replication of previously established multivariate decoding methods (Wolff et al., 

2020). Furthermore, pooling information over multiple time-points (in addition to multiple 

channels) in a multivariate manner has been shown to boost decoding accuracy 
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(Grootswagers et al., 2017; Nemrodov et al., 2018). To this end, per channel and trial, the 

time segments within 100 ms of each analyzed time-point were down-sampled by binning 

the data over 10 ms bins, resulting in a vector of 10 average voltage values per channel. 

Next, the data were de-meaned by removing the channel-specific average voltage over 

the entire 100 ms time window from each channel and time bin. This step ensured that 

the multivariate analysis approach was optimized for decoding transient activation 

patterns (voltage fluctuations around a zero mean) at the expense of more stationary 

neural processes (overall differences in mean voltage) (Wolff et al., 2019). The vectors of 

binned single-trial temporal data were then concatenated across channels for subsequent 

leave-one-out cross-validation decoding. As a multivariate decoding metric, we used the 

Mahalanobis distance (De Maesschalck et al., 2000), taking advantage of the potentially 

monotonic relation between tone frequency and neural activity (Auksztulewicz et al., 

2019; Wolff et al., 2019). In other words, responses to similar tones are expected to yield 

low Mahalanobis distance metrics, while responses to more dissimilar tones are expected 

to yield larger Mahalanobis distance metrics. In a leave-one-out cross-validation 

approach (which has been shown to be optimal for EEG decoding (Grootswagers et al., 

2017) per trial, we calculated 6 pairwise distances between EEG/ECoG amplitude 

fluctuations measured in a given test trial and mean vectors of EEG/ECoG amplitude 

fluctuations averaged for each of the 6 tone frequencies in the remaining trials. The 

Mahalanobis distances were computed using the shrinkage-estimator covariance 

obtained from all trials excluding the test trial (Ledoit and Wolf, 2004). This approach, 

combining Mahalanobis distance with Ledoit–Wolf shrinkage, has been previously shown 

to outperform other correlation-based methods of measuring dissimilarity between brain 
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states (Bobadilla-Suarez et al., 2019). Mahalanobis distance-based decoding has also 

been shown to be more reliable and less biased than linear classifiers and simple 

correlation-based metrics (Walther et al., 2016). 

The single-trial relative Mahalanobis distance estimates were then averaged across 

trials per tone frequency (for tone-evoked responses) or preceding tone frequency (for 

frozen noise burst-evoked responses), resulting in a 6 x 6 distance matrix for each 

analyzed time point. Overall decoding quality was quantified by comparing the estimated 

distance matrices with an “ideal decoding” distance matrix, with the lowest distance 

values along the diagonal and linearly increasing distance values along the off-diagonal. 

To obtain an easily interpretable measure of decoding quality, for each participant/animal 

and time point (from 50 ms before to 450 ms after tone/frozen noise burst onset), we 

normalized the observed and ideal decoding matrices by de-meaning and dividing the 

entire matrix by its maximum absolute value, and calculated the linear regression slope 

coefficient between the estimated distance matrix and the ideal distance matrix. Following 

data normalization, the resulting regression coefficients ranged between -1 (below-

chance decoding) and 1 (ideal decoding), and formed decoding time-series which 

effectively summarized, per time point, how well the observed decoding matrices 

approximate the ideal decoding matrix. These decoding time-series were then smoothed 

with a Gaussian smoothing kernel (s.d. = 16 ms; Wolff et al., 2019) and averaged across 

participants/animals. 

Furthermore, to quantify the comparison between decoding based on human EEG 

and rat EcoG, we performed a representational similarity analysis on the estimated 

distance matrices at six different time points (from 50 ms before to 450 ms after stimulus 
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onset, in 100 ms steps) for the tones and bursts. Specifically, for both human EEG and 

rat ECoG data, we calculated pairwise Pearson correlation coefficients (Walther et al., 

2016) between 12 distance matrices (obtained for tones and bursts, at 6 time points). This 

resulted in 12x12 distance correlation matrices which summarized how similar the 

multivariate decoding of tone frequency is across time points as well as between tone-

evoked and burst-evoked responses. 

To establish the null distribution for statistical testing, we used a permutation-based 

approach, such that in each permutation the single-trial relative distance metrics were 

randomly reassigned stimulus labels. The resulting reshuffled single-trial decoding 

estimates were averaged across trials to obtain surrogate distance matrices. These 

distance matrices were then normalized and subject to linear regression, smoothing over 

time, and averaging across participants/rats, as described above. This procedure was 

repeated 10,000 times to obtain a null distribution of decoding estimates for each time 

point. Per time point, p-values quantifying the significance of observing above-chance 

decoding were calculated by counting the proportion of surrogate decoding estimates 

exceeding the observed decoding estimate. Across time points, p values were corrected 

using a false-discovery-rate (FDR) approach at an FDR = 0.05 (Benjamini and Hochberg, 

1995). This procedure allowed for implementing exactly the same statistical procedures 

for both EEG and ECoG datasets. 
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Figure 2.2 Decoding Method. (A) Decoding methods were based on estimating multivariate Mahalanobis 

distance between EEG/ECoG feature amplitudes in a given (test) trial and average amplitudes calculated 

for all 6 frequencies features, respectively (excluding the test trial). The top panel presents EEG/ECoG 

feature amplitudes for two example features (empty circle, test trial; solid circles, ERPs calculated from the 

remaining trials; acoustic frequencies are color coded). Dashed lines on the top panel and bars on the 

bottom panel represent the multivariate distance between amplitudes observed in the test trial and the 

remaining trials. (B) Frequency-tuning matrices summarizing the population-level tuning curves, were 

obtained after averaging across trials, per frequency, resulting in a 6 × 6 similarity matrix between all tone 

frequencies (each row represents the distance of all test trials of a given frequency to the remaining trials 

sorted per frequency and is shown in columns). The observed frequency-tuning matrices (top, example 

from one participant) were regressed with the “ideal” tuning matrix (bottom), which consisted of the 

difference (in Hz) between pairs of tone frequencies. This regression coefficient provided a summary 

statistic that reflects decoding quality (i.e., how closely the relative dissimilarity between tone-evoked neural 

responses; “observed” in the figure) corresponds to the relative dissimilarity between tone frequencies 

(“ideal” in the figure). 

 

2.4 Results 

Behavioral Results 

Performance across all human subjects yielded an average 79% accuracy rate 

(SEM = 3.49%). A repeated measures analysis of variance (RM ANOVA) was conducted 

on the dependent variable accuracy, with within-subject factors of probe divisions, and 

with a random factor of participants. Another set of RM ANOVA was performed on the hit 
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rates with within-subject factors of ISIs. ISIs were categorized into 10 time windows for 

analysis, with the windows derived from equal range divisions between the smallest and 

largest ISI times. RM ANOVAs revealed no effect between ISI time windows and 

performance (p > 0.05), and a significant effect on task performance related to the 

distance of T2 frequency detuning relative to T1 (F(1,16) = 518.45, p < 0.001), with 

smaller detuning values resulting in more incorrect responses. These results indicate that 

the task was sufficiently difficult to keep subjects engaged and memory items reliably 

retained during trials. 

Univariate analysis: single-channel correlations with tone frequency  

Our univariate analysis compared the averaged ERPs per T1 frequency, as well as 

averaged ERPs for the frozen noise bursts that followed given T1 frequency values. Using 

the family-wise error (FWE) corrected univariate tests outlined in the methods we 

observed a significant effect of tone frequency on tone-evoked responses in both human 

(EEG) and rat (ECoG) datasets (Figure 2.3). In human EEG, a single cluster of amplitudes 

correlated with tone frequency, extending over bilateral anterior and right temporal 

channels and ranging between 113 and 260 ms after stimulus onset (p FWE = 0.021, 

Tmax = 3.27). Using a source localization procedure (see Methods), we inferred the most 

likely cortical sources contributing to these source-level effects, which were localized in 

the right superior temporal gyrus (MNI coordinates: [48 -6 -16]; cluster-level p FWE = 

0.007; Fmax = 21.01; Zmax = 3.93) and in the right middle/inferior frontal gyrus (MNI 

coordinates: [38 50 -2]; cluster-level p FWE = 0.022; Fmax = 10.84; Zmax = 2.87). 

Similarly, in rat ECoG, a single cluster of amplitudes with a broad spatial distribution and 

a temporal range of 63-160 ms post-onset was observed (p FWE = 0.012, Tmax = 7.21). 
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In contrast, frozen noise burst-evoked responses did not correlate with preceding tone 

frequency (human EEG and rat ECoG: all clusters p > 0.8), indicating that univariate 

analyses are not sufficient to decode frequency labels in either EEG or ECoG based on 

ERP amplitude of frozen noise burst-evoked responses. 

 

Figure 2.3 Univariate analyses. (AD) In Humans and Rats tones and frozen noise bursts evoked robust 

neural activity; different frequencies are represented as individual traces, from lowest frequencies (black 

traces) to highest frequencies (blue/red traces). Shaded areas denote SEM across subjects.  (BE) In 

Humans and Rats tone-evoked activity correlated with tone frequency (parametric contrast T values; 

highlighted clusters: pFDR<.05). However, no significant effects of tone frequency were observed in 

univariate analyses of frozen noise burst-evoked activity. (C) Source localization of the univariate effect of 

tone frequency on tone-evoked EEG responses. Significant sources of activity, whose activity was 

parametrically related to tone frequency, were identified in the right superior temporal gyrus (rSTG) and in 

the right middle/inferior frontal gyrus (rMFG/IFG). 

 

Multivariate analysis: decoding tone frequency from transient response patterns 

         Our multivariate analysis computed distance matrices for neural responses evoked 

by tones of different frequencies, or by neutral frozen noise bursts preceded by tones of 

given frequencies. These matrices were compared to an “ideal decoding” distance matrix 
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to quantify overall decoding quality. This analysis revealed that, similar to the univariate 

analysis, tone frequency was reflected in tone-evoked response amplitudes (Figure 2.4). 

In human EEG data, significant decoding (p FDR<0.05) was observed between 10 and 

450 ms relative to tone onset (all betas > 0.041, peak beta = 0.175; all p < 0.027), while 

in rat ECoG data, significant decoding was observed between -23 and 413 ms relative to 

tone onset (all betas > 0.041, peak beta = 0.709; all p < 0.033). Please note that each 

decoding estimate for a given time point is based on data pooled over a 100 ms time 

window centered around that time point; hence, the exact latency of decoding onsets 

should be treated with ±50 ms precision. Taken together, tone frequency could be 

robustly decoded from tone-evoked activity in both humans and rats. 

However, unlike in the univariate analysis, tone frequency was also reflected in 

subsequent frozen noise burst-evoked response amplitudes. Decoding of previously-

heard T1 frequency from frozen noise burst EPRs was present in both EEG and ECoG. 

Significant decoding in EEG occured in our analysis between 247 and 343 ms relative to 

frozen noise burst onset (all betas > 0.036, peak beta = 0.070; all p < 0.027, FDR-

corrected). In ECoG data, significant decoding was present in three time windows (early 

cluster: 13-160 ms post-frozen noise burst, all betas > 0.071, peak beta = 0.192; middle 

cluster: 226-303 ms post-frozen noise burst, all betas > 0.075, peak beta = 0.110; late 

cluster: 343-400 ms post-frozen noise burst, all betas > 0.062, peak beta = 0.118; all p < 

0.033, FDR-corrected). Given the relatively low number of rats, we inspected individual 

rats’ decoding peaks to exclude the possibility that the three significant clusters result 

from individual differences in peak latencies across rats. For each of the identified 

clusters, the majority of individual rats had at least one decoding peak within a given 
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cluster (cluster 1: 4/5 rats; cluster 2: 4/5 rats; cluster 3: 3/5 rats). Thus, in both species, 

the neural response elicited by the auditory frozen noise burst contained statistically 

significant information about the previously-heard stimuli retained in the sensory memory 

hold.  

We have further quantified the similarity in decoding matrices obtained for tone-

evoked and burst-evoked responses (Figure 2.4CF) in a representational similarity 

analysis (Kriegeskorte et al., 2008). This has revealed that the decoding correlation 

patterns were qualitatively similar across both species - i.e., significant correlations were 

observed in both species, both across time points within tone-evoked and burst-evoked 

responses, as well as between tone-evoked and burst-evoked responses. However, the 

decoding matrices based on rat ECoG data were relatively more similar across time 

points and between tone-evoked and burst-evoked responses than the decoding matrices 

based on human EEG data. Specifically, the decoding matrices based on rat ECoG data 

were highly correlated across all post-stimulus time points for both tone-evoked 

responses (all pairwise rho > 0.9, all p < 0.001; 50-450 ms after tone onset) and burst-

evoked responses (all pairwise rho > 0.6, all p < 0.001; 50-350 ms after burst onset), as 

well as between tone-evoked and burst-evoked responses (all pairwise rho > 0.7, all p < 

0.001; between 50-450 ms after tone onset and 50-350 ms after burst onset). In contrast, 

the decoding matrices based on tone-evoked human EEG responses were only highly 

correlated across neighboring time points (rho = 0.959, p < 0.001 for 50/150 ms after tone 

onset; rho = 0.913, p < 0.001 for 250/350 ms after tone onset) and, to a smaller extent, 

across more distant time points (all remaining pairwise rho > 0.396, p < 0.018). However, 

they were less consistently correlated across time points for burst-evoked responses 
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(maximum rho = 0.5828, p < 0.001), and between tone-evoked and burst-evoked 

responses (maximum rho = 0.7820, p < 0.001).  

In a control analysis, to ensure that frequency decoding based on noise burst-

evoked responses is not driven by trials presented at short ISIs (and possibly 

contaminated by the neural response evoked by the preceding tone), we entered the 

single-trial epoched data into a linear regression and, per channel and time point, 

calculated the residual after regressing out the ISI preceding the noise burst onset from 

single-trial amplitude values. These residuals were then used to obtain decoding 

estimates for both human EEG and rat ECoG data, as described above. In both cases, 

the decoding results were virtually identical as in the original analysis, with all previously 

reported clusters of significant decoding also showing statistical significance in the control 

analysis, and no additional clusters appearing in the control analysis. Therefore, it is 

unlikely that trial-by-trial differences in ISI between tone and noise burst could have 

contributed to the decoding results reported above. 

Figure 2.4 Multivariate analyses. (AD) In Humans and Rats, tone frequency could be decoded from both 

tone-evoked (blue) and frozen noise burst-evoked activity (red). Red/Blue shaded areas: SEMs across 
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subjects. Grey shaded areas: 95% confidence intervals of the null distribution of decoding time-series, 

reflecting the range of values for which decoding could have been observed by chance. Horizontal bars: 

pFDR<.05. Individual markers in (D) represent individual rats’ decoding peaks. (BE) Relative Mahalanobis 

distance matrices per time point, forming the basis for decoding (beta coefficients) in (AD). (CF) Pairwise 

similarity (Pearson correlation coefficients) of the Mahalanobis distance matrices. Saturated colors mark p 

< 0.05.  

  

2.5 Discussion          
         As established in previous research, the neural response to a sensory frozen noise 

burst contains information about the contents of WM held in the activity-silent period 

(Wolff et al., 2019, 2015). We elaborated on these findings by designing a task that does 

not require active retention and uses smaller time intervals to place stimuli in the range 

of lower-level auditory sensory memory, applying this technique in a cross-species 

approach. We demonstrate that stimulus feature can be decoded from the evoked 

response to stimuli events using a univariate analysis, where ERP amplitude modulates 

parametrically with stimulus value in both anesthetized rat and awake human subjects, 

consistent with existing research conducted in awake humans (Auksztulewicz et al., 2019; 

Wolff et al., 2015). It is worth noting that the significant decodability that is visible in the 

baseline of our stimulus decoding (Figure 2.4) can be attributed to the length of the sliding 

time window in decoding based on spatiotemporal patterns of transient responses. Our 

use of smaller intervals between frequencies in human trials (six tones, one semitone 

apart) further demonstrates that this technique is robust enough to decode more subtle 

differences in auditory stimuli than demonstrated in previous literature (Wolff et al., 2019), 

and comparable results in anesthetized rats under passive stimuli exposure serve as a 

counterpoint to a WM interpretation of behavioral paradigms employing active tasks while 

operating within the ASM temporal range.  
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In our human EEG data, the observed univariate relationship between ERP 

amplitude and tone frequency could be source-localized to the right higher-order auditory 

cortex (superior temporal gyrus) and frontal regions (middle/inferior frontal gyrus). These 

findings are consistent with the right-lateralisation of spectral (vs. temporal) auditory 

processing in the superior temporal gyrus (Britton et al., 2009; Poeppel, 2003; 

Schönwiesner et al., 2005) and with the parametric encoding of tone frequency in the 

right frontal cortex during memory tasks (Spitzer and Blankenburg, 2012). Importantly, 

the fact that sensor-level EEG effects of tone frequency could also be source-localized to 

auditory regions (in addition to frontal regions) make the human EEG results more 

comparable to the rat ECoG data, which were based on signals recorded only over 

auditory regions.  

In addition to decoding a stimulus feature from the neural response to stimulus 

events, we also demonstrate that equivalent paradigms can be used to decode stimulus 

feature from neural responses to uncorrelated auditory frozen noise bursts (2019; Wolff 

et al., 2020, 2015). Interestingly, no relationship was found between EEG/ECoG response 

amplitudes to stimulus events and frozen noise bursts of the same preceding tone feature 

in univariate analysis, illustrating the need for multivariate decoding methods. The results 

of our multivariate EEG decoding show significant bursts later in the time course (400-

500 ms) than found in similar research (Wolff et al., 2019), suggesting that periods of 

decodability may be task-dependent. Our study employed a significantly more narrow 

range of token values than previously attempted, possibly testing the limits of this 

particular decoding method in the context of silent-state neural encoding of memory 

tokens. Although the longer latency of frequency decoding from noise bursts was 
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surprising, both noise-evoked and tone-evoked ERPs (Figure 2.3C) were typical, showing 

comparable latencies and peaks, with tone-evoked decoding (Figure 2.4D) also 

appearing at the expected latency. Additionally, late reactivation of latent WM traces have 

also been shown by some earlier studies (Wolff et al., 2015) and may be better 

understood in the context of template matching, with late reactivation required for 

comparison in the EEG task (Myers et al., 2015; Wolff et al., 2015)  

Traditionally, neural correlates of ASM in humans have been investigated in oddball 

paradigms yielding mismatch negativity (MMN) responses (Winkler et al., 1993). MMN 

responses to deviant stimuli during passive auditory oddball paradigms can also be 

observed in the absence of consciousness, e.g. in some comatose patients (Morlet and 

Fischer, 2014). Interestingly, previous MMN studies also fall in line with silent-coding 

theories, as MMN responses have been postulated to result from deviant stimuli in 

comparison to an existing ASM trace (Näätänen et al., 2005). Delayed match to sample 

(DMTS) tasks have also been considered a reliable method of investigating both sensory 

and WM (Daniel et al., 2016), and classical studies have employed DMTS paradigms to 

establish psychometric functions of ASM retention and decay periods (Nees, 2016). In 

addition to their usefulness in behavioral studies, DMTS paradigms have been employed 

in modern human WM research (Myers et al., 2015; Wolff et al., 2019, 2015) to investigate 

neural components of sensory and WM traces. Interestingly, despite the use of rats in 

auditory research, many of which use similar DMTS tasks with jittered time intervals, there 

is sparse literature on ASM periods in the rat (O’Connor and Ison, 1991).  

In this study, we sought to fill several gaps in the existing literature by employing an 

ASM task to investigate neural correlates of ASM across species using contemporary 
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decoding methods. In the broader scope of sensory memory research, our work employs 

a useful new tool in observing and analyzing neural phenomena. Existing tools, such as 

MMN and stimulus specific adaptation (SSA) access this information indirectly by 

assessing the modulation of a neural response to a particular repeated stimulus (Carbajal 

and Malmierca, 2018). As demonstrated in previous studies (Costa-Faidella et al., 2011), 

repetition effects can be observed in time intervals coinciding with windows typical of both 

ASM and SSA, making such findings somewhat ambiguous given the presence of 

adaptation effects across multiple timescales in the auditory system. Similarly, multiple 

time scales of adaptation corresponding to stimulus duration have been observed in 

single-unit cortical recordings in anesthetized cats (Ulanovsky et al., 2004), and recent 

work has demonstrated topographically-organized tone selectivity in SSA across multi-

unit cortical recordings in the anesthetized rat  (Nieto-Diego and Malmierca, 2016). Taken 

together, this may provide a possible explanation for our observed decodability using a 

multivariate approach, and the lack thereof using a univariate approach, as the recording 

methods employed in our study measure much larger neural populations than those 

possibly responsible for underlying SSA selectivity, and as a result lack the sensitivity to 

measure the more fine-grained patterns of tone selectivity accessible in single-unit 

recordings (Natan et al., 2017; Nieto-Diego and Malmierca, 2016; Ulanovsky et al., 2004). 

As such, our decoding approach may provide an invaluable tool in assessing this 

phenomenon, that is applicable to both invasive recordings in animal models and non-

invasive human models. 

Our cross-species approach is, to the authors’ knowledge, the first attempt at 

decoding auditory memory traces in different species using the same analysis method 
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and comparable stimuli. While the decoding matrices obtained from rat ECoG data were 

more strongly correlated across time points and between tone-evoked and burst-evoked 

responses (Figure 2.4CF), qualitatively similar correlation patterns were observed for 

decoding matrices obtained from human EEG data. Taken together, these findings 

suggest that the neural encoding of sensory memories is a general mechanism that has 

been evolutionarily maintained across species - a prospect that is also supported by 

previous MMN research using rat models. One such study observed a mismatch 

response from epidural potentials in anesthetized rats when presented with deviant tones 

in an oddball paradigm (Astikainen et al., 2011). Additional studies have yielded similar 

findings in awake and anesthetized rats using similar methods (Nakamura et al., 2011). 

As the ability for an organism to quickly differentiate between acoustic changes in its 

environment offers a potential benefit to its survival, such findings support the notion of 

ASM as an evolutionarily-conserved adaptive trait. Our findings, paired with those 

previously mentioned and the limited behavioral studies available on rat ASM, further 

suggest the suitability of the rat in establishing animal models for research in central 

auditory processing. 

In contrast to previous auditory studies requiring human participants to attend to a 

memory item (Wolff et al., 2019), our results demonstrate that active maintenance is not 

required for this approach to work, placing our findings in the purview of existing human 

ASM research relying on MMN responses, which have been shown to be conserved 

across conscious states (Morlet and Fischer, 2014; Winkler et al., 1993). Of significance 

to the field, our findings suggest that animal models may provide an acceptable proxy for 

human sensory memory research, offering the benefit of significant decodability and 
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higher signal-to-noise ratios from electrocorticography not feasible in human subjects, 

with implications for research across conscious states. Future studies could capitalize on 

our findings, possibly applying these methods to asleep or unconscious humans and 

awake rats. Given the key differences between ASM and WM (e.g. ASM as an automatic 

process that is present across attentive states and shorter time scales than the higher-

level WM system), future studies could also apply our approaches to paradigms that 

manipulate WM contents or investigate their efficacy in WM retention intervals. While at 

shorter time windows, such as those employed in our study, ASM and SSA are partially 

overlapping (Costa-Faidella et al., 2011), future research should also seek to establish if 

the observed effects differ between active memory processes and passive adaptation. 

Furthermore, applying the decoding methods to additional research in anesthetized rats 

would also prove a logical extension, as areas such as longer time scales for retention or 

manipulation of passively maintained memory items remain largely unexplored in this 

context.  
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Chapter 3. Simultaneous Mnemonic and Predictive Representations in the Auditory 

Cortex 

 

3.1 Summary 

         Recent studies have shown that stimulus history can be decoded via the use of 

broadband sensory impulses to reactivate mnemonic representations (Cappotto et al., 

2021, Stokes, 2015; Wolff et al., 2019, 2015). However, memory of previous stimuli can 

also be used to form sensory predictions about upcoming stimuli (Barron et al., 2020; 

Rust and Palmer, 2021). Predictive mechanisms allow the brain to create a probable 

model of the outside world, which can be updated when errors are detected between the 

model predictions and external inputs (Fairhall et al., 2001; Friston et al., 2006; Rubin et 

al., 2016; Schröger et al., 2014). Direct recordings in the auditory cortex of awake mice 

established neural mechanisms for how encoding mechanisms might handle working 

memory and predictive processes without “overwriting” recent sensory events in 

instances where predictive mechanisms are triggered by oddballs within a sequence 

(Libby and Buschman, 2021). However, it remains unclear whether mnemonic and 

predictive information can be decoded from cortical activity simultaneously during 

passive, implicit sequence processing, even in anesthetized models. Here, we recorded 

neural activity elicited by repeated stimulus sequences using electrocorticography 

(ECoG) in the auditory cortex of anesthetized rats, where events within the sequence 

(referred to henceforth as “vowels”, for simplicity) were occasionally replaced with a 

broadband noise burst or omitted entirely. We show that both stimulus history and 

predicted stimuli can be decoded from neural responses to broadband impulses, at 
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overlapping latencies, but based on independent and uncorrelated data features. We also 

demonstrate that predictive representations are dynamically updated over the course of 

stimulation. 

 

3.2 Results 

In the present experiment, we adapt recent techniques for decoding auditory 

working memory traces (Cappotto et al., 2021; Wolff et al., 2019, 2015) to simultaneously 

probe both memory and predictive processes. ECoG was recorded from the auditory 

cortex (AC; Figure S3.1A) of anesthetized rats (N=8) while repeated stimulus streams of 

vowels were presented, with vowels occasionally omitted or replaced with a broadband 

noise burst (Figure 3.1A). Two types of blocks were employed. In “predictable” blocks, 

vowels were grouped into one of six triplets (AAO, AOO, AAI, AII, OOI, OII) with each 

triplet presented at least 25 times in a given block of identical triplets before being 

replaced with another triplet (see STAR Methods). In control blocks, we presented the 

vowels in a pseudo-randomized order while keeping the position of bursts and omissions 

fixed (relative to their corresponding predictable block), to tap into mnemonic processing 

without predictive components (Figure 3.1B). In both types of blocks, 5% of vowels were 

replaced with omissions and 5% with bursts. 
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Figure 3.1 Stimulus sequences. (A) An example of an AOO predictable stimulus sequence, where one 

vowel of the triplet has been randomly substituted by a noise burst (or, not shown, alternately omitted 

entirely) following a minimum of three triplet repetitions. In paired random blocks, the relative position of the 

burst/omission substitution remains unchanged, while the surrounding vowels are randomized. Vowel 

positions relative to the burst/omission are denoted as N-1, N-2, and N-3. (B) Segment of an example 

predictable sequence, in which vowel tokens are omitted or replaced with a noise burst after 3 repetitions 

(top) and the randomized version of that sequence where vowel tokens from the full sequence are 

presented pseudo-randomly while burst and omission tokens remained in the same relative positions 

(bottom).  

 

3.2.2 Univariate analyses: only vowel-evoked activity differentiates between vowels 

         To test whether vowel identity influences average neural activity, we tested for the 

effects of vowel (A, I, or O) and block (predictable vs. random) on vowel-evoked ECoG 

activity (event-related potentials). We observed that vowel-evoked activity differentiates 

between the three vowels, both in predictable blocks (Figure S3.2A; 13-260 ms; Fmax = 

58.56; pFWE < 0.001) and in random blocks (Figure S3.2B; 13-207 ms; Fmax = 58.21; pFWE 

< 0.001). The main effect of block (predictable vs. random) on vowel-evoked activity was 

not significant (all pFWE > 0.05). 

We then tested whether burst-evoked and/or omission-evoked activity also 

differentiates between the (preceding) vowels at different “positions” in the sequence, 



 
46 

 

relative to the burst/omission (N-1 position: the immediately preceding vowel, N-2 

position: two stimuli before the burst/omission, N-3 position: three stimuli before the 

burst/omission). This analysis revealed that, similarly to the vowel-evoked responses, 

burst-evoked responses did not significantly differentiate between predictable and 

random blocks (Figure S3.2C; all pFWE > 0.05). However, unlike the vowel-evoked activity 

(which was modulated by vowel identity), noise burst-evoked activity was not significantly 

modulated by (preceding) vowel identity when neural activity was analyzed in a mass-

univariate manner. Specifically, neither the effect of the immediately preceding vowel on 

burst responses (N-1: all pFWE > 0.05; Figure S3.2D), nor of the previous vowels (N-2, N-

3: all pFWE > 0.05) were significant. 

         Omission-evoked responses peaked relatively early (83-93 ms), with a rising 

activity visible already prior to expected stimulus onset, possibly marking the offset 

response to the interrupted stimulus train rather than a true omission (Chien et al., 2019). 

Nevertheless, just like burst-evoked activity, omission-related activity was also not 

significantly modulated by block type (Figure S3.2E; all pFWE > 0.05) or preceding vowel 

identity (Figure S3.2F; N-1, N-2, N-3: all pFWE > 0.05). 

3.2.3 Multivariate analysis: specific decoding boost for predictable vowels 

         Although in the univariate analysis burst-evoked activity did not differentiate 

between preceding vowels, based on our previous study (Cappotto, et al., 2021) we 

hypothesized that preceding stimuli can be decoded in a multivariate analysis. 

Specifically, by analyzing the spatiotemporal pattern of activity evoked by noise bursts, 

which did not carry overt information about the preceding vowels given that noise tokens 
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were always identical and presented after vowel-evoked responses had returned to 

baseline (400 ms after stimulus offset), we sought to determine if activity evoked by noise 

bursts contained information about the preceding vowels (separately for N-1, N-2, and N-

3 vowels). This analysis revealed significant decoding of vowels up to N-3 in predictable 

blocks and up to N-2 in random blocks (Figure 3.2A; Table S3.1). Overall, immediately 

preceding stimuli could be decoded better than previous stimuli (Table S3.2), but not as 

well as currently processed stimuli (Table S3.3). 

Crucially, if burst-evoked activity can reactivate not only mnemonic 

representations (irrespective of the currently processed stimulus), but also predictive 

representations (tokens which would have been predicted but are replaced by a noise 

burst), we would expect a specific decoding improvement for N-3 (but not N-2 or N-1) 

vowels presented in predictable blocks vs. random blocks. The decoding results were 

consistent with this hypothesis. Specifically, decoding was significantly improved for the 

N-3 vowels presented in predictable blocks relative to the random blocks (paired t-test, 

early cluster: 77-103 ms, tmax = 3.45, cluster-level pFWE = 0.010; late cluster: 227-270 ms, 

tmax = 3.79, cluster-level pFWE < 0.001; Figure 3.2A), suggesting that we could access a 

predictive representation of the vowel replaced by a noise burst. In a follow-up analysis 

using representational dissimilarity matrices, we found that this predictive representation 

contained information not only about the specific N-3 vowel replaced by the burst, but 

also about the entire triplet preceding the burst (Figure S3). 

While mnemonic and predictive representations cou3.ld be decoded based on 

burst-evoked activity, decoding stimulus history based on omission-evoked activity did 

not yield any significant results (Figure 3.2B; all pFWE > 0.05). This suggests that, at least 
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in this experimental protocol (vowel triplets) and in ECoG recorded under anesthesia, a 

stronger activation of the network (e.g., burst presentation) is necessary to make 

mnemonic and/or predictive representations observable. 

 

 

Figure 3.2 Multivariate analyses. (A) Time courses of decoding of preceding vowels based on burst-evoked 

activity. Left / middle / right panel: decoding N-1 / N-2 / N-3 vowel (blue: predictable blocks; red: random 

blocks; shaded area: SEM across recording sessions; blue/red horizontal line: decoding in 

predictable/random blocks significantly different from zero, pFWE < 0.05; black horizontal line: decoding 

significantly different between predictable and random blocks, pFWE < 0.05). Shaded area: SEM across 

recording sessions. See also Tables S1-S3. (B) Decoding based on omission responses. Legend as above. 

   

3.2.4 Multivariate analysis: decoding of predicted vowels gradually improves over time 

         Having established that decoding of the predicted vowel (N-3) shows a specific 

improvement in predictable vs. random blocks, we sought to determine whether this boost 

shows features of a predictive representation. We reasoned that, in predictable blocks, 
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predictions should be learned over time, and consequently the decoding of the N-3 vowel 

should gradually improve within and across blocks containing identical triplets (Figure 

3.3AE). To test this, we performed a linear regression analysis on single-trial decoding 

estimates, using two “learning” regressors - one quantifying possible gradual 

improvements of decoding within each sequence containing identical triplets (within 

blocks), and one quantifying possible gradual improvements of decoding over the course 

of the entire recording session (across blocks). We treated the random blocks as a control 

for passage of time (including gradual suppression of activity due to habituation, short-

term plasticity to repeated presentations of stimuli, and changes in stimulus-related and 

baseline activity due to prolonged anesthesia) since no learning was expected in this 

condition. This analysis revealed that, for the early time window in which we observed a 

decoding boost in the predictable vs. random condition (77-103 ms), the “within blocks” 

learning effect was significantly higher in the predictable than in random blocks (Wilcoxon 

sign rank test, Z21 = 2.485, p = 0.013; Figure 3.3BCD), although significance testing of 

regression coefficients within conditions against zero did not yield significant effects 

(predictable: Z21 = 1.477, p = 0.139; random: Z21 = -1.825, p = 0.068). No significant 

learning effects across blocks were observed for the early time window (all p > 0.5). 

Conversely, for the later time window in which we observed a decoding boost (227-270 

ms), the “across blocks” learning effect (Figure 3.3FGH) showed borderline significance 

in the predictable condition against zero (Z21 = 2.033, p = 0.042; uncorrected) but not in 

the random condition (Z21 = 0.122, p = 0.903), although a direct comparison of learning 

coefficients between conditions did not yield a significant effect (Z21 = 1.303, p = 0.192). 

The “within blocks” learning effect did not yield any significant effects in the later time 
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window (all p > 0.5). An additional analysis of N-2 and N-1 stimuli decoding revealed 

neither significant learning at either time scale, nor a significant difference in learning 

coefficients between predictable and random blocks (all p > 0.1). Taken together, these 

results provide evidence that the early N-3 decoding in predictable blocks improves at 

faster time scales (within blocks) relative to random blocks, but the evidence for any 

decoding improvement at longer time scales (across blocks) is weak. 

  

Figure 3.3 Learning effects. (A) A trial-by-trial regressor of learning within blocks (faster time scale) was 

quantified as the (log) burst number in a block of identical triplets. (B) Regression coefficients (“within 

blocks” learning) for two time windows with significant N-3 decoding boost (see Figure 3.2A, right). Error 

bars denote SEM across recording sessions. Asterisk denotes a significant Wilcoxon sign rank test. (C) 
Normalized decoding per trial within a block of identical triplets: early time window. Error bars denote SEM 

across recording sessions. (D) Normalized decoding per trial within a block of identical triplets: late time 

window. (E) A trial-by-trial regressor of learning across blocks (slower time scale) was quantified as the 

block number in a recording session, binned into six bins. (F, G, H) Learning effects across blocks, figure 

legend as in (B, C, D). 
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3.2.5 Multivariate analysis: predictive and mnemonic representations rely on uncorrelated 

data features 

         While the decoding boost observed for the N-3 vowel in predictable blocks, and its 

gradual improvement over time, bear the hallmarks of a predictive representation, we 

have also accessed mnemonic representations by decoding previous vowels (N-1 and N-

2) in random blocks. To test whether the decoding of predictive and mnemonic 

representations rely on the same data features, we performed three further analyses. 

First, we repeated decoding using a searchlight, where each decoding estimate was 

based on a subset of channels. While no significant N-3 decoding was found in random 

blocks based on all channels and correcting for multiple comparisons across time points, 

a searchlight could in principle uncover channels more sensitive to N-3 vowel identity. We 

then correlated the spatial maps of decoding estimates between the predictable and 

random blocks. We reasoned that if predictive and mnemonic representations rely on 

similar data features, the N-3 maps should be correlated across blocks. This analysis 

revealed significant correlations between spatial decoding maps in predictable and 

random blocks only for the N-1 vowel (Figure 3.4A; 33-70 ms; tmax = 5.72; cluster-level 

pFWE < 0.001), but not for the earlier vowels (N-2, N-3: all pFWE > 0.05). Specifically, while 

for the N-1 vowel the spatial maps of decoding obtained in predictable and random blocks 

were similar (t-test Bayes Factor: 865.33, indicating extremely strong evidence for a 

correlation) and showed the strongest contribution of the anterior/inferior channels, for 

the N-3 vowel they were more orthogonal (t-test Bayes Factor: 0.2569, indicating 

moderate evidence against correlation; cf. N-2: Bayes Factor 0.3558), showing an 

inferior-superior gradient in predictable blocks and an anterior-posterior gradient in 
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random blocks (Figure 3.4BC). This contrasted with correlations between decoding maps 

obtained for odd vs. even trials, which were significant for each vowel position (N-1: rmax 

= 0.27; N-2: rmax = 0.13; N-3: rmax = 0.11; all significant at pFWE < 0.05 correcting across 

time points). While the latter correlation coefficients were moderate to low, likely due to a 

decreased signal-to-noise ratio as a result of splitting the dataset in half, this finding 

suggests that N-3 decoding maps are relatively stable across trials (odd vs. even) but 

uncorrelated across conditions (predictable vs. random). 

Second, we repeated the decoding of vowels in each position, this time training on 

trials drawn from one type of blocks (e.g., random) and testing on trials from the other 

type of blocks (e.g., predictable). This analysis (Figure S3.4A) revealed that only N-1 

decoding generalized across block types (train on random, test on predictable: Tmax = 

12.92, pFWE < 0.001; train on predictable, test on random: Tmax = 13.39, pFWE < 0.001), 

with no differences observed between blocks (all paired t-test pFWE > 0.05). Conversely, 

for N-2 and N-3 decoding, no significant cross-block decoding was observed in either 

direction (all pFWE > 0.05). 

Third, we performed a cross-temporal generalization analysis (Figure 3.4DE), 

training on one vowel position (e.g., N-1) and testing on another (e.g., N-3). This analysis 

revealed that while decoding generalizes across time points within each vowel position 

(e.g., training on neural activity 100 ms and testing on 150 ms after vowel onset; cf. 

Cappotto et al., 2021), it does not generalize across vowel positions (e.g., training on N-

1 and testing on N-3), except for a temporally limited interference effect between N-1 and 

N-2 vowels (Table S4). 



 
53 

 

These results suggest that the decoding boost observed for N-3 vowels in 

predictable blocks (reflecting a predictive representation) relies on data features that are 

specific to these blocks, and are not generalizable to the random blocks or to other 

vowels. 

 

Figure 3.4 Spatial topography of predictive and mnemonic representations. (A) Time courses of correlation 

coefficients between decoding topographies in predictable vs. random blocks.  Left / middle / right panel: 

decoding N-1 / N-2 / N-3 vowel (shaded area: SEM across recording sessions; black horizontal line: 

correlation coefficients significantly different from zero, pFWE < 0.05). (B) Decoding topographies based on 

the 0-100 ms decoding time window, predictable blocks. Left / middle / right panel: decoding N-1 / N-2 / N-

3 vowel. (C) Decoding topographies based on the 0-100 ms decoding time window, random blocks. Figure 

legend as in (B). (D) Cross-temporal generalization averaged across conditions (predictable + random). 

Rows: test data; columns: remaining data used for estimating decoding matrices. Each panel shows a 

cross-temporal decoding matrix with each time point representing decoding based on the Mahalanobis 
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distance between a particular vowel position (N-1, N-2, N-3) and latency of neural activity and another 

vowel position and latency of neural activity. Unmasked areas represent significant cross-temporal 

decoding generalization at pFWE < 0.05, cluster-level corrected. Only one (symmetric) side of the diagonal 

is plotted. (E) Cross-temporal generalization: differences between conditions (predictable vs. random). 

Figure legend as in (D). See also Figure S3.4A and Table S3.4. 

 

3.3 Discussion 

         In the present study, we demonstrated that stimulus history (sensory memory 

traces of token values up to N-3) can be decoded from neural responses to broadband 

noise bursts in both repeated triplet and randomized blocks, expanding on previous 

research (Cappotto et al., 2021; Wolff et al., 2019, 2015). Crucially, we also provide 

evidence for the decoding of predictive mechanisms by linking increased N-3 decodability 

to predictable blocks, further established through the presence of learning effects as the 

number of triplet pattern repeats increases. This demonstrates that neural responses to 

noise bursts tap into predictive mechanisms, establishing a novel method for decoding 

both phenomena simultaneously and independent of attentional tasks. Our results 

suggest that mnemonic and predictive decoding rely on largely uncorrelated data features 

- specifically, decoding N-3 stimuli in predictable blocks cannot be generalized to 

decoding other stimuli in the same blocks, or to the data features present in random 

blocks. 

Previous work has established the use of broadband noise impulses in decoding 

sensory memory tokens (Wolff et al., 2019, 2015) mediated by mechanisms that function 

under anesthesia in animal models (Cappotto et al., 2021). Here, we expand on these 

findings by decoding further stimulus history, showing that it is possible to decode 
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memory representations of both sequences and individual tokens up to N-3. We also 

expand on another recent study (Luo et al., 2021) showing that sequence contents can 

be preferentially decoded from auditory cortical activity in rat models, but that this 

decoding benefit is only observed for rats with prior training. Similarly, previous work in 

the visual system of awake mice found that prior training elicits predictive representations 

that can be decoded (Gavornik and Bear, 2014). Unlike these studies, which used several 

interleaved sequences in a continuous stream during prior exposure blocks, we used a 

protocol in which a sequence (triplet) was repeated and then replaced, without prior 

training. This suggests that for such repetitive sequences, decoding can be achieved in 

naive and anesthetized rats. In contrast to the previous study (Gavornik and Bear, 2014), 

our results did not reveal any significant decoding on the omission responses. One 

possible explanation is that, in anesthetized brains which had not undergone prior 

training, predictive representations require a stronger activation (e.g., broadband noise 

bursts) to become observable than would be the case for awake brains of trained 

participants. In both the present and previous studies (Cappotto, et al. 2021), we have 

demonstrated that univariate analysis was not sufficient to decode memory tokens and 

multivariate methods provided significant decoding. 

The present literature on animal models of predictive processing is largely within 

the context of stimulus-specific adaptation (SSA), making it difficult to separate predictive 

from adaptive mechanisms. Our findings in the AC are not likely to be explained by a 

simple SSA explanation, given that we observed the decodability of randomly substituted 

tokens within repeated sequences as well as within non-repeating triplets. If adaptation 

were responsible for decodability, this effect would be unlikely to increase with overall 
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triplet repetition, as pattern sensitivity and resulting deviance detection has been shown 

to rely on hierarchical and contextual error detection (Casado-Román et al., 2020). Our 

results, suggesting that decoding N-3 tone identity and triplet identity may occur at 

different latencies (Figure S3.3), are also consistent with the latter hypothesis, as they 

suggest that predictive processing of single elements might be more short-lived than the 

encoding of entire sequences. 

Importantly, by contrasting responses to noise bursts in predictable vs. random 

sequences, we tapped into both predictive and mnemonic representations. This goes 

beyond recent findings in humans showing that predictive neural activity can be explained 

by memory of past stimuli, but which could not access mnemonic representations 

independently of predictive processing (Baumgarten et al., 2021). Interestingly, a recent 

study on auditory associative learning in awake mice showed that neural activity evoked 

by a predicted stimulus contains information both about its most likely predictor and its 

actual past, but that this information relies on orthogonal neural codes, suggesting that 

mnemonic and predictive representations coexist within sensory cortices (Libby and 

Buschman, 2021). Although our paradigm did not test for this explicitly, our observation 

of uncorrelated data features enabling decoding in predictable vs. random blocks, and a 

lack of decoding generalization across blocks and across vowels (N-1 vs. N-3), suggests 

that such mechanisms are not dependent on active processes, and they can also be 

observed indirectly over broad neural populations. It is important to note that the spatial 

resolution of ECoG makes it difficult to identify discrete neural populations due to changes 

in spatio-temporal representation, and finer recording techniques with single cell 

resolution would be required to accurately discern if mnemonic and predictive 
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representations decoded in our paradigm rely on unique neural populations or are 

multiplexed within the same population. 

Importantly, we also establish that the decodability of predictable N-3 tokens 

gradually increases with repeated triplet presentations (relative to random blocks), 

implicating passive learning effects as a measure of predictive mechanisms. Recent 

studies have successfully paired concepts of statistical learning and predictive coding by 

investigating neural correlates of melodic expectation to naturalistic music, observing that 

neural responses to less statistically-likely notes elicit markers consistent with their level 

of statistical (Di Liberto et al., 2020). Human fMRI studies in the visual domain have further 

established the role of temporal regularity in sequence learning and their resultant effects 

on the decodability of predictable (Luft et al., 2015). However, studies employing animal 

models and different attention states to investigate predictive mechanisms have been 

lacking (Heilbron and Chait, 2018). Although further investigations would be required to 

clearly verify the role of learning effects at multiple time scales, our results provide an 

indication of prediction formation at a relatively fast time scale (prediction updating 

following a presentation of a new triplet). 

While it is intrinsically interesting that anesthesia did not abolish the emergence of 

predictive representations in our study, one must acknowledge that this raises questions 

about the extent to which our results are representative of neural functions in a normal, 

awake state. Different types of anesthetic agents (e.g., ketamine, equithesin, 

pentobarbital) have been shown to affect various  features of neuronal activity, such as 

spontaneous rate, response threshold, or oscillations, in the auditory cortex to a greater 

or lesser extent (Cheung et al., 2001; Gaese and Ostwald, 2001; Zurita et al., 1994). 
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However, experiments under anesthesia are still considered an efficient and useful tool 

in identifying neural mechanisms when carefully controlled. We selected urethane as our 

main agent for controlling the anesthesia, as it has been widely used for memory-related 

studies as an agent with minimal effect on spectral tuning, neural discriminability, and 

information processing (e.g. Astikainen et al., 2011; Capsius and Leppelsack, 1996; 

Ruusuvirta et al., 1998; Schumacher et al., 2011). Importantly, a comparable hierarchical 

gradient across subcortical and cortical regions observed for prediction error signaling 

between urethane-anesthetized and awake rodents (Parras et al., 2017) supports the 

notion of preserved predictive processing even under anesthesia. 

In summary, the present study observed concurrent mnemonic and predictable 

representations under anesthesia, indicating mechanisms at work in passive preparations 

and thus providing a new model for investigating simultaneous memory and predictive 

mechanisms independent of attentional state. 
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3.4 STAR Methods 

3.4.1 Key Resources 

Resource Source Identifier 

Experimental models: Organisms/strains 

Adult female Wistar rats Chinese University of Hong 

Kong 

RGD_13525002 

Software and algorithms 

MATLAB Mathworks SCR_001622 

Python Python SCR_008394 

SPM12 University College London SCR_007037 

Deposited data 

Code and Processed Data Zenodo https://doi.org/10.5281/zen

odo.6407267 

  

3.4.2 Experimental Model and Subject Details 

Subjects 

Eight young adult female Wistar rats, acquired from the Chinese University of Hong 

Kong, were used in the experiment. The rats were “naive”, i.e. had no experience or 
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training with the stimulus sets prior to recording, were aged between 8 and 13 weeks 

(median age = 10.5 weeks), and weighed between 216 and 289 g (median weight = 238 

g). Normal hearing was ascertained by measuring auditory brainstem response at 

thresholds < 20 dB sound pressure level (SPL) to broadband click trains. 

Anesthesia and Surgical Procedures 

Anesthesia was induced with an intraperitoneal (i.p.) injection of ketamine (80 

mg/kg) and xylazine (12 mg/kg), and maintained throughout the experiment via 20% 

urethane injections. A first dose of 0.25 ml/kg of the urethane solution was administered 

one hour after the induction with ketamine and xylazine, and further 0.25 ml/kg doses 

were delivered as required, based on periodic assessments of anesthesia depth via the 

toe pinch withdrawal reflex. Dexamethasone (0.2 mg/kg, i.p.) was delivered before 

surgery as an anti-inflammatory. This protocol, based on previous rodent studies 

(Cappotto et al., 2021; Malmierca et al., 2019), allowed for fast induction of anesthesia 

via the initial administration of ketamine and xylazine, while avoiding later NMDA-specific 

inhibitory effects of ketamine through the use of urethane to maintain anesthesia for 

ECoG recordings. The anesthetized animal was placed in a stereotaxic frame, and the 

animal’s head was fixed with hollow ear bars to allow sound delivery. An isothermal 

heating pad and a rectal thermometer were used to maintain body temperature at 36 ± 

1°C throughout the experiment. The skin and muscle tissue over the temporal lobe of the 

skull were removed, and a craniotomy was performed to expose a 5×4 mm region over 

the right AC, leaving the dura intact. The anterior edge of the craniotomy was 2.5 mm 
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posterior from Bregma, and the dorsal edge was 2 mm ventral from Bregma (Figure 

S3.1A). 

Experimental Apparatus 

The ECoG array was placed on the exposed cortex and a cotton roll was placed 

between the remaining skin and the array to hold the array securely in place and ensure 

a stable, low impedance contact between the recording sites and the dura. A hole was 

drilled through the skull anterior to the Bregma on the animal’s left to place a small 

stainless steel screw which served as ground and reference electrode for the electrode 

array and headstage amplifier. Correct placement of the ECoG array was verified by 

recording a set of Frequency Response Areas (FRAs; Figure S3.1B) from each site by 

collecting responses to 100 ms pure tones varying in sound level (30 - 80 dB SPL) and 

frequency (500 - 32,000 Hz, ¼ octave steps). Each tone was presented 10 times, in a 

randomly interleaved fashion, with an onset-to-onset ISI of 500 ms. 

 

3.5 Methods Details 

3.5.1 Stimulus Design 

The artificial vowels were generated using custom Python scripts. Consecutive 

vowels were separated by 350 ms of silence (500 ms onset to onset ISI). We deemed 

artificial vowels preferable to tones as they activate larger parts of the tonotopic array and 

they resemble many types of natural sounds, including many vertebrate vocalizations or 

insect sounds, making them arguably more ecologically valid than pure tones. These 
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generated pulse trains which were subsequently passed through a cascade of two 2nd-

order Butterworth bandpass filters with a bandwidth equal to 20% of the center (formant) 

frequency (scipy.signal functions butter() and lfilter() ). The formant frequencies for these 

artificial vowels were chosen to lie between 900 and 9000 Hz to bring them well into the 

auditory range of rats, and the fundamental frequencies (F0s) of the vowels were 

relatively low, between 260 and 420 Hz, to generate a large number of closely stacked 

harmonics under each formant. Stimulus sequences consisted of combinations of three 

possible artificial vowels, one we refer to as “A” with formants and 3000 and 5400 Hz and 

an F0 of 420 Hz, an “O” with formants 900 and 2700 Hz and F0 260 Hz, and an “I” with 

formants 1050 and 9000 Hz and F0 300 Hz. On occasion, as described further below, 

one of the vowels in the sequence could be replaced by either a 150 ms frozen pink noise 

burst computed according to the algorithm described in https://github.com/python-

acoustics/python-acoustics/blob/master/acoustics/generator.py, or by a silent pause. The 

artificial vowel and pink noise tokens were loaded onto a Tucker Davis Technologies 

(TDT) RZ6 digital sound processor which was programmed using custom written software 

to present the tokens in a predefined order at a sample rate of 48,828 Hz through 

headphone drivers connected to the hollow ear bars via 3D printed adapters. 

3.5.2 Experimental Paradigm 

Two types of blocks were employed. In “predictable” blocks, vowels were grouped 

into triplets, which repeated at least 25 times (range 25-100, mean 30) before being 

replaced with another triplet (e.g., AOOAOOAOO…AAIAAIAAI…). In “random” blocks, 

vowels were presented in a random order, while keeping the base frequency of each 
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vowel constant and comparable to the predictable block (e.g., AOIOIAIOAOOAIIA…). 

Each session contained ~72 such blocks (amounting to a total of 2100 triplets per 

session), presented in a different order per session. Triplets were selected to prevent 

redundant combinations from occurring during presentation (e.g., AOO, OAO, and OOA 

would result in identical sequences with different starting points, and thus only AOO was 

used). The triplets were then concatenated to form the long stimulus sequences 

presented in the experimental sessions. In these sequences, 5% of stimulus events were 

replaced with omissions, and 5% were similarly replaced with a burst of pink noise. The 

vowels that were replaced with noise bursts or silent pauses were chosen pseudo-

randomly, subject to the constraint that a minimum of three repetitions of a given triplet 

had to have occurred before a vowel could be replaced. In a control condition (“random” 

sessions), vowels were presented randomly, rather than in predefined triplets. The 

positions of omissions and noise bursts within the stimulus sequences were kept the 

same across the predictable and random blocks. 

3.5.3 Neural data acquisition and pre-processing 

An 8 x 8 Viventi ECoG electrode array with 400 µm electrode spacing (Woods et 

al., 2018) was used to acquire ECoG recordings, employing three ground channels 

located in the corners of the array, and a common reference. A (TDT) PZ5 neurodigitizer 

was used to record signals from the array via a RZ2 processor. FRA responses were 

recorded with BrainWare software at a sampling rate of 24,414 Hz, and responses to the 

vowel sequences were recorded using custom Python code at a sampling rate of 6104 

Hz. The recorded electrode signals were first low-pass filtered at a cutoff frequency of 90 
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Hz using a 5th order Butterworth filter, and downsampled to 300 Hz to extract neural 

activity evoked by acoustic stimuli. The pre-processed signals were re-referenced to the 

average of all channels (Ball et al., 2009), and segmented by extracting 500 ms long 

voltage traces from −100 ms to +400 ms relative to the onset of each token. Epoched 

traces were baseline-corrected by subtraction of the mean pre-stimulus voltage values, 

and linearly detrended (Salisbury, 2012). 

3.6 Quantification and statistical analysis 

3.6.1 Univariate analysis: summarizing vowel-evoked, omission-evoked, and frozen noise 

burst-evoked activity 

Univariate analysis was performed to assess whether vowel types (A, I, O) 

modulated vowel-evoked, burst-evoked, and omission-evoked activity on a channel-by-

channel basis (Figure S3.2). Additionally, in the analysis of burst-evoked and omission-

evoked activity, we tested whether it is modulated by the preceding sounds at different 

“positions” relative to the burst/omission (N-1 position: the immediately preceding vowel, 

N-2 position: two stimuli before the burst/omission, N-3 position: three stimuli before the 

burst/omission). Epoched data were separated per vowel, position, and condition, and 

then averaged across trials. First, to visualize the evoked responses, trial-averaged ECoG 

responses were concatenated across sound types/positions/conditions/animals, resulting 

in 2 two-dimensional matrices per condition with single channels along one dimension 

and concatenated time points along the second dimension. A principal component 

analysis using singular value decomposition was performed on the resulting matrices. 

The output provided spatial principal components describing channel topographies, and 
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temporal principal components describing voltage time-series concatenated across 

vowels/positions and animals, sorted by the ratio of explained variance. A weighted 

average was calculated to summarize the top principal components explaining 95% of 

the original variance, weighted by the proportion of variance explained. These resulting 

voltage time-series were averaged per vowel across animals. Frozen noise burst-evoked 

and omission-evoked single-trial data were similarly averaged across trials, separately 

for each preceding vowel and position, and subject to the same principal component 

analysis described above. 

The above principal component analysis was used only for the purposes of 

visualizing the data. In order to test if any time points and channels showed significant 

amplitude modulations by vowel (in case of vowel-evoked responses) or preceding vowel 

in each position (in case of burst-evoked and omission-evoked responses), single-subject 

trial-average ECoG data in the original electrode grid were converted into three-

dimensional matrices containing two spatial dimensions and one temporal dimension. 

These matrices were then converted to 3D images and entered into a repeated-measures 

ANOVA with one within-subjects factor (vowel; three levels) and one repeated-measures 

factor (rat), implemented in SPM12 (University College London) as a general linear model 

(GLM). This was done separately for each stimulus type (vowel-evoked responses, burst-

evoked responses, and omission-evoked responses). The effects of preceding vowels on 

burst-evoked and omission-evoked responses were analyzed in separate ANOVAs per 

position. To test for the effect of vowel on evoked activity amplitude, an omnibus F test 

across 3 vowels was used. The resulting statistical parametric maps were thresholded at 

p < 0.005 (two-tailed) and corrected for multiple comparisons across spatiotemporal 
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voxels at a family-wise error (FWE)-corrected pFWE = 0.05 (cluster-level) (Kilner et al., 

2005).  

3.6.2 Univariate analysis: oscillatory activity 

         To test whether sequence processing is associated with spectral peaks in the 

neural response spectrum at the syllable and triplet rate (Henin et al., 2021), we analyzed 

phase coherence of neural activity (Figure S3.4B). Specifically, for each rat and recording 

session, we split the continuous single-channel ECoG data into 175 chunks of 12 triplets, 

and, for each chunk, calculated the Fourier spectrum of neural activity measured during 

that chunk. Inter-trial phase coherence (ITPC) was calculated according to the following 

equation (Ding and Simon, 2013): 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑓𝑓 = ��𝛴𝛴𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙𝑓𝑓�
2 + �𝛴𝛴𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝜙𝜙𝑓𝑓�

2� 𝑁𝑁⁄ , 

where φf denotes the Fourier phase at a given frequency f and N = 175 chunks. In the 

initial univariate analysis, phase coherence estimates were averaged across channels. 

To test for the presence of statistically significant phase coherence peaks, coherence 

values at the token rate (2 Hz) and triplet rate (0.667 Hz) were compared against the 

mean of coherence values at their respective neighboring frequencies (single token rate: 

1.944 and 2.056 Hz; triplet rate: 0.611 and 0.722 Hz) using Wilcoxon’s signed rank tests. 

3.6.3 Multivariate analysis: decoding sensory, mnemonic, and predicted vowel 

information 

Data were subjected to multivariate analyses to test if information about vowel type 

could be decoded from the pattern of burst-evoked and omission-evoked activity 
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observed across multiple channels and time points. To this end, we adapted methods 

established in previous multivariate decoding research, which has demonstrated 

decodability in similar data and experimental contexts (Cappotto et al., 2021; Myers et 

al., 2015; van Ede et al., 2018; Wolff et al., 2019, 2017). 

Prior to decoding, single-trial omission or frozen noise burst-evoked responses 

were sorted by the preceding vowel, separately for each vowel position. While the 

randomized order of vowel presentation in relation to noise bursts (see Experimental 

Paradigm and Stimulus Design) effectively equalized the ratio of vowels presented at 

each position, we imposed an additional constraint on trial selection to ensure that 

decoding N-3 vowels is not confounded by the vowels presented immediately before the 

noise burst (N-1). Specifically, in decoding N-3 stimuli relative to noise burst X, we 

excluded trials for which N-3 and N-1 were identical (e.g., AAOAAX was included, since 

vowel N-1 corresponds to A and N-3 to O; however, AAOAXO was excluded, since both 

vowels N-1 and N-3 correspond to A). To equalize the number of trials across decoding 

conditions, the same constraint was imposed on N-2 stimuli (excluding trials for which N-

2 and N-1 were identical) and on random blocks. 

Decoding time-courses were estimated using a sliding window approach 

(Cappotto et al., 2021; Wolff et al., 2019), pooling information over multiple time-points 

and channels to boost decoding accuracy (Grootswagers et al., 2017; Nemrodov et al., 

2018). Specifically, for each channel, trial, and time point, we first pooled voltage values 

within a 50 ms window relative to a given time point. Then, a vector of 5 average voltage 

values was calculated per channel and trial by downsampling the voltage values over 10 

ms bins. In other words, a single vector of multivariate data corresponding to the test trial 
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(multiple channels x 5 time points within a 50 ms window, concatenated into a long vector) 

is compared against three vectors (one per vowel), each of exactly the same length as 

for the test trial but based on the remaining trials. The data were then de-meaned to 

remove the channel-specific average voltage over the entire 50 ms time window from 

each channel and time bin, ensuring that the multivariate analysis approach was 

optimized for decoding transient activation patterns (Cappotto et al., 2021; Wolff et al., 

2019). For the subsequent leave-one-out cross-validation decoding, the vectors of binned 

single-trial temporal data were then concatenated across channels. We used the 

Mahalanobis distance (De Maesschalck et al., 2000) as a multivariate decoding metric to 

take advantage of the potentially monotonic relation between vowel category and neural 

activity (Auksztulewicz et al., 2019; Cappotto et al., 2021; Wolff et al., 2019). Responses 

to dissimilar vowels are expected to yield large Mahalanobis distance metrics, while 

responses to similar vowels are expected to yield low Mahalanobis distance metrics. 

Having been shown to be optimal for decoding (Grootswagers et al., 2017), a leave-one-

out cross-validation approach was used per trial, wherein we calculated 3 pairwise 

distances between ECoG amplitude fluctuations measured in a given test trial and mean 

vectors of ECoG amplitude fluctuations averaged for each of the 3 vowels/positions in the 

remaining trials. A shrinkage-estimator covariance obtained from all trials, excluding the 

test trial, was used to compute the Mahalanobis distances (Ledoit and Wolf, 2004). 

Combining Mahalanobis distance with Ledoit–Wolf shrinkage has been shown to have 

performance advantages over other correlation-based methods of measuring brain-state 

dissimilarity (Bobadilla-Suarez et al., 2019), while Mahalanobis distance-based decoding 
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has known advantages over linear classifiers and simple correlation-based metrics 

(Walther et al., 2016). 

Single-trial relative Mahalanobis distance estimates were averaged across trials, 

resulting in a 3 x 3 distance matrix for each rat, time point, relative vowel position (N-1, 

N-2, N-3), and substitution type (noise vs. omission). To obtain overall decoding quality 

traces, the 3 x 3 distance matrices were subject to a subtraction of the averaged off-

diagonal elements (mean distance between vowels) from the averaged diagonal 

elements (mean distance within vowels). The resulting decoding time-series were entered 

into a 2x3 repeated-measures ANOVA with within-subjects factors Block (predictable vs. 

random) and Position (N-1, N-2, N-3), separately for the two substitution types (noise vs. 

omission). The resulting statistical parametric maps were thresholded at p < 0.005 

(uncorrected). Across time points, p values were corrected using a family-wise error 

approach at a cluster-level pFWE = 0.05 (Kilner et al., 2005). 

We reasoned that significant decoding of the N-3 vowel in the predictable blocks, 

but not in the random blocks, would reveal predictive representations of the expected 

vowel. However, such representations may be formed both on an element-by-element 

basis (e.g., when hearing AOOAOOAOO, an “A” may be predicted because one is heard 

every 3 tokens), and also for an entire triplet (e.g., when hearing AOOAOOAOOX, "X" 

might also reactivate a representation of the AOO context). In a follow-up analysis, we 

wanted to test whether bursts/omissions reactivate representations containing (1) 

information about the entire preceding triplet, or (2) specific information about the N-3 

vowel, independent of the rest of the triplet. To this end, we ran an additional decoding 

analysis, this time using a 18 x 18 stimulus matrix (corresponding to 18 possible triplets, 
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with 3 phase shifts for each of the 6 unique triplets; e.g., for a unique triplet AAO, the 

three phase shifts would correspond to AAO, AOA, and OAA), yielding 18 x 18 

Mahalanobis distance matrices. This analysis focused on the predictable blocks only and 

zoomed into two time clusters in which we observed significant N-3 vowel decoding (see 

Results). To quantify the decoding of the entire triplet, we subtracted the mean of all off-

diagonal elements of the 18 x 18 stimulus matrix from the mean of all diagonal elements 

(Figure S3.3A). To quantify the decoding of information about the N-3 vowel independent 

of the entire triplet identity, we subtracted the mean of those elements of the 18 x 18 

stimulus matrix which did not share the first vowel from the mean of those elements of 

the matrix which did share the first vowel (excluding the diagonal elements, corresponding 

to identical triplets). The decoding estimates based on these representational dissimilarity 

matrices were subject to one-sample t-tests (two-tailed) across recording sessions (see 

Figure S3.3BC for results). 

Since vowel decoding was relatively weaker for N-3 and N-2 vowels (see Results; 

Figure 3.2A), we have performed an additional analysis aiming at verifying whether spatial 

maps of decoding sensitivity can be reasonably established for these vowel positions. To 

this end, we performed an additional analysis in which we repeated the spatial correlation 

analysis, but rather than correlating predictable and random blocks, we correlated 

decoding based on odd vs. even trials within each block. 

In an additional analysis, since we observed univariate differences in vowel-

evoked responses (see Results), we tested whether decoding primarily relies on those 

channels that are also associated with sensory encoding of vowels. To this end, we 

repeated the decoding analysis for two subsets of channels - those which strongly 
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differentiated between vowels (with the corresponding F statistic of the main effect of 

vowel on the vowel-evoked responses higher than the median across channels) and 

those which differentiated weakly between vowels (F statistic below median across 

channels). The resulting decoding time-series were compared between the two groups of 

channels using a series of paired t-tests, correcting for multiple comparisons across time 

points at a family-wise error (FWE)-corrected pFWE = 0.05 (cluster-level) (Kilner et al., 

2005). 

While we did not observe univariate differences in spectral peaks at the single 

vowel rate between condition (and we did not observe peaks at the triplet level overall; 

see Results), in a further analysis we also tested whether decoding might rely on those 

channels which show relatively higher triplet-rate peaks than other channels. Again, we 

repeated the decoding analysis for two subsets of channels, this time splitting them based 

on the single-channel phase coherence estimates for the single vowel rate (2 Hz; 

above/below median). The two resulting decoding time-series were compared using a 

series of paired t-tests, correcting for multiple comparisons as above. 

For completeness, we also performed the decoding analysis on the vowel-evoked 

responses themselves (see Table S3.3 for results). While, given that vowel-evoked 

responses showed univariate effects of vowel identity, multivariate decoding was 

expected to be significant, we could use this analysis to compare the magnitude of 

decoding mnemonic information (N-1) based on burst-evoked responses, relative to 

decoding of vowel identity (N) based on vowel-evoked responses. 
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3.6.4 Multivariate analysis: learning effect on decoding 

         Another question we wanted to address is whether any decoding benefit we might 

observe in the predictable stimulus condition reflects predictive neural processing. In 

particular, we hypothesized that, if the decoding boost in predictable blocks is related to 

predictive processing, it should gradually build up, as the auditory system needs time to 

detect repeating patterns and learn to use them for predictions of which sound token is 

expected when. This can occur at two time scales: first, decoding can improve with each 

subsequent vowel token embedded in a block of identical triplets (reflecting learning 

within blocks); second, decoding can improve over subsequent blocks (reflecting learning 

across blocks). To test these hypotheses, we constructed two trial-by-trial learning 

regressors - a “within blocks” regressor quantifying the vowel position within a block of 

identical triplets, and an “across blocks” regressor quantifying which block of a particular 

triplet it is within the entire recording session. To facilitate comparisons between the two 

regressors, the “within blocks” regressor only included vowel position from 1 (first burst 

within a sequence) to 6 (sixth burst), while the “across blocks'' regressor was binned into 

6 bins of 2 blocks in each bin (e.g., bin 1 contained the first 2 blocks of a particular triplet, 

while bin 6 contained the last 2 blocks of the same triplet). Both regressors were log-

transformed to increase the relative effect of the first bursts/sessions relative to the last 

bursts/sessions (HiJee et al., 2021). We then repeated the decoding analysis of the N-3 

vowel and, per recording session and condition, performed a multiple linear regression 

with a constant term and the two learning regressors on single-trial decoding estimates. 

Specifically, for both of the time clusters in which we identified significant differences 

between decoding in predictable vs. random blocks, we selected the single-trial peak 
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decoding within a given time cluster, and then normalized (z-scored) the trial-by-trial 

peaks per rat, recording session, and condition. This resulted in 8 sets of learning 

coefficients: (1) for predictable vs. random conditions, (2) quantifying learning within vs. 

across blocks, (3) estimated for early vs. late time window. The resulting regression 

coefficients (betas) were tested for significant differences between predictable and 

random blocks (treated as a baseline condition) using Wilcoxon sign rank test. While we 

hypothesized that learning effects should be specific to N-3 stimuli, in an additional 

analysis we also tested for the same learning effects on the decoding of N-2 and N-1 

stimuli. 

3.6.5 Multivariate analysis: similarity between predictive and mnemonic representations 

         To test whether the predictive and mnemonic representations are shared, we 

quantified the spatial correlation of decoding topographies between predictable and 

random blocks. Our reasoning was that, if predictive and mnemonic representations are 

shared, decoding topographies should be similar between predictable and random 

blocks. On the other hand, if predictive and mnemonic representations are independent, 

the decoding topographies should be different between the two types of blocks. To this 

end, we repeated the decoding analysis, this time using a searchlight approach. 

Specifically, rather than using all channels for decoding, we used subsets of channels, 

with each subset forming a 3x3 grid. Different subsets overlapped by 1 row or column, 

resulting in 36 (6x6) decoding estimates based on the 3x3 grids, separately for each 

recording session, condition, and time point. We then correlated the spatial maps 

obtained for predictable and random blocks, separately for each recording session and 
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time point. The resulting Pearson correlation coefficients were entered into a series of 

one-sample t-tests, correcting for multiple comparisons across time points at pFWE = 0.05 

(Kilner et al., 2005).  

3.6.6 Multivariate analysis: cross-temporal generalization 

         In a further analysis, we tested whether decoding a particular vowel generalizes 

across time points (suggesting that the reinstated representations rely on a similar neural 

code, independent of the latency of measured neural activity) and/or across vowel 

positions (suggesting that decoding one triplet element relies on a similar neural code as 

decoding another triplet element). To this end, we performed a cross-temporal 

generalization analysis, in which we repeated our multivariate decoding analysis but with 

an important modification of the leave-one-out cross-validation approach. First, to quantify 

generalization across time points, in calculating the Mahalanobis distance we 

incrementally shifted the latency of the test data with respect to the remaining trials, in 16 

ms time steps - such that decoding was trained on one latency but tested on another. As 

a result of this approach, rather than decoding time series, per recording session and 

condition (predictable vs. random) we obtained decoding matrices with each matrix 

element representing the Mahalanobis distance between data measured at two different 

latencies. Second, to quantify generalization across vowel positions, we allowed the test 

data labels to be replaced by labels corresponding to another vowel than the remaining 

trials. As a result of this approach, rather than obtaining 3 decoding matrices (one per 

vowel position), we obtained 6 decoding matrices with the 3 additional matrices 

representing the Mahalanobis distance between data measured at two different vowel 
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positions. The resulting decoding matrices were entered into a series of 6 GLMs (one per 

vowel position pair), each implementing a paired t-test between decoding estimates 

obtained for the predictable and random conditions. The resulting statistical parametric 

maps were thresholded at p < 0.005 (two-tailed) and corrected for multiple comparisons 

across spatiotemporal voxels at a family-wise error (FWE)-corrected pFWE = 0.05 (cluster-

level) (Kilner et al., 2005). 

 

3.7 Supplemental Results 

3.7.1 Auditory cortical activity recordings in a sequence learning paradigm 

To investigate the decodability of mnemonic and predictive representations from 

AC activity, we combined ECoG recordings in young adult female Wistar rats (N = 8) with 

an auditory sequence learning paradigm. All rats were “naive”, i.e. had no experience with 

the stimulus sequences prior to recording, and were anesthetized before being implanted 

with ECoG electrode arrays over their auditory cortex (Figure S3.1A, see STAR Methods 

for details on experimental procedures). Frequency Response Area (FRA) maps for each 

animal were used to visually verify whether the placement of the array was consistent 

across subjects (Figure S3.1B).  
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Figure S3.1. Electrocorticography methods and acoustic stimulation. (A) Electrode placement during 

electrocorticography. (B) An example Frequency Response Area map from one subject. These were used 

to confirm electrode array placement consistency over the AC across subjects.  

 

3.7.2 Univariate analyses: only vowel-evoked activity differentiates between vowels 

 First, to test whether vowel identity influences mean neural activity in the AC at a 

coarse spatial resolution (i.e., forming smooth clusters of neighboring channels), we have 

performed a series of univariate analyses, testing for the effects of vowel (A, I, or O) and 

block (predictable vs. random) on vowel-evoked ECoG activity (event-related potentials). 

We observed that vowel-evoked activity does differentiate between the three vowels, both 

in predictable blocks (Figure S3.2A; 13-260 ms; Fmax = 58.56; pFWE < 0.001) and in random 

blocks (Figure S3.2B; 13-207 ms; Fmax = 58.21; pFWE < 0.001). The main effect of block 

on vowel-evoked activity was not significant (all pFWE > 0.05). 

 
Figure S3.2. Univariate analyses. (A) vowel-evoked responses in predictable blocks. Left panel: Time 

courses of vowel-evoked responses, summarizing the top principal components explaining 95% of the 
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variance (shaded area: SEM across recording sessions). Middle panel: Time course of the main effect of 

vowel (bold: pFWE < 0.05). Right panel: Topography of the main effect of vowel (unmasked area: pFWE < 

0.05). (B) vowel-evoked responses in random blocks. Figure legend as in (A). (C) Burst-evoked responses. 

Left panel: Time courses of noise burst-evoked responses, summarizing the top principal components 

explaining 95% of the variance (blue: predictable blocks; red: random blocks; shaded area: SEM across 

recording sessions). Middle panel: Time course of the main effect of predictability. No significant differences 

were observed between predictable and random blocks. Right panel: Topography of the noise burst-evoked 

responses, averaged across blocks and recording sessions, summarizing the top principal components 

explaining 95% of the variance. (D) Effects of preceding vowel on noise burst-evoked responses. 

Left/middle/right panel: Time courses of the main effect of the preceding vowels (N-1 / N-2 / N-3, relative to 

noise burst). No significant differences were observed. (E) Omission-evoked responses. Figure legend as 

in (C). No significant differences were observed between predictable and random blocks. (F) Effects of 

preceding vowel on omission-evoked responses. Figure legend as in (D). No significant differences were 

observed.  

 

Having established that vowel-evoked activity differentiates between the three 

vowels, but not between experimental conditions (predictable vs. random), we then tested 

whether burst-evoked and/or omission-evoked activity also differentiates between the 

(preceding) vowels at different “positions” in the sequence, relative to the burst/omission 

(N-1 position: the immediately preceding vowel, N-2 position: two stimuli before the 

burst/omission, N-3 position: three stimuli before the burst/omission). This analysis 

revealed that, similarly to the vowel-evoked responses, burst-evoked responses did not 

significantly differentiate between predictable and random blocks (Figure S3.2C; all pFWE 

> 0.05). However, unlike the vowel-evoked activity (which was modulated by vowel 

identity), noise burst-evoked activity was not significantly modulated by (preceding) vowel 

identity when neural activity was analyzed in a mass-univariate manner. Specifically, 

neither the effect of the immediately preceding vowel on burst responses (N-1: all pFWE > 

0.05; Figure S3.2D), nor of the previous vowels (N-2, N-3: all pFWE > 0.05) were significant.  

 Omission-evoked responses peaked relatively early (83-93 ms), with a rising 



 
78 

 

activity visible already prior to expected stimulus onset, and thus possibly marking the 

offset response to the preceding interrupted stimulus train rather than a true omission 

(Chien et al., 2019). Nevertheless, just like burst-evoked activity, omission-related activity 

was also not significantly modulated by block type (Figure S3.1E; all pFWE > 0.05) or 

preceding vowel identity (Figure S3.2F; N-1, N-2, N-3: all pFWE > 0.05). 

3.7.3 Multivariate analysis: specific decoding boost for predictable vowels 

 Although noise burst-evoked activity did not differentiate between preceding 

vowels when analyzed in a mass-univariate way, based on our previous study (Cappotto 

et al., 2021) we hypothesized that preceding stimuli can nevertheless be decoded in a 

multivariate analysis. Specifically, by analyzing the spatiotemporal pattern of activity 

evoked by noise bursts, which did not carry any overt information about the preceding 

vowels given that the employed noise tokens were always identical and presented after 

vowel-evoked responses had returned to baseline (400 ms after stimulus offset), we 

sought to determine if activity evoked by noise bursts contained information about the 

preceding vowels (separately for N-1, N-2, and N-3 vowels). This analysis revealed 

significant decoding of vowels up to N-3 (Figure 3.2A) in predictable blocks (N-1: -10-273 

ms, tmax = 13.36, cluster-level pFWE < 0.001; N-2, early cluster: 40-106 ms, tmax = 3.83, 

cluster-level pFWE < 0.001; N-2, late cluster: 166-203 ms, tmax = 3.23, cluster-level pFWE = 

0.001; N-3, early cluster: 33-123 ms, tmax = 5.44, cluster-level pFWE < 0.001; N-3, late 

cluster: 223-240 ms, tmax = 2.98, cluster-level pFWE = 0.044). Decoding was significantly 

better for the immediately preceding (N-1) vowels than for the earlier vowels (N-1 vs. N-

2: -6-236 ms, tmax = 7.36, cluster-level pFWE < 0.001; N-1 vs. N-3: -3-216 ms, tmax = 7.84, 

cluster-level pFWE < 0.001). Clusters of significant decoding extended into the baseline 
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are likely due to the sliding time window approach (50 ms) adopted in the multivariate 

analyses (see Methods).  
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In random blocks as well, significant decoding of preceding vowels was possible, 

but only the N-1 and N-2 vowels could be decoded (N-1, early cluster: -10-140 ms, tmax = 

7.73, cluster-level pFWE < 0.001; N-1, late cluster: 163-203 ms, tmax = 3.26, cluster-level 

pFWE = 0.001; N-2: -13-7 ms, tmax = 3.03, cluster-level pFWE = 0.029). As was the case for 

predictable blocks, in the random blocks decoding was also significantly better for the 

immediately preceding (N-1) vowels than for the earlier vowels (N-1 vs. N-2: 0-136 ms, 

tmax = 5.91, cluster-level pFWE < 0.001; N-1 vs. N-3: -6-126 ms, tmax = 5.53, cluster-level 

pFWE < 0.001).  

For completeness, we also performed the decoding analysis on the vowel-evoked 

responses themselves. While, given that vowel-evoked responses showed univariate 

effects of vowel identity, multivariate decoding was expected to be significant, we could 

use this analysis to compare the magnitude of decoding mnemonic information (N-1) 

based on burst-evoked responses, relative to decoding of vowel identity (N) based on 

vowel-evoked responses. This analysis revealed significant decoding of vowel identity 

based on vowel-evoked responses during the entire post-stimulus time window 

(predictable: tmax = 12.85, cluster-level pFWE < 0.001; random: tmax = 9.74, cluster-level 

pFWE < 0.001) with no significant differences between blocks (all pFWE > 0.05). Overall, 

current vowel decoding was almost an order of magnitude higher than the decoding of 

previous vowel identity based on burst-evoked responses (N vs. N-1: tmax = 11.75, cluster-

level pFWE < 0.001; mean decoding within 0-100 ms post-stimulus, mean ± SEM a.u.: N 

decoding 0.65 ± 0.07, N-1 decoding 0.07 ± 0.01). Taken together, using multivariate 

analyses, we could access mnemonic representations reactivated by a noise burst, up to 

3 stimuli in the past in the predictable blocks and up to 2 stimuli in the past in the random 
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blocks. Overall, immediately preceding stimuli could be decoded better than previous 

stimuli, but not as well as currently processed stimuli.  

 Crucially, if burst-evoked activity can reactivate not only mnemonic 

representations (irrespective of the currently processed stimulus), but also predictive 

representations (regarding the stimulus which would have been predicted but is replaced 

by a noise burst), we would expect a specific decoding improvement for N-3 (but not N-2 

or N-1) vowels presented in predictable blocks vs. random blocks. The decoding results 

were consistent with this hypothesis. Specifically, a significant decoding boost was only 

observed for the N-3 vowels presented in predictable blocks (paired t-test, predictable vs. 

random: early cluster: 77-103 ms, tmax = 3.45, cluster-level pFWE = 0.010; late cluster: 227-

270 ms, tmax = 3.79, cluster-level pFWE < 0.001), suggesting that we could access a 

predictive representation of the vowel replaced by a noise burst. 
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Figure S3.3. Multivariate analyses. . (C) Stimulus representational dissimilarity matrices used to quantify 

the decoding of entire triplets (upper panel) and the unique contribution of decoding the first element of 

each triplet (i.e., N-3 vowels) while excluding entire triplets along the diagonal (lower panel). Darker gray 

shows stimulus similarity, lighter gray shows stimulus dissimilarity. (D) Observed decoding matrices for the 

early peak (left panel) vs. late peak (right panel) observed in the N-3 decoding trace (A, right panel). 

“Warmer” colors  denote larger Mahalanobis distance (a.u.). (E) Triplet decoding (left panel) and the unique 

contribution of decoding the first element of each triplet (N-3 vowel; right panel) for the early and late peaks 

(separate bars). Error bars denote SEM across recording sessions. Asterisks denote significance (p < 0.05).  
 

 While mnemonic and predictive representations could be decoded based on burst-

evoked activity, decoding stimulus history based on omission-evoked activity did not yield 

any significant results (Figure S3.3B; all pFWE > 0.05). This suggests that, at least in this 

experimental protocol (vowel triplets) and under anesthesia, a stronger activation of the 

network (e.g., burst presentation) is necessary to make mnemonic and/or predictive 

representations observable in this type of extracellular recordings. 
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  The finding that burst-evoked responses in predictable blocks could be used to 

decode mnemonic representations about the past 3 triplet elements, as well as predictive 

representations about the N-3 vowel, entails a possibility that what is actually being 

represented is the entire triplet, rather than unique information about individual elements. 

In other words, predictions may be formed both on an element-by-element basis (e.g., 

when hearing AOOAOOAOO, an “A” may be predicted because one is heard every 3 

tokens), and also for an entire triplet (e.g., when hearing AOOAOOAOOX, "X" might also 

reactivate a representation of the AOO context). To test this hypothesis, we repeated the 

decoding analysis, this time decoding stimulus information on a triplet-by-triplet level 

(Figure S3.3A). This analysis revealed that the entire triplet identity can indeed be 

decoded from burst-evoked responses, both for the early decoding cluster (77-103 ms; 

t20 = 4.8118; p < 0.001) and the later cluster (227-270 ms; t20 = 2.4075; p = 0.0258; Figure 

S3.2DE). However, information unique to the N-3 vowel but independent of triplet identity 

was also present in the early decoding cluster (t20 = 2.3889, p = 0.0269), but not in the 

later cluster (t20 = 1.5881; p = 0.128; Figure S3.3E). This suggests that a predictive 

representation of the expected triplet element is decodable shortly following the noise 

burst that replaces the expected vowel, while a representation of the entire triplet is 

present at a wider range of latencies following the noise burst. 

 In a control analysis (Figure S3.4A), we tested if vowel decoding relies on data 

features that can generalize across block types (predictable vs. random). To this end, we 

repeated the decoding of N-1, N-2, and N-3 vowels, but training on trials drawn from one 

type of blocks (e.g., random) and testing on trials drawn from the other type of blocks 

(e.g., predictable). This cross-block decoding analysis revealed that only N-1 decoding 
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generalized across blocks, with significant cross-block decoding observed for both types 

of blocks (train on random, test on predictable: Tmax = 12.92, pFWE < 0.001; train on 

predictable, test on random: Tmax = 13.39, pFWE < 0.001) and no differences observed 

between blocks (all paired t-test pFWE > 0.05). Conversely, for N-2 and N-3 decoding, no 

significant cross-block decoding was observed in either direction (all pFWE > 0.05).  

 

 

 
Figure S3.4 (top). (A) Cross-block decoding, training on trials drawn from one type of blocks (blue: random, 

red: predictable) and tested on trials from the other type of blocks (blue: predictable, red: random). 

Horizontal bars mark significant decoding (t-test against zero, pFWE < 0.05). Shaded area: SEM across 

recording sessions. (bottom) Spectral analysis and decoding based on channel subsets. (B) Phase 

coherence in predictable and random blocks. Asterisk denotes a significant syllable-rate peak (2 Hz). 

Shaded areas: SEM across recording sessions. (C) Decoding traces (averaged across conditions and 

vowel positions) based on channels showing high sensitivity to vowels (black line) vs. low sensitivity to 

vowels (magenta line). Horizontal bar denotes a significant difference between high vs. low sensitivity 

channels (pFWE < 0.05). Shaded areas: SEM across recording sessions. (D) Decoding traces (averaged 

across conditions and vowel positions) based on channels showing high syllable-rate phase coherence 

(black line) vs. low syllable-rate phase coherence (cyan line). Shaded areas: SEM across recording 

sessions. 
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3.7.4 Univariate analyses: spectral peaks of neural activity observed for single vowel rate 

but not triplet rate 

In a frequency-domain analysis of the ECoG responses, we tested whether 

sequence processing is associated with frequency peaks in the neural response spectrum 

at the vowel (2 Hz) and triplet (0.66 Hz) rate, as reported in ECoG studies in humans 

(Henin et al., 2021). To this end, we analyzed phase coherence of neural activity and 

observed robust spectral peaks at the single vowel rate (Wilcoxon’s signed-rank test 

against neighboring frequency points: Z = 5.6545, p < 0.001; Figure S3.4B), but not at the 

triplet rate (p = 0.4569), consistent with a recent study in anesthetized rats (Luo et al., 

2021). No differences in spectral peaks were observed between predictable and random 

blocks at either the single vowel rate (p = 0.7943) or the triplet rate (p = 0.6639).  

3.7.5 Multivariate analysis: decoding using channel subsets 

In two supplementary analyses, we tested whether decodability primarily relies on 

those channels which are also associated with sensory encoding of vowels, and/or on 

those channels which show robust phase coherence at the syllable rate. The first analysis 

revealed a significant main effect of channel selection (17-40 ms; Fmax = 10.45; pFWE < 

0.001; Figure S3.4C), suggesting that channels showing stronger differences between 

vowel-evoked responses also contribute more strongly to decoding vowel memory. No 

significant interactions between channel selection (N-1; N-2; N-3) and vowel position 

and/or condition (predictable vs. random) were observed (pFWE > 0.05). The second 

analysis did not reveal any significant effect of channel selection (main and interaction 
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effects: pFWE > 0.05; Figure S3.4D), suggesting that phase coherence at the syllable rate 

is not related to memory decoding.  

3.7.6 Multivariate analysis: predictive and mnemonic representations rely on 

independent codes 

Since vowel decoding was relatively weaker for N-3 and N-2 vowels (Figure 3.2), 

we have performed a control analysis aiming at verifying whether spatial maps of 

decoding sensitivity can be reasonably established for these vowel positions. To this end, 

we performed a control analysis in which we repeated the spatial correlation analysis, but 

rather than correlating predictable and random blocks, we correlated decoding based on 

odd vs. even trials within each block. We found that spatial correlations between split-

halves were significant for all three vowel positions. While the mean correlation 

coefficients were overall moderate to low (N-1: rmax = 0.27; N-2: peak rmax = 0.13; N-3: 

peak rmax = 0.11), likely due to a decreased signal-to-noise ratio as a result of splitting the 

dataset in half (yielding ~33 trials per vowel), these peaks were significant for all three 

vowel positions after correcting for multiple comparisons across time points (pFWE < 0.05). 

This finding suggests that, for the earlier vowel positions, spatial maps are relatively 

stable across trials (odd vs. even) but uncorrelated across conditions (predictable vs. 

random). 

3.7.7 Multivariate analysis: cross-temporal generalization 

 In a further analysis, we tested whether decoding generalizes across time points 

within a single response (suggesting a similar neural code for decoding based on activity 

measured at different latencies) and/or across vowel positions (suggesting that decoding 
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one vowel, e.g. N-1, relies on a similar neural code as decoding another vowel, e.g. N-2). 

This analysis revealed that, per vowel position, decoding did generalize across time 

points (N-1: tmax = 20.21, pFWE < 0.001; N-2: tmax = 16.05, pFWE < 0.001; N-3: tmax = 13.64, 

pFWE < 0.001; Figure S3.6D; cf. Cappotto et al., 2021). Interestingly, we also observed 

negative cross-generalization between N-1 and N-2 vowels, when averaging across 

predictable and random conditions, such that N-2 vowel decoding at 133-167 ms post-

stimulus showed impaired (negative) decoding when trained on data corresponding to the 

N-1 vowel at 67-100 ms (Fmax = 25.51, tmin = -5.05, pFWE = 0.027), possibly reflecting an 

interference effect between N-1 and N-2 decoding. Beyond this finding, there were no 

significant cross-generalization clusters between the other vowel pairs (all pFWE > 0.05), 

as well as no differences between predictable and random blocks either in cross-temporal 

generalization across time points (all pFWE > 0.05; Figure S3.6E) or across vowel 

positions (all pFWE > 0.05).  

 

Condition Dependent 
variable 

Significant 
effect time 
range 

tmax Cluster-level 
pFWE 

Predictable 
blocks 

N-1 decoding -10-273 ms 13.36 < 0.001 

N-2 decoding 40-106 ms 3.83 < 0.001 

166-203 ms 3.23 0.001 

N-3 decoding 33-123 ms 5.44 < 0.001 

223-240 ms 2.98 0.044 

Random blocks N-1 decoding -10-140 ms 7.73 < 0.001 
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163-203 ms 3.26 0.001 

N-2 decoding -13-7 ms 3.03 0.029 

Table S3.1. Multivariate analysis - decoding vs. baseline, related to Figure 3.2A. Decoding previous vowel 
identity based on burst-evoked responses: statistical results. Temporal clusters of significant decoding 
(one-sample t-tests against 0). Only significant effects shown. Clusters of significant decoding extended 
into the baseline are likely due to the sliding time window approach (50 ms) adopted in the multivariate 
analyses (see STAR Methods). 

  

Condition Contrast Significant 
effect time 
range 

tmax Cluster-level 
pFWE 

Predictable 
blocks 

N-1 vs. N-2 -6-236 ms 7.36 < 0.001 

N-1 vs. N-3 -3-216 ms 7.84 < 0.001 

Random blocks N-1 vs. N-2 0-136 ms 5.91 < 0.001 

N-1 vs. N-3 -6-126 ms 5.53 < 0.001 

 Table S3.2. Multivariate analysis - decoding differences between vowel positions, related to Figure 3.2A. 
Temporal clusters of significant differences in decoding between vowel positions (paired t-tests). Only 

significant effects shown. Clusters of significant decoding extended into the baseline are likely due to the 

sliding time window approach (50 ms) adopted in the multivariate analyses (see STAR Methods). 

  

Effect Condition / 
contrast 

Statistic Cluster-level pFWE 

Vowel decoding 
based on vowel-
evoked activity 

Predictable tmax = 12.85 < 0.001 

Random tmax = 9.74 < 0.001 

Predictable vs. 
random 

n.s. > 0.05 

Vowel decoding vs. N vs. N-1 tmax = 11.75 < 0.001 
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memory decoding 

  

Table S3.3. Multivariate analysis - vowel decoding based on vowel-evoked activity, related to Figure 3.2A. 
This analysis revealed significant decoding of vowel identity based on vowel-evoked responses during the 
entire post-stimulus time window. Overall, current vowel decoding was almost an order of magnitude higher 
than the decoding of previous vowel identity based on burst-evoked responses (mean decoding within 0-
100 ms post-stimulus, mean ± SEM a.u.: N decoding 0.65 ± 0.07, N-1 decoding 0.07 ± 0.01). 

  

Effect Condition / 
contrast 

Statistic Cluster-level pFWE 

Generalization 
across time points 

N-1 tmax = 20.21 < 0.001 

N-2 tmax = 16.05 < 0.001 

N-3 tmax = 13.64 < 0.001 

Generalization 
across vowel 
positions 

N-1 vs. N-2 Fmax = 25.51, tmin = -
5.05 

0.027 

 Table S3.4. Multivariate analysis - cross-temporal generalization, related to Figure 3.4DE. For each vowel 

position, decoding did generalize across time points (cf. Cappotto et al., 2021). Negative cross-

generalization was observed between N-1 and N-2 vowels, when averaging across predictable and random 

conditions, such that N-2 vowel decoding at 133-167 ms post-stimulus showed impaired (negative) 

decoding when trained on data corresponding to the N-1 vowel at 67-100 ms (Figure 3.4D), possibly 

reflecting an interference effect between N-1 and N-2 decoding. Beyond this finding, there were no 

significant cross-generalization clusters between the other vowel pairs (all pFWE > 0.05), as well as no 

differences between predictable and random blocks either in cross-temporal generalization across time 

points (all pFWE > 0.05) or across vowel positions (all pFWE > 0.05). 
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Chapter 4. "What" and "when" predictions modulate auditory processing in a 

contextually specific manner 

 
4.1 Abstract  

Extracting regularities from ongoing stimulus streams to form predictions is crucial 

for adaptive behavior. Such regularities exist in terms of the content of the stimuli (i.e., 

“what” it is) and their timing (i.e., “when” it will occur), both of which are known to 

interactively modulate sensory processing. In real-world stimulus streams, regularities 

also occur contextually - e.g. predictions of individual notes vs. melodic contour in music. 

However, it is unknown whether the brain integrates predictions in a contextually 

congruent manner (e.g., if slower “when” predictions selectively interact with complex 

“what” predictions), and whether integrating predictions of simple vs. complex features 

rely on dissociable neural correlates. To address these questions, our study employed 

“what” and “when” violations at different levels - single tones (elements) vs. tone pairs 

(chunks) - within the same stimulus stream, while neural activity was recorded using 

electroencephalogram (EEG) in participants (N=20) performing a repetition detection 

task. Our results reveal that “what” and “when” predictions interactively modulated 

stimulus-evoked response amplitude in a contextually congruent manner, but that these 

modulations were shared between contexts in terms of the spatiotemporal distribution of 

EEG signals. Effective connectivity analysis using dynamic causal modeling showed that 

the integration of “what” and “when” prediction selectively increased connectivity at 

relatively late cortical processing stages, between the superior temporal gyrus and the 

fronto-parietal network. Taken together, these results suggest that the brain integrates 
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different predictions with a high degree of contextual specificity, but in a shared and 

distributed cortical network.  

 

4.2 Introduction  

The ability to predict future events based on sensory information is an integral 

aspect of adaptive sensory processing. Real-world events are complex, consist of 

statistical regularities, and contain multiple features over which predictions can be formed 

(Dehaene et al., 2015). In the auditory domain, “what” and “when” predictions are present 

in virtually every stimulus stream, and their manipulation has been the foundation for 

numerous studies of predictive coding. “What” predictions are typically manipulated by 

introducing unexpected sensory deviants (oddballs), and comparing the neural responses 

to the unexpected vs. expected stimuli. In such oddball paradigms, the resulting classical 

mismatch response (MMR) is commonly interpreted as an error correction signal (Garrido 

et al., 2009). As opposed to “what” predictions, which often rely on MMR-based 

explanations, “when” predictions are typically explained by neural entrainment - phase 

alignment of neural activity to an external temporal structure (Auksztulewicz et al., 2019; 

Haegens and Zion Golumbic, 2018; Schroeder and Lakatos, 2009) (but see: (Doelling 

and Assaneo, 2021)). An influential study (Ding et al., 2016) has suggested that cortical 

activity can selectively entrain to contextual structures in linguistic sequences pursuant to 

levels of chunking. More recently, this finding has been extrapolated to artificial streams 

of auditory and visual stimuli (Henin et al., 2021). 

Several studies have investigated predictions through independent manipulation 

of timing and content predictability, suggesting interactive and partly dissociable neural 
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correlates and putative underlying mechanisms (Arnal and Giraud, 2012; Auksztulewicz 

et al., 2018; Friston and Buzsáki, 2016; Kotz and Schwartze, 2010). MMR amplitudes are 

typically modulated by “when” predictions, such that deviant-evoked activity is higher 

when deviants are presented in temporally predictable (e.g., rhythmic/isochronous) 

sequences (Jalewa et al., 2021; Lumaca et al., 2019; Takegata and Morotomi, 1999; Todd 

et al., 2018; Yabe et al., 1997). In the auditory domain, such interactions have been 

suggested to rely on partially dissociable networks (Hsu, et al., 2013), while also jointly 

modulating stimulus-evoked activity in the superior temporal gyrus (Auksztulewicz et al., 

2018). More generally, it has been proposed that interactions between “what” and “when” 

predictions are inherent to the processing of musical sequences (Musacchia et al., 2014). 

In this context, it has been suggested that neural entrainment along the non-lemniscal 

(secondary) auditory pathway (sensitive to the rhythmic sequence structure) can 

modulate activity in the lemniscal (primary) pathway (encoding stimulus contents), 

including MMR processing. Interestingly,  

However, it is unknown if interactions between “what” predictions (in the lemniscal 

pathway) and “when” predictions (in the non-lemniscal pathway) are specific to differing 

contexts present in complex naturalistic stimuli such as speech or music (Hasson et al., 

2015). In the case of naturalistic music stimuli, lower-level predictions can be formed 

about single notes within a sequence, while higher-level predictions can relate to the 

resulting melody contour, each occurring at their respective time scales. In principle, 

neural entrainment to a particular time scale might boost the processing of any stimuli 

presented in the expected time window (Auksztulewicz et al., 2019). However, if 

entrainment to slower (i.e., more global) temporal scales is functionally related to 
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chunking (Ding et al., 2016; Henin et al., 2021), it may show a specific modulation of the 

processing of stimulus chunks, rather than single elements. Thus, based on current 

hypotheses of neural entrainment and predictive processing, it is unclear if “when” 

predictions modulate the processing of stimulus contents (and the respective “what” 

predictions) in a contextually specific way - e.g. if temporal predictions amplify the 

processing of any stimuli presented at a preferred time window, or only those stimuli 

whose contents can be predicted at the corresponding time scale.  

Here, we present streams of tones and independently manipulate content-based 

and time-based characteristics of the stream at two levels, while recording EEG in healthy 

volunteers. Temporal predictability was manipulated at slower (~2 Hz) and faster (~4 Hz) 

time scales, while acoustic deviants were introduced at lower (e.g. single tones) and 

higher (e.g.chunked tone pairs) levels, to evaluate the independent or interactive effect 

of “what” and “when” predictive processing across contexts.  

 

4.3 Methods 

EEG was recorded during an auditory repetition detection task in order to gauge 

(1) the effects of “when” predictions at higher and lower temporal scales on tone-evoked 

responses and on neural entrainment, as well as (2) the modulatory effect of “when” 

predictions on the neural signatures of higher and lower-level “what” predictions (MMRs). 

The use of musical sequences (ascending or descending musical scales) was chosen to 

reduce the influence of speech-specific processing on neural activity (e.g., modulation by 

language comprehension, speech-specific semantic and syntactic processing, etc.) and 

provide a better comparison to similar work in animal models (Jalewa et al., 2021). In the 

analysis, we focused on interactions between "what" and "when" predictions, specifically 
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testing whether MMRs are modulated by temporal predictability in a contextually specific 

way (such that slower “when” predictions selectively modulate MMRs to violations of 

higher-level “what” predictions). To explain the effects observed at the scalp level, we 

used source reconstruction and biophysically realistic computational modeling (dynamic 

causal modeling), which allowed us to infer the putative mechanisms of interactions 

between "what" and "when" predictions.  

 

4.3.1 Participant sample 
Participants (N=20, median age 21, range 19-25), 10 females, 10 males; 19 right-

handed, 1 left-handed) volunteered to take part in the study upon written consent. The 

work was conducted in accordance with protocols approved by the Human Subjects 

Ethics Sub-Committee of the City University of Hong Kong. All participants self-reported 

normal hearing and no current or past neurological or psychiatric disorders. 

 

4.3.2 Stimulus design and behavioral paradigm 
 An experimental paradigm was designed in which auditory sequences were 

manipulated with respect to “what” and “when” predictions at two contextual levels (“what” 

predictions of single tones vs. chunked tone pairs; “when” predictions at ~4 Hz vs. ~2 Hz), 

allowing for an analysis of their interactions at each level. To ensure that participants paid 

attention to stimulus sequences, the sequences contained very occasional repetitions, 

and participants were instructed to listen out for such repetitions (see below). The 

experimental manipulations of “what” and “when” predictions, however, were irrelevant to 

the task, such that neural responses to unexpected stimuli are not confounded by neural 
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activity related to target detection.  

Auditory sequences were generated using Psychtoolbox for MATLAB (version 

2021a) and delivered to participants fitted with Brainwavz B100 earphones via a TDT RZ6 

multiprocessor at a playback sampling rate of 24414 Hz. Participants were seated in a 

sound-attenuated EEG booth. Visual stimuli (fixation cross) and instructions were 

presented on a 24-inch computer monitor and delivered using the Psychophysics Toolbox 

for MATLAB. Participants were asked to minimize movements and eye blinks and 

instructed to perform a tone repetition detection task, by pressing a keyboard button using 

their right index finger as soon as possible upon hearing an immediate tone repetition.  

Stimuli were presented in sequences of 7 ascending or descending scales. Each 

scale was composed of 8 tones equally spaced on a logarithmic scale to form one octave. 

Thus, across 7 scales a total 56 tones were presented per sequence (Figure 4.1A, 4.1B). 

A trial was defined as the presentation of a sequence of 7 scales. Within a trial, all scales 

were either ascending or descending. The ascending and descending trials were 

presented in a random order. Each participant heard a total of 240 sequences (trials). The 

initial tone of each scale was randomly drawn from a frequency range 300-600 Hz. Each 

tone was generated by resynthesizing a virtual harp note F4 (played on virtualpiano.net), 

to match a fixed 166 ms duration and the fundamental frequency used at a given position 

in the scale. The tone manipulations were implemented in an open-source vocoder, 

STRAIGHT (Kawahara, 2006) for Matlab 2018b (MathWorks; RRID: SCR_001622). 

Tones were perceptually grouped into pairs by manipulating the intensity ratio of odd/even 

tones, with the even (2nd, 4th, 6th and 8th) tones within a scale presented 10 dB quieter 

relative to the odd-position tones (Kotz et al., 2018).  
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Manipulation of temporal predictability formed three conditions: in the fully-

predictable (isochronous) condition, tones were presented with a fixed ISI (inter-stimulus 

interval) of 247 ms, resulting in all tones having predictable timing at both the slow time 

scale (chunks) and the fast time scale (elements). In the temporally-global (predictable 

slow, unpredictable fast) condition, the slow time scale was predictable (corresponding to 

a fixed pair onset asynchrony, i.e., a fixed 494 ms interval between the onsets of the odd, 

pair-initial tones) but the fast time scale was unpredictable (corresponding to a random 

onset of the even, pair-final tones, relative to the pair-initial tones). In this condition, the 

exact ISI of the pair-final tones was set by randomly drawing one value from the following 

4 ISIs, relative to the standard 247 ms ISI: 33.3% shorter; 16.6% shorter; 16.6% longer; 

33.3% longer. Finally, in the temporally-local (predictable fast, unpredictable slow) 

condition, the onset of stimuli at the fast time scale was predictable (corresponding to a 

fixed 247 ms ISI of the pair-final tones, relative to the pair-initial tones) but the slow time 

scale was unpredictable (corresponding to a random onset of the odd, pair-initial tones, 

relative to the expected 494 ms interval). In this condition, the exact ISI of the pair-initial 

tones was set by randomly drawing one value from the same 4 ISIs as above, and shifting 

the onset of the pair-initial tone by this value, relative to the expected 494 ms interval 

relative to the previous pair onset. A fixed inter-trial interval of 1 second was employed 

between the offset of the last tone of a 56-tone sequence and the onset of the first tone 

in the next sequence. The three timing conditions were administered in 12 blocks of 20 

trials (4 blocks per condition). Blocks were pseudo-random in order, allowing no 

immediate repetitions of the same, timing, condition. 

Content predictability was manipulated by altering the fundamental frequency of a 
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subset of tones within the scales, such that trials could contain an element deviant (i.e., 

a single deviant tone) or a “chunk” deviant (i.e., a deviant tone pair). The element deviants 

were introduced by replacing the final tone of a scale with an outlier frequency (i.e., a tone 

whose fundamental frequency was 20% lower/higher than the range of the entire scale). 

The chunk deviants were introduced by replacing the penultimate tone of a scale (i.e., the 

initial tone of the final pair, rendering the entire pair unpredictable) in the same manner.  

To facilitate the extraction of statistical regularities in the sequences, in each trial, 

the first two scales were left unaltered. Two deviant tones were randomly placed within 

the subsequent 5 scales. Additionally, in 50% of the trials, a scale containing an 

immediate tone repetition was included in the last 5 scales. In subsequent EEG analysis, 

neural responses evoked by element and chunk deviants were compared with neural 

responses evoked by the respective standard tones, designated as the final (standard 

element) and penultimate (standard chunk) tones in two unaltered scales out of the final 

5.  

In total, 64.3% of the scales were left unaltered, 14.3% contained an element 

deviant, 14.3% contained a chunk deviant, and 7.1% contained a tone repetition. The 

global deviant probability equaled 3.57% of all tones, amounting to 80 deviant tones per 

deviant type (element, chunk) per temporal condition (fully predictable, temporally local, 

temporally global). To ensure that the EEG analysis is not confounded by differences in 

baseline duration between temporal conditions (e.g., element deviants preceded by 

shorter/longer ISIs in the temporally global condition than in the other two conditions), the 

ISIs preceding all deviant tones and designated standard tones were replaced by a fixed 

247 ms ISI. Therefore, the temporal predictability manipulation was limited to tones 
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surrounding the analyzed tones and did not affect the exact timing of either deviants or 

standards.  

Prior to experimental blocks, participants were exposed to a training session 

consisting of fully predictable sequences containing a tone repetition, to familiarize 

themselves with the task and stimuli. Participants performed training trials until they could 

detect tone repetition in 3 consecutive trials with reaction times shorter than 2 seconds. 

Then, during the actual experiment, participants received feedback on their mean 

accuracy and reaction time after each block of 20 trials. The data segments (scales) 

containing tone repetition were subsequently discarded from EEG analysis. 

4.3.3 Behavioral analysis 

 Analysis was performed on the accuracy and reaction time data corresponding to 

participant responses during the repetition detection task. Reaction times longer than 2 

seconds were excluded from analysis. Mean reaction times (from correct trials only) were 

log-transformed to approximate a normal distribution. Accuracy and mean reaction times 

were entered into separate repeated-measures ANOVAs with a within-subjects factor 

Time (fully predictable, temporally local, temporally global). Post-hoc comparisons were 

implemented using paired t-tests in MATLAB. 
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Figure 4.1 Experimental paradigm and behavioral results. (A) Participants listened to sequences of 
ascending (as represented on the figure) or descending scales of acoustic tones. Sequences were 
composed of tone pairs, where odd tones (gray circles) were louder than even tones (white circles). 
Participants performed a tone repetition detection task (orange circles: behavioral targets; presented in a 
subset of trials). Additionally, sequences could include deviant tones (magenta circles), in which one of the 
pair-final tones had an outlier fundamental frequency (F0), and deviant chunks (cyan circles), in which one 
of the pair-initial tones had an outlier F0. (B) Sequences were blocked into three temporal conditions: a 
fully-predictable condition (upper panel), in which ISI between tones was fixed at 0.247 s; a temporally-local 
condition (middle panel), in which the ISI between odd and even tones within pairs was fixed at 0.247 s but 
the ISI between odd tones (pair-initial tones) was jittered; and a temporally-global condition (lower panel), 
in which ISI between odd tones (pair-initial tones) was fixed at 0.494 s but the ISI between odd and even 
tones within pairs was jittered. (C) Behavioral results. Left panel: accuracy, right panel: reaction times. Error 
bars denote SEM across participants. Asterisks denote p < 0.05, plus symbol denotes a trend towards 
significance. 
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4.3.4 Neural data acquisition and pre-processing 

EEG signals were collected using a 64-channel ANT Neuro EEGo Sports amplifier 

at a sampling rate of 1024 Hz with no online filters. The recorded data were pre-processed 

using the SPM12 Toolbox (version 7219; Wellcome Trust Centre for Neuroimaging, 

University College London; RRID: SCR_007037) for MATLAB (version R2018b). 

Continuous data were high-pass filtered at 0.1 Hz and notch filtered between 48 Hz and 

52 Hz before being down-sampled to 300 Hz and subsequently low-pass filtered at 90 

Hz. All filters were 5th order zero-phase Butterworth. Eyeblink artifacts were detected 

using channel Fpz and removed by subtracting the two top spatiotemporal principal 

components of eyeblink-evoked responses from all EEG channels (Ille et al., 2002). 

Cleaned signals were re-referenced to the average of all channels, as is recommended 

for source reconstruction and dynamic causal modeling (Litvak and Friston, 2008). The 

pre-processed data were analyzed separately in the frequency domain (phase coherence 

analysis) and in the time domain (event-related potentials; ERPs). 

4.3.5 Phase coherence analysis 

 To test whether tone sequences are associated with dissociable spectral peaks in 

the neural responses at the element rate (4.048 Hz) and at the chunk rate (2.024 Hz), we 

analyzed the data in the frequency domain. Continuous data were segmented into epochs 

ranging from the onset to the offset of each trial (tone sequence). For each participant, 

channel, and sequence, we calculated the Fourier spectrum of EEG signals measured 

during that sequence. Based on previous literature, we then calculated the inter-trial 

phase coherence (ITPC), separately for each temporal condition (fully-predictable, 

temporally-local, temporally-global) according to the following equation (Ding and Simon, 
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2013) in order to infer phase consistency in each condition: 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑓𝑓 = ��𝛴𝛴𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙𝑓𝑓�
2 + �𝛴𝛴𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝜙𝜙𝑓𝑓�

2� 𝑁𝑁⁄ , 

 

where φf corresponds to the Fourier phase at a given frequency f, and N corresponds to 

the number of sequences (80 per condition). The same method was used to estimate the 

stimulus frequency spectrum by calculating the ITPC based on the raw stimulus 

waveform.  

In the initial analysis, ITPC estimates were averaged across EEG channels. To 

test for the presence of statistically significant spectral peaks, ITPC values at the single-

tone rate (4.048 Hz) and tone-pair rate (2.024 Hz) were compared against the mean of 

ITPC values at their respective neighboring frequencies (single-tone rate: 3.974 and 

4.124 Hz; tone-pair rate: 1.949 and 2.099 Hz) using paired t-tests.  

Furthermore, to test whether element-rate and chunk-rate spectral peaks observed 

at single EEG channels show modulations due to temporal predictability, spatial 

topography maps of single-channel ITPC estimates were converted to 2D images, 

smoothed with a 5 x 5 mm full-width-at-half-maximum (FWHM) Gaussian kernel, and 

entered into repeated-measures ANOVAs (separately for element-rate and chunk-rate 

estimates) with a within-subjects factor Time (fully predictable, temporally local, 

temporally global), implemented in SPM12 as a general linear model (GLM). To account 

for multiple comparisons and for ITC correlations across neighboring channels, statistical 

parametric maps were thresholded at p < 0.001 and corrected for multiple comparisons 

over space at a cluster-level pFWE < 0.05 under random field theory assumptions (Kilner 

et al., 2005).  

Finally, to test whether spectral signatures of temporal predictability are modulated 
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by experience with stimuli, we split the data into two halves (two consecutive bins of 40 

trials), separately for each condition. Element-rate and chunk-rate ITPC estimates were 

averaged across EEG channels and compared separately for each of the two halves 

using repeated-measures ANOVAs with a within-subjects factor Time (fully predictable, 

temporally local, temporally global).  

4.3.6 Event-related potentials 

 For the time-domain analysis, data were segmented into epochs ranging from -50 

ms before to 247 ms after deviant/standard tone onset, baseline-corrected from -25 ms 

to 25 ms to prevent epoch contamination due to the temporally structured presentation 

(Fitzgerald et al., 2021), and denoised using the “Dynamic Separation of Sources” (DSS) 

algorithm (de Cheveigné and Simon, 2008). Condition-specific ERPs (corresponding to 

element/chunk deviants and the respective standards, presented in each of the three 

temporal conditions) were calculated using robust averaging across trials, as 

implemented in the SPM12 toolbox, and low-pass filtered at 48 Hz (5th order zero-phase 

Butterworth). The resulting ERPs were analyzed univariately to gauge the effects of 

“what” and “when” predictions on evoked responses. ERP data were converted to 3D 

images (2D: spatial topography; 1D: time), and the resulting images were spatially 

smoothed using a 5 x 5 mm FWHM Gaussian kernel. The smoothed images were entered 

into a general linear model (GLM) implementing a 3 x 3 repeated-measures ANOVA with 

a within-subject factors Contents (standard, deviant element, deviant chunk) and Time 

(fully predictable, temporally local, temporally global). Beyond testing for the two main 

effects and a general 3 x 3 interaction, we also designed a planned contrast quantifying 

the congruence effect (i.e., whether “when” predictions specifically modulate the 
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amplitude of mismatch signals evoked by deviants presented at a time scale congruent 

with “when” predictions, i.e., deviant elements in the temporally-local condition and 

deviant chunks in the temporally-global conditions). To this end, we tested for a 2 x 2 

interaction between Contents (deviant element, deviant chunk) and Time (temporally 

local, temporally global). To account for multiple comparisons as well as for ERP 

amplitude correlations across neighboring channels and time points, statistical parametric 

maps were thresholded at p < 0.001 and corrected for multiple comparisons over space 

and time at a cluster-level pFWE < 0.05 under random field theory assumptions (Kilner et 

al., 2005).  

4.3.7 Brain-behavior correlations 

 To test whether the neural effects of “what” and/or “when” predictive processing 

correlate with each other, as well as with behavioral benefits of “when” predictions in the 

repetition detection task, we performed a correlation analysis across participants. Thus, 

for each participant, we calculated a single behavioral index (the difference between 

accuracy scores obtained in the temporally local vs. temporally global condition) and three 

statistically significant neural indices. The first neural index - the “congruence effect” - 

quantified the difference between deviant-evoked ERP amplitudes measured in the 

temporally congruent (deviant elements presented in the temporally local condition; 

deviant chunks presented in the temporally global condition) and incongruent (deviant 

chunks presented in the temporally local condition; deviant elements presented in the 

temporally global condition) conditions, averaged across electrodes in the significant 

cluster where we observed a significant congruence effect (i.e., a 2 x 2 interaction 

between “what” and “when” predictions; see Results and Figure 4.3C). The second neural 
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index - the “ITPC effect” - quantified the difference between the chunk-rate ITPC values 

obtained for temporally local vs. temporally global conditions in the second half of the 

experiment (see Results Figure 4.2D). The third neural index - the “mismatch effect” - 

quantified the difference between the absolute deviant-evoked and standard-evoked ERP 

amplitudes (averaged across significant channels and temporal conditions; Figure 

4.3AB), since we hypothesized that performance in the repetition detection task might be 

related to overall deviance detection, we also included an index of “what” predictions. We 

then fitted a linear regression model with three predictors (i.e., the three neural indices) 

regressed against the behavioral accuracy index, and identified outlier participants using 

a threshold of Cook’s distance exceeding 5 times the mean. Correlations between all 

measures were quantified using Pearson’s r and corrected for multiple comparisons using 

Bonferroni correction, implementing a conservative correction given no a priori 

assumptions about the correlation coefficients. 

4.3.8 Source reconstruction 

Source reconstruction was performed under group constraints (Litvak and Friston, 

2008) which allows for an estimation of source activity at a single-participant level under 

the assumption that activity is reconstructed in the same subset of sources for each 

participant. Sources were estimated using empirical Bayesian beamformer (Belardinelli 

et al., 2012; Little et al., 2018; Wipf and Nagarajan, 2009) based on the entire post-

stimulus time window (0-247 ms). Since in the ERP analysis (see Results) we identified 

two principal findings - namely a difference between ERPs evoked by deviants and 

standards, and an interaction between deviant type and temporal condition - we focused 

on comparing source estimates corresponding to these effects. In the analysis of the 
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difference between deviants and standards, source estimates were extracted for the 173-

223 ms time window, converted into 3D images consisting of 3 spatial dimensions and 

smoothed with a 10 x 10 x 10 mm FWHM Gaussian kernel. Smoothed images were then 

entered into a GLM implementing a 3 x 3 repeated-measures ANOVA with within-subjects 

factors of Content (standard, deviant element, deviant chunk) and Time (fully predictable, 

temporally local, temporally global). In the analysis of the interaction between deviant type 

and temporal condition, source estimates were extracted for the 130-180 ms and 

processed as above. Smoothed images were then entered into a GLM implementing a 2 

x 2 repeated-measures ANOVA with within-subjects factors of Content (deviant element, 

deviant chunk) and Time (temporally local, temporally global). To account for multiple 

comparisons as well as for source estimate correlations across neighboring voxels, 

statistical parametric maps were thresholded and corrected for multiple comparisons over 

space at a cluster-level pFWE < 0.05 under random field theory assumptions (Kilner et al., 

2005). Source labels were assigned using the Neuromorphometrics probabilistic atlas, as 

implemented in SPM12. 

4.3.9 Dynamic causal modeling 

Dynamic causal modeling (DCM) was used to estimate source-level connectivity 

parameters associated with general mismatch processing (deviant vs. standard) and with 

the contextual interaction between “what” and “when” predictions (element deviant 

presented in the temporally-local condition, and chunk deviant presented in the 

temporally-global condition, vs. element deviant presented in the temporally global 

condition, and chunk deviant presented in the temporally-local condition). DCM is a type 

of an effective connectivity analysis based on a generative model, which maps the data 
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measured at the sensor level (here: EEG channels) to source-level activity. The 

generative model comprises a number of sources which represent distinct cortical 

regions, forming a sparse interconnected network. Activity in each source is explained by 

a set of neural populations, based on a canonical microcircuit (Bastos et al., 2012), and 

modeled using coupled differential equations that describe the changes in postsynaptic 

voltage and current in each population. Here, we used a microcircuit consisting of four 

populations (superficial and deep pyramidal cells, spiny stellate cells, and inhibitory 

interneurons), each having a distinct connectivity profile of ascending and descending 

extrinsic connectivity (linking different sources) and intrinsic connectivity (linking different 

populations within each source). The exact form of the canonical microcircuit and the 

connectivity profile was identical as in previous literature on the topic (Auksztulewicz et 

al., 2018; Auksztulewicz and Friston, 2015; Fitzgerald et al., 2021; Rosch et al., 2019; 

Todorovic and Auksztulewicz, 2021). Importantly for our study, a subset of intrinsic 

connections corresponds to self-connectivity parameters, describing the neural gain of 

each region. Both extrinsic connectivity and gain parameters were allowed to undergo 

condition-specific changes, modeling differences between experimental conditions 

(deviants vs. standards, and the hierarchical interaction between “what” and “when” 

predictions). 

Here, we used DCM to reproduce the single-participant, condition-specific ERPs 

in the 0-247 ms range. Based on the source reconstruction (see Results) and previous 

literature (Garrido et al., 2009), we included six sources in the cortical network: bilateral 

primary auditory cortex (A1; Montreal Neurological Institute coordinates: left, [-42 -22 7]; 

right, [46 -14 8]), bilateral superior temporal gyrus (STG; left, [-60 -20 -8]; right, [59 -25 
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8]), right inferior frontal gyrus (IFG; [40 26 -6]), and left superior parietal lobule (SPL; [-26 

-40 46]). To quantify model fits, we used the free-energy approximation to model 

evidence, penalized by model complexity. The analysis was conducted in a hierarchical 

manner-first, model parameters (including extrinsic and intrinsic connections, as well as 

their condition-specific changes) were optimized at the single participants' level, and then 

the significant parameters were inferred at the group level. 

At the first level, models were fitted to single participants' ERP data over two 

factors: “what” predictions (all deviants vs. standards) and the contextual interaction 

between “what” and “when” predictions (element deviant presented in the temporally-local 

condition, and chunk deviant presented in the temporally-global condition, vs. element 

deviant presented in the temporally-global condition, and chunk deviant presented in the 

temporally-local condition). At this level, all extrinsic and intrinsic connections were 

allowed to be modulated by both factors, corresponding to a “full” model.  

Since model inversion in DCM is susceptible to local maxima due to the inherently 

nonlinear nature of the models, the analysis at the second (group) level implemented 

parametric empirical Bayes (Friston et al., 2015). Therefore, group-level effects were 

inferred by (re)fitting the same “full” models to single participants’ data, under the 

assumption that model parameters should be normally distributed in the participant 

sample, and updating the posterior distribution of the parameter estimates. We used 

Bayesian model reduction (Friston and Penny, 2011) to compare the “full” models against 

a range of “reduced” models, in which some parameters were not permitted to be 

modulated by the experimental factors. Specifically, we designed a space of alternative 

models, such that each model allowed for a different subset of connections to contribute 



 
108 

 

to the observed ERPs. The model space examined each combination of modulations of 

(1) ascending connections (e.g., from A1 to STG), (2) descending connections (e.g., from 

STG to A1), (3) lateral connections (e.g., from left to right STG), and (4) intrinsic 

connections (i.e., gain parameters). This resulted in 256 models (16 models for each of 

the two factors). The free-energy approximation to log-model evidence was used to score 

each model. Since no single winning model was selected (see Results), Bayesian model 

averaging was used to obtain weighted averages of posterior parameter estimates, 

weighted by the log-evidence of each model. This procedure yielded Bayesian confidence 

intervals for each parameter, quantifying the uncertainty of parameter estimates. 

Parameters with 99.9% confidence intervals falling either side of zero (corresponding to 

p < 0.001) were selected as statistically significant. 

 

4.4 Results 

4.4.1 Behavioral results 

Performance across all trials revealed significant differences in accuracy across 

conditions (main effect of Time: F2,38 = 7.3530, p = 0.002), corresponding to significantly 

lower accuracy in the temporally-global condition (mean ± SEM: 63.88% ± 3.65%) than 

in the fully-predictable (mean ± SEM: 67.75% ± 4.64%; t19 = -2.5272, p = 0.0205) and 

temporally-local conditions (mean ± SEM: 69.12% ± 3.55%; t19 = -5.984, p < 0.001) 

(Figure 4.1C). Reaction times also significantly differed across conditions (F2,38 = 3.5543, 

p = 0.0385), with post-hoc analysis revealing that reaction times were significantly faster 

in the fully-predictable condition (mean ± SEM: 511 ± 74 ms) than in the temporally-global 

condition (mean ± SEM: 653 ± 79 ms; t19 = 2.4089, p = 0.0263). The difference between 
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the fully-predictable condition and the temporally-local condition (mean ± SEM: 649 ± 83 

ms) trended towards significance (t19 = 2.0132, p = 0.0585). No significant difference 

was observed between the temporally-global condition and the temporally-local condition 

(p = 0.9013). 

4.4.2 Phase coherence analysis 

 In the EEG spectrum of inter-trial phase coherence (ITPC; averaged across 

conditions and channels), both element-rate peak (4.048 Hz) and chunk-rate peak (2.024 

Hz) were observed, relative to neighboring frequency points (element-rate: t19 = 6.8489, 

p < 0.001; chunk-rate: t19 = 3.6274, p = 0.0018). The ITPC peak estimates differed 

between experimental conditions, reflecting differences in the stimulus spectrum. 

Specifically, the chunk-rate ITPC estimates were higher in the fully-predictable and 

temporally-global conditions than in the temporally-local conditions, and this effect was 

observed at most of the EEG channels (Fmax = 46.30, Zmax = 6.43, pFWE < 0.001; pairwise 

comparisons: fully-predictable vs. temporally-local, Tmax = 8.02, Zmax = 6.10, pFWE < 0.001; 

temporally-global vs. temporally-local, Tmax = 9.62, Zmax = 6.81, pFWE < 0.001; fully-

predictable vs. temporally-global, all pFWE > 0.05). On the other hand, the chunk-rate ITPC 

estimates were higher in the temporally-global condition than in the other two conditions, 

and this effect was observed over right lateral channels (Fmax = 7.45, Zmax = 2.90, pFWE = 

0.031; pairwise comparisons: temporally-global vs. fully-predictable, Tmax = 3.81, Zmax = 

3.48, pFWE = 0.004; temporally-global vs. temporally-local, Tmax = 3.83, Zmax = 3.50, pFWE 

= 0.001; fully-predictable vs. temporally-local, all pFWE > 0.05). Interestingly, the chunk-

rate differences between conditions built up during the experiment: they were absent 

during the first half of the experiment (F2,59 = 1.0433, p = 0.3622), and were only observed 
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during the second half of the experiment (F2,59 = 3.8798, p = 0.0293). This was not the 

case for the element-rate differences between conditions, which were stable during the 

experiment (first half: F2,59 = 26.1701, p < 0.001; second half: F2,59 = 26.9480, p < 0.001). 

 The emergence of chunk-rate differences in ITPC over the course of the 

experiment was reflected in behavior. Specifically, RTs decreased for the second half of 

the experiment, relative to the first half, only for the temporally-global condition 

(Wilcoxon’s signed rank test: Z19 = -2.0926, p = 0.0364) but not for the fully-predictable 

condition (Z19 = -1.6902, p = 0.0910) or the temporally-local condition (Z19 = -0.8213, p = 

0.4115). No differences in accuracy were observed for any of the three conditions across 

the first and second halves of the experiment (all p > 0.05).  

 

 
Figure 4.2 Spectral signatures of temporal predictability. (A) Inter-trial phase coherence (ITPC) in the 

stimulus spectrum. Black: fully-predictable, cyan: temporally-local, magenta: temporally-global. Chunk-rate 

(2.024 Hz) and element-rate (4.048 Hz) peaks are indicated by dashed vertical lines. (B) ITPC based on 

EEG activity (averaged across channels). Legend as above. Shaded areas indicate SEM across 

participants. (C) EEG topography maps of main effects of Condition (fully predictable vs. temporally local 

vs. temporally global) on the chunk-rate peak ITPC (left panel) and tone-rate peak ITPC (right panel). 

Statistical F values are represented on the color scale. Unmasked area corresponds to significant clusters 

(pFWE < 0.05). (D) Chunk-rate (left panel) and element-rate (right panel) peak ITPC values plotted separately 

for the 1st half and 2nd half of the trials. Error bars denote SEM across participants.  
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4.4.3 Event-related potentials 

To test for effects of “what” and “when” predictions on ERP amplitudes, we 

analyzed the data in the time domain. ERP amplitudes differed significantly between 

deviant and standard tones, pooled over temporal conditions (Figure 4.3A; posterior 

cluster: 173-223 ms, Fmax = 53.94, Zmax = 6.68, pFWE < 0.001; anterior cluster: 177-220 

ms; Fmax = 37.57; Zmax = 5.67; pFWE < 0.001), corresponding to a typical anterior-posterior 

MMN topography after common-average referencing (Mahajan et al., 2017). When 

analyzing specific deviant types (element and chunk deviants vs. their respective 

standards), significant differences between deviants and standards were observed in both 

cases (element deviants vs. standards: posterior cluster, 173-223 ms, Fmax = 41.50, Zmax 

= 5.94, pFWE < 0.001; anterior cluster, 177-227 ms; Fmax = 35.56; Zmax = 5.52; pFWE < 

0.001; chunk deviants vs. standards: posterior cluster, 170-220 ms, Fmax = 45.63, Zmax = 

6.20, pFWE < 0.001; anterior cluster, 177-213 ms; Fmax = 30.17; Zmax = 5.11; pFWE < 0.001). 

No significant differences were observed between the two deviant types, pooling over 

temporal conditions (pFWE > 0.05). Thus, the main effect of “what” predictions 

differentiated between deviants and standards, but not between deviant types. 

In the analysis of the main effect of “when” predictions (pooled over deviants and 

standards), no significant differences between the three temporal conditions were 

revealed (all pFWE > 0.05). Similarly, in the analysis of the interaction effect of “what” and 

“when” predictions (pooled over deviant types), no significant effects were revealed. 

Specifically, neither deviants nor standards showed significant ERP amplitude differences 

when presented in different temporal contexts (all pFWE > 0.05). Thus, the overall temporal 
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structure of the sound sequences did not affect the element-evoked responses (averaged 

across deviants and standards) or the mismatch responses (differences between 

deviants and standards). 

However, an analysis of the interaction between “what” and “when” predictions  

based on deviants presented in congruent temporal contexts (e.g. element deviants in 

the temporally-local condition) and those presented in non-temporally congruent contexts 

(e.g. element deviants in the temporally-global condition) revealed a significant interaction 

between deviant type and temporal condition (Figure 4.3B; left central-posterior cluster: 

130-180 ms, Fmax = 20.63, Zmax = 4.24, pFWE = 0.044). Post-hoc analysis revealed that 

MMR amplitudes in temporally-local were significantly larger for deviant elements (mean 

± SEM: -0.1640 ± 0.0942 μV) than for deviant chunks (mean ± SEM: 0.0091 ± 0.1010 μV; 

t19 = 2.2843, p = 0.0340, two-tailed). In the temporally-global condition, MMR amplitude 

was observed to be nominally larger for deviant chunks (mean ± SEM: -0.1725 ± 0.0851 

μV) than for deviant elements (mean ± SEM: -0.0155 ± 0.1233 μV), although the effect 

did not reach significance (t19 = 1.9024, p = 0.0724, two-tailed). No significant interaction 

effects were revealed when comparing deviant types between the fully-predictable 

condition and either the temporally-global or the temporally-local conditions. Thus, we 

observed a specific increase in deviant ERP amplitude when this deviant was presented 

in a temporally congruent context.  
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Figure 4.3 Event-related potentials. (AB) Main effect of content-based predictions (deviant vs. standard) in 
anterior (A) and posterior (B) clusters. Left panels: time courses of ERPs averaged over the spatial 
topography clusters shown in the right panels. Shaded area denotes SEM across participants. Black 
horizontal bar denotes pFWE < 0.05. Middle panels: mean voltage values for standards (blue) and deviants 
(red). Right panels: spatial distribution of the main effect. Color bar: F value. (C) Contextual interaction 
between content-based predictions (deviant element vs. deviant chunk) and temporal predictions 
(temporally global vs. temporally local). Left panels: time courses of ERPs averaged over the spatial 
topography clusters shown in the right panels. Black horizontal bar denotes pFWE < 0.05. Middle panels: 
mean voltage values for the six deviant conditions. Right panels: spatial distribution of the interaction effect. 
Color bar: F value.  
 

4.4.4 Brain-behavior correlation analysis 

Three neural predictors (the “congruence index”, quantifying the interactive effects 

of “what” and “when” predictions on ERPs; the “ITPC index”, quantifying the effect of 

“when” predictions on ITPC; and the “mismatch index”, quantifying the effect of “what” 



 
114 

 

predictions on ERPs) were tested as potential correlates of the behavioral benefits in the 

repetition detection task accuracy. We identified two outlier participants based on a linear 

regression model. Having excluded these two participants, we did not find any significant 

correlations between the neural indices and the behavioral index (Pearson’s r; all p > 0.2), 

suggesting that behavior in the repetition detection task is not functionally related to ERP 

signatures of deviance detection. However, we did find a significant correlation between 

the congruence index and the ITPC index (r = 0.6439; p = 0.0039; corrected), such that 

the magnitude of the ERP difference between deviants presented in the temporally 

congruent vs. incongruent conditions positively correlated with the magnitude of the ITPC 

difference between temporally-local and temporally-global conditions.  

4.4.5 Source reconstruction 

To identify the most plausible sources underlying the observed ERP differences 

between deviants and standards, as well as the contextual interaction between deviant 

types and temporal conditions, we carried out a source reconstruction analysis (Figure 

4.4). Overall, source reconstruction explained 76.43 ± 3.08% (mean ± SEM across 

participants) of sensor-level variance. 
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Figure 4.4 Source reconstruction. (A) Regions showing a significant main effect of content-based 
predictions (deviant vs. standard). Inset shows average source estimates per condition. Error bars denote 
SEM across participants. (B) Regions showing a significant contextual interaction effect between content-
based predictions (deviant element vs. deviant chunk) and temporal predictions (temporally local vs. 
temporally global). Figure legend as in (A).  
 

The difference between source estimates associated with deviants and standards 

was localized to a large network of regions (see Table 4.1 for full results), including 

bilateral auditory cortex (AC) and superior temporal gyri (STG) and the right inferior frontal 

gyrus (IFG). On the other hand, the interaction effect between deviant types and temporal 

conditions was localized to a spatially confined cluster in the left superior parietal lobule 

(SPL; see Table 4.1). A post-hoc analysis revealed that, in this cluster, element deviant 

responses presented in the temporally-local condition were associated with weaker 

source estimates than chunk deviant responses presented in the temporally-local 

condition (Tmax = 3.67, Zmax = 3.46, pFWE = 0.009, small-volume corrected). Similarly, 
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chunk deviant responses presented in the temporally-global condition were associated 

with weaker source estimates than element deviant responses presented in the 

temporally-global condition (Tmax = 5.79, Zmax = 5.11, pFWE = 0.003, small-volume 

corrected). Thus, while the deviant processing could be linked to a wide network of 

auditory and frontal regions, deviants presented in the corresponding temporal 

predictability conditions (e.g., element deviants in the temporally-local context) were 

associated with a relative decrease of left parietal activity. 

 

Effect Cluster label Peak 
MNI 
coords 

Fmax Zma
x 

Vox
el 
exte
nt 

pFWE 

Deviant vs. standard Right transverse temporal 
gyrus / auditory cortex (AC) 

48 -20 
12 

53.9
9 

4.8
3 

2050
8 

< 
0.001 

Right superior temporal 
gyrus (STG) 

44 -48 
12 

40.1
5 

4.4
2 

Right inferior frontal gyrus 
(IFG) 

40 26 -
6 

34.5
2 

4.2
0 

Left transverse temporal 
gyrus / auditory cortex (AC) 

-38 -28 
12 

34.3
1 

4.2
0 

2177 0.003 

Left superior temporal gyrus 
(STG) 

-60 -20 
-8 

31.1
9 

4.0
6 

("element" vs. 
"chunk" deviant) x 
(temporally-local vs. 
temporally-global) 

Left superior parietal lobule 
(lSPL) 

-26 -40 
46 

49.3
7 

5.8
2 

3073 0.003 

 
Table 4.1. Source reconstruction results. Summary of significant clusters showing differences between 
conditions. 
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4.4.6 Dynamic causal modeling  

 To infer the most likely effective connectivity patterns underlying the observed ERP 

results, we used the six main cortical regions identified in the source reconstruction 

results as regions of interest (ROIs) to build a generative model of the ERP data. A fully 

interconnected model, fitted to each participants’ ERP data, explained on average 

71.03% of the ERP variance (SEM across participants 2.81%).  

Bayesian model reduction was used to obtain connectivity and gain parameters of 

a range of reduced models, in which only a subset of parameters were allowed to be 

modulated by the two conditions (deviant vs. standard; interaction deviant element/chunk 

x temporally-local/global). Using this procedure, we identified a single winning model, in 

which “what” predictions (deviant vs. standard) modulated all types of connections 

(ascending, descending, lateral, and intrinsic), while the interaction between “what” and 

“when” predictions modulated three out of four types of connections (ascending, lateral, 

and intrinsic). The difference between the free-energy approximation to log-model 

evidence between the winning model and the next-best model (i.e., log Bayes factor) was 

5.6615, corresponding to very strong evidence for the winning model (>99% probability). 

Therefore, the resulting Bayesian model average, implemented to integrate model 

parameter estimates from the entire model space, was mostly informed by the single 

winning model. 

The posterior parameter estimates of the Bayesian model average are plotted in 

Figure 4.5A and reported in Table 4.2. The results revealed that deviant processing (as 

opposed to standard processing) significantly increased nearly all connectivity estimates 

(probability of increase >99.9% for all parameters), corresponding to an increase in 
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excitatory ascending connectivity and in inhibitory descending and intrinsic (gain) 

connectivity - with the exception of the intrinsic self-inhibition in the left SPL region, which 

was significantly decreased following deviant processing, as well as the bidirectional 

connectivity between the left SPL and right IFG, which was not affected by deviant 

processing.  

The interaction between deviant type (deviant element vs. deviant chunk) and 

temporal predictability (temporally-global vs. temporally-local) modulated a more 

nuanced connectivity pattern. At the hierarchically lower level (between A1 and STG), 

deviants processed in a temporally congruent condition (i.e., deviant elements in the 

temporally-local condition, and deviant chunks in the temporally-global condition) 

decreased excitatory ascending connectivity from A1 to STG and inhibitory self-

connectivity in A1. Conversely, at the hierarchically higher level (between STG and the 

fronto-parietal regions), deviants processed in a temporally congruent condition 

increased excitatory ascending connectivity from STG to SPL/IFC and inhibitory self-

connectivity in the STG. Furthermore, deviants processed in a temporally congruent 

condition (1) increased lateral connectivity between the left and right STG, (2) decreased 

cross-hemispheric ascending connectivity between the STG regions and the fronto-

parietal regions, and (3) increased self-inhibition in the left SPL region. 
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Figure 4.5 Dynamic causal modeling. Posterior model parameters. Separate panels show different 
condition-specific effects. Black arrows: excitatory connections; red arrows: inhibitory connections; solid 
lines: condition-specific increase; dashed lines: condition-specific decrease. Significant parameters  
(p < 0.001) shown in black/red, remaining connections (constant excitation/inhibition) shown in gray.   
 
 
 
 

Connection 
type 

Connection 
label 

Effect of content-based 
predictions (deviant vs. 
standard) 

Effect of contextual 
interaction (congruent 
vs. incongruent) 

Intrinsic (gain) lA1->lA1 50% self-inhibition increase 26% self-inhibition 
decrease 

rA1->rA1 9% self-inhibition increase 13% self-inhibition 
decrease 

lSTG->lSTG 44%  self-inhibition 
increase 

9% self-inhibition increase 

rSTG->rSTG 35%  self-inhibition 
increase 

33% self-inhibition 
increase 

lSPL->lSPL 42%  self-inhibition 
decrease 

12% self-inhibition 
increase 

rIFG->rIFG 11%  self-inhibition 
increase 

n.s. 
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Extrinsic 
(ascending) 

lA1->lSTG 21% excitation increase 16% excitation decrease 

 rA1->rSTG 13%  excitation increase 10% excitation decrease 

 lSTG->lSPL 33%  excitation increase 20% excitation increase 

 rSTG->rIFG 34%  excitation increase 33% excitation increase 

 lSTG->rIFG 41%  excitation increase 13% excitation decrease 

 rSTG->lSPL 34%  excitation increase 10% excitation decrease 

Extrinsic 
(descending) 

lSTG->lA1 140% inhibition increase n.s. 

 rSTG->rA1 151%  inhibition increase n.s. 

 lSPL->lSTG 111%  inhibition increase n.s. 

 rIFG->rSTG 10%  inhibition increase n.s. 

 rIFG->lSTG 24%  inhibition increase n.s. 

 lSPL->rSTG 166%  inhibition increase n.s. 

Extrinsic 
(lateral) 

lSTG->rSTG 88% excitation increase 60% excitation increase 

 rSTG->lSTG 13% excitation increase 20% excitation increase 

 lSPL->rIFG n.s. n.s. 

 rIFG->lSPL n.s. n.s. 
 
Table 4.2. Dynamic causal modeling results. Summary of significant condition-specific effects on 
connectivity estimates.  
 

4.5 Discussion 

 In the present study, we found that “when” predictions modulate MMR to violations 

of “what” predictions in a contextually specific fashion, such that more local “when” 

predictions modulated responses to single deviant elements, while more global “when” 

predictions modulated responses to deviant chunks, indicating a congruence effect in the 

processing of “what” and “when” predictions at different contextual levels in the auditory 
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system. The authors interpret this as levels of processing hierarchy, however it is worth 

noting that alternate interpretations of this effect could rely on simple contextual pairings 

such as position effects within the sequence. While “what” and “when” kinds of predictions 

showed interactive effects for both levels, both interaction effects (e.g. chunk-rate/deviant 

chunk and element-rate/deviant element) were associated with similar spatiotemporal 

patterns of EEG evoked activity modulations, and linked in the DCM analysis to a 

widespread connectivity increase at relatively late stages of cortical processing (between 

the STG and the fronto-parietal network). These findings suggest that the integration of 

“what” and “when” predictions, while contextually specific, is mediated by a shared and 

distributed cortical network.  

Deviant responses to “what” prediction violations within melodic sequences and 

tone contours are well documented, having been used to explore a variety of phenomena 

in the auditory system (see Yu et al., 2015 for a partial review). Deviant tones within 

familiar musical scales have been found to elicit higher MMR amplitudes compared to 

those of unfamiliar scales are tones presented without a scale structure (Brattico et al., 

2001), as well as higher deviant responses to out-of-scale notes in unfamiliar melodies 

(Brattico et al., 2006). Deviant responses to manipulated musical characteristics within 

melodic sequences (e.g. timing, pitch, transposition, melodic contour) have similarly been 

demonstrated in musician and non-musician groups (Tervaniemi et al., 2014; Vuust et al., 

2011). In predictive coding frameworks, such evoked responses can be understood in the 

context of prediction error, wherein bottom-up error signaling triggers the adjustment of 

higher-level models of the stimulus train formed as a result of perceptual learning during 

repeated stimulus presentation (Garrido et al., 2009). Such hierarchical relationships 
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have been quantified using DCM (Auksztulewicz and Friston, 2016), and are consistent 

with our analysis of the evoked responses observed herein. The resultant model shows 

increased connectivity throughout the network, consistent with increased error signaling 

(ascending connections), predictive template updates (descending connections), and 

gain connectivity evident in a decrease in gain following predictions errors. Our source 

reconstruction was equally consistent with existing literature revealing bilateral activity in 

the primary auditory cortex (A1) and higher-order auditory regions in the superior 

temporal gyrus (STG), as well as the right inferior frontal gyrus (IFG) (Garrido et al., 2008; 

Giroud et al., 2020). 

Turning to “when” predictions, the results of our frequency domain analysis show 

that the EEG spectrum largely follows that of the stimulus spectrum. However, ITPC 

peaks at the pair-tone rate of ‘fully predictable’ and ‘temporally local’ sequences are 

significantly larger than neighboring frequencies, which is not the case in the stimulus 

spectrum, indicating that ITPC peaks do not just follow the stimulus spectrum but also 

reflect the neural processing of sequence structures at higher levels (e.g. chunking (Kotz 

et al., 2018)) . Indeed, our behavioral results show faster reaction times in temporally 

predictable conditions, supporting the notion of neural entrainment to stimulus periodicity, 

results which mirror previous behavioral studies (Morillon et al., 2016).  We found that the 

EEG-based ITPC response at tone-rate is stronger near central electrodes, with results 

consistent with existing EEG studies (Ding et al., 2017). Additionally, the chunk-rate effect 

is predominantly present in the right hemisphere, suggesting that the contextual structure 

of non-linguistic sequences can be entrained by parallel neural activity in different regions 

at distinct time scales - consistent with existing research (Giroud et al., 2020). 
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Interestingly, the ITPC differences between conditions (temporally-local vs. global) 

emerged during the experiment in chunk-rate peaks, but not in telement-rate peaks, 

suggesting that rapid learning could modulate neural entrainment to auditory sequences 

with different regularities at the chunk-rate level. Similarly, a previous study (Moser et al., 

2021) found significant differences in non-linguistic triplet-rate ITPC peaks between 

structured and random conditions, occurring during early exposure. This ITPC difference 

suggests a fine shift in sequence encoding, with different regularities from single elements 

to integrated chunks. Notably, we also found correlations between the ITPC difference 

conditions and the congruence effect of ERP amplitude, indicating a mutual network 

between neural entrainment and prediction. 

In addition to their dissociable main effects on neural activity, “what” and “when” 

predictions modulated element-evoked response amplitude interactively and in a 

contextually specific manner, such that faster “when” predictions amplified MMRs to less 

complex “what” prediction violations (single elements), while slower “when” predictions 

amplified MMRs to more complex “when” prediction violations (chunks). These findings 

extend the result of previous studies, which showed that “when” predictions modulate 

MMR amplitude (Jalewa et al., 2021; Lumaca et al., 2019; Takegata and Morotomi, 1999; 

Todd et al., 2018; Yabe et al., 1997), by showing that these modulatory effects are specific 

with respect to the complexity of “what” predictions. Dynamic causal modeling of our ERP 

data showed partially dissociable connectivity patterns between the main effect of "what" 

predictions (i.e., all deviants vs. all standards), which increased recurrent connectivity 

throughout the network (Auksztulewicz and Friston, 2015; Fitzgerald et al., 2021; Garrido 

et al., 2008), and "what"/"when" interactive effects, which had a more nuanced pattern of 
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effects on neural activity. Specifically, congruent “what” and “when” predictions decreased 

recurrent connectivity at lower parts of the network (between A1 and the STG), while at 

the same time increasing recurrent connectivity at higher parts of the network (between 

STG and the fronto-parietal regions). Previous DCM work has shown similar dissociations 

between processing deviants based on violations of relatively simple predictions vs. 

complex contextual information, indicating the higher-order regions as sensitive to 

complex prediction violations (Fitzgerald et al., 2021). Additionally, in the current results, 

the main effect of “what” predictions and the contextually specific integration of “what” 

and “when” predictions had opposing effects on the neural gain estimates for the left SPL 

region, which displayed decreased self-inhibition (increased gain) following deviant 

processing but increased self-inhibition (decreased gain) following prediction integration. 

These results mirror our source reconstruction, wherein deviants presented in congruent 

temporal conditions were associated with decreased left parietal activity, and imply the 

left parietal cortex - recently shown to mediate the integration of “what” and “when” 

information in speech processing (Orpella et al., 2020) - in the more general process of 

integrating “what” and “when” predictions also for non-speech stimuli. It is worth noting 

that while “when” predictions did not elicit a significant main effect on ERP amplitude, it 

is possible this finding may have resulted from design constraints, as all conditions 

contained only “what” (repetition detection) tasks, suggestive of previous studies on the 

role of attention in parallel temporal and mnemonic predictive processing (Lakatos et al., 

2013; Wollman and Morillon, 2018).  

Previous studies have shown that the processing of musical information requires 

predictive mechanisms for timing of content of auditory events, and that such predictions 



 
125 

 

can have modulatory effects at different cortical levels when presented within the 

framework of melodic expectation (Di Liberto et al., 2020; Royal et al., 2016). Musical 

stimuli presents us with an intriguing opportunity to investigate predictive coding 

mechanisms, as the statistical regularities within musical frameworks are well defined and 

intrinsically learned. In particular, such structures allow us to disassociate “what” and 

“when” predictions while keeping other elements of a stimulus stream intact across 

manipulations and trials. Studies have demonstrated an early right anterior negativity 

(ERAN) in contexts where musical syntax has been violated, as opposed to the 

comparatively low-level acoustic diavations that elicit a MMN response (see Koelsch et 

al., 2019 for review). Because the presence of musical syntax violations require 

knowledge acquired through long-term repeated exposure to music, long-term memory 

recall is involved in establishing those regularities. The role of memory in syntactical 

prediction violation is an avenue ripe for further investigation, and future studies may wish 

to extend our paradigm to further probe the observed late-series ITPC pair-rate 

differences in that context. Furthermore, since “what” and “when” predictions are also 

ubiquitous in other stimulus domains - most prominently in speech perception - future 

research should test whether similar contextual specificity of “what” and “when” 

predictions as observed here also governs speech processing.  

 

 

Chapter 5. Summary and Conclusions 

 
1. The results of Chapter 2 show that in both awake humans monitored with EEG 

and anesthetized rats fitted with ECoG arrays, the acoustic frequency of recent 
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tokens could be decoded from neural activity evoked by pure tones as well as that 

evoked by neutral frozen noise burst stimuli presented during silent-state auditory 

sensory memory retention. This finding demonstrates that memory contents can 

be decoded in different species and different states using homologous methods, 

suggesting that the mechanisms of sensory memory encoding are evolutionarily 

conserved across species.  

 

2. The results of Chapter 3 show that mnemonic and predictive representations of 

auditory stimuli can be simultaneously decoded from neural activity measured 

under passive listening in anesthetized rats. Memory and prediction decoding is 

observed at overlapping latencies, but based on largely uncorrelated data features, 

suggesting partly dissociable underlying mechanisms. Predictive representations 

are dynamically updated over the course of stimulation, suggesting a gradual 

formation of prediction, even under anesthesia. 

 

3. The results of Chapter 4 show that temporal predictions interactively modulate 

neural activity evoked by mispredicted stimulus contents in a contextually 

congruent manner, such that local (vs. global) time-based predictions modulated 

content-based predictions of sequence elements (vs. chunks). These modulations 

were shared between contextual levels in terms of the spatiotemporal distribution 

of neural activity, suggesting that the brain integrates different predictions with a 

high degree of contextual specificity, but in a shared and distributed cortical 

network.  
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The above experiments investigated the neural mechanisms responsible for the 

brain’s ability to process complex sequences of auditory sensory information, allowing it 

to learn statistical regularities, form predictive models based on those regularities, and 

encode mnemonic representations of sensory events used in storage and error 

correction. Future research could expand on the findings outlined above in 1. by applying 

similar methods in different attentional/conscious states (e.g. asleep or unconscious 

humans and awake rats), or refine the stimulus paradigms to further differentiate between 

passive sensory memory and active working memory processes across species. As the 

results discussed in 2. presented streams of stimulus tokens that were interrupted by 

bursts of white noise, researchers of the auditory "filling-in" phenomenon may find an 

analog in our paradigm, as modifications to the paradigm could provide an interesting 

platform to explore physically masked but perceptually and behaviorally perceived 

stimulus tokens.  

As the findings discussed in 2. also demonstrate a correlation between statistical 

learning and relative decoding strength of predictable tokens within a sequence, this 

technique could potentially be employed to probe the effect of such models on syntactic 

predictability during the presentation of naturalistic stimuli such as music and language. 

Indeed, the frameworks proposed by Dehaene, et. al (2015) offer an interesting lens 

through which these results might be interpreted. To briefly recap, the framework 

proposes a taxonomy five underlying neural mechanisms corresponding to sequence 

processing at five increasing layers of abstraction. The first type of sequence processing 

relies on timing and transition information to parse steams based on temporal regularities, 

while in the second layer chunking occurs based also on the content of the stream, where 
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several tokens are grouped into a single (e.g. a “chunk”). The third layer of abstraction 

comes in the form of ordinal knowledge, where the relative position of tokens within a 

sequence are processed. In the fourth layer, so-called “algebraic patterns” are processed, 

wherein relationships across chunked tokens (e.g. AAB and XXY containing patterns of 

two identical items followed by a third item which is different). Finally, in the fifth layer, 

“nested tree structures” rely on symbolic rules such grammar and semantic meaning.  

In the context of this framework, my use of streamed triplets the stimulus design 

of 3. can allow for several types of neural representations at several of the proposed 

hierarchical levels. As all stimulus tokens were presented in repeated triplet streams, they 

would at the most basic level require chunking into those triplets. In order for the brain to 

form the predictions that were observed in my decoding analysis, algebraic patterns 

would also need to be extracted, as the form of each triplet would necessitate the 

processing of a given triplet form. Although our experiment was not designed to answer 

this question, it would be interesting in a follow-up analysis to investigate if different 

algebraic patterns result in different learning effects (e.g. an XXY pattern as opposed to 

a XYZ pattern). However, this may be difficult in my design as there was no control for 

how the triplets might be chunked, given they were presented in streams with a fixed ISI 

– a XXY triplet may well be chunked as XYX or YXX. Similarly, ordinal knowledge would 

be difficult to quantify, given that relative position of chunked elements may be in an 

ambiguous order, particularly after omissions/bursts when the stream of triplets would 

resume at an arbitrary starting point. This line of inquiry seems particularly well-suited to 

human experimentation where studies might be designed specifically to establish 

behavioral metrics into how such streams and predictions are processed within the 
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framework proposed by Dehaene et al (2015). The observed topographical differences in 

mnemonic and predictive decodability of predictable tokens may also lend important 

insights into the segregation of prediction-specific neuronal populations within the same 

hierarchically-organized cortical pathways. Extensions of 2. are currently being drafted to 

employ similar paradigms in human fMRI to enhance our understanding of topographical 

specificity of mnemonic and predictive representations and single-unit measurements in 

rodent prefrontal and sensory cortices to further investigate the presence of laminar-

based hierarchies implied by the predictive coding framework.  

The findings outlined in 3. correspond to “what” and “when” predictions that are 

also ubiquitous in speech perception. As with results presented in 2. (above), the 

Dehaene framework could be applied to several aspects of my findings, which may 

provide fertile ground for extensions and alternate interpretations. For example, in my 

interpretation, all stages of the proposed framework are engaged by the stimuli, owing to 

the nature of its design. On the simplest layer of the taxonomy, each tone within the 

sequence is either presented at a fixed timing interval or has that interval manipulated, 

allowing me to probe transition and timing knowledge. The loud-soft tones further become 

chunked into pairs, while ordinal knowledge is implicit in the understanding of scale 

contour, and algebraic patterns would be present in the repeated pattern of 7 tones which 

make up either an ascending or descending scale. Finally, nested tree structures are 

present in my interpretation of error detection on global scales, as an understanding of 

the scale as a whole would be required in order for experimental manipulations at the 

penultimate tone to elicit a global “what” error when the trajectory of the scale has been 

disrupted (e.g. “this is a full/correct scale” in the context of nested structures as opposed 
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to “a scale consists of 7 tones where each tone is high/lower than the next” in the context 

algebraic patterns). An alternate interpretation of what I have categorized as “hierarchal” 

effects could be one of ordinal effects – the observed effect may be a result of errors that 

always occur at a given position within scales, as global and local “what” manipulations 

always occur at either the final or penultimate position within a scale. Although my 

analyses imply this is not the case, further analysis or a refinement of experimental design 

may be needed to fully discount this alternate interpretation. As my paradigm was 

designed to map onto layers of hierarchy in language processing (e.g. chunked pairs and 

scales are analogous to words and sentences), future research lines could investigate 

similar phenomena in language processing, and explore the extent to which contextual 

specificity of “what” and “when” predictions also govern speech processing. 
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