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Abstract

In this thesis, we study the uniform asymptotic behavior of the Meixner

polynomials and some q-orthogonal polynomials as the polynomial degree n tends

to infinity.

Using the steepest descent method of Deift-Zhou, we derive uniform asymp-

totic formulas for the Meixner polynomials. These include an asymptotic formula

in a neighborhood of the origin, a result which as far as we are aware has not

yet been obtained previously. This particular formula involves a special function,

which is the uniformly bounded solution to a scalar Riemann-Hilbert problem,

and which is asymptotically (as n → ∞) equal to the constant “1” except at

the origin. Numerical computation by using our formulas, and comparison with

earlier results, are also given.

With some modifications of Laplace’s approximation, we obtain uniform

asymptotic formulas for the Stieltjes-Wigert polynomial, the q−1-Hermite poly-

nomial and the q-Laguerre polynomial. In these formulas, the q-Airy polynomial,

defined by truncating the q-Airy function, plays a significant role. While the

standard Airy function, used frequently in the uniform asymptotic formulas for

classical orthogonal polynomials, behaves like the exponential function on one

side and the trigonometric functions on the other side of an extreme zero, the

q-Airy polynomial behaves like the q-Airy function on one side and the q-Theta

function on the other side. The last two special functions are involved in the

local asymptotic formulas of the q-orthogonal polynomials. It seems therefore

reasonable to expect that the q-Airy polynomial will play an important role in

the asymptotic theory of the q-orthogonal polynomials.
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Chapter 1

Introduction

1.1 The Meixner polynomials and some

q-orthogonal polynomials

In this thesis, we investigate the asymptotic behavior of the Meixner polyno-

mials and some q-orthogonal polynomials. These polynomials have many applica-

tions in statistical physics. For instance, the Meixner polynomials are related to

the study of the shape fluctuations in a certain two dimensional random growth

model; see [18] and references therein. Furthermore, it has been shown in [4]

that the Stieltjes-Wigert polynomials, one typical example of the q-orthogonal

polynomials, are of significance in the study of non-intersecting random walks.

For β > 0 and 0 < c < 1, the Meixner polynomials are explicitly given

by [19, (1.9.1)]

Mn(z; β, c) = 2F1

(−n,−z

β

∣∣∣∣1−
1

c

)
=

n∑

k=0

(−n)k(−z)k

(β)kk!

(
1− 1

c

)k

. (1.1)

They satisfy the discrete orthogonality condition [19, (1.9.2)]

∞∑

k=0

ck(β)k

k!
Mm(k; β, c)Mn(k; β, c) =

c−nn!

(β)n(1− c)β
δmn, (1.2)

and the recurrence relation [19, (1.9.3)]

zMn(z; β, c) =
(n + β)c

c− 1
Mn+1(z; β, c)− n + (n + β)c

c− 1
Mn(z; β, c)

+
n

c− 1
Mn−1(z; β, c). (1.3)

Not much is known about the asymptotic behavior of the Meixner polyno-

mials for large values of n. Using probabilistic arguments, Maejima and Van
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Assche [21] have given an asymptotic formula for Mn(nα; β, c) when α < 0

and β is a positive integer. Their result is in terms of elementary functions.

In [16], Jin and Wong have used the steepest-descent method for integrals to

derive two infinite asymptotic expansions for Mn(nα; β, c). One holds uniformly

for 0 < ε ≤ α ≤ 1 + ε, and the other holds uniformly for 1 − ε ≤ α ≤ M < ∞;

both expansions involve the parabolic cylinder function and its derivative.

In view of Gauss’s contiguous relations for hypergeometric functions ( [1,

Section 15.2]), we may restrict our study to the case 1 ≤ β < 2. Fixing any

0 < c < 1 and 1 ≤ β < 2, we intend to investigate the large-n behavior of

Mn(nz − β/2; β, c) for z in the whole complex plane. Our approach is based on

the nonlinear steepest-descent method for oscillatory Riemann-Hilbert problems,

first introduced by Deift and Zhou [8] for nonlinear partial differential equations,

and later developed in [7] and [2, 3] for orthogonal polynomials with respect to

exponential weights or a general class of discrete weights. As in [2,3], our formulas

are given in several different regions. One may decompose the complex plane

into less regions and obtain some global asymptotic results as in [6]. But, here

we are only able to find uniform asymptotic formulas in several local regions; see

Theorem 2.21 below.

To study the q-orthogonal polynomials we shall introduce some notations.

For q ∈ (0, 1), define

(a; q)0 := 1, (a; q)n :=
n∏

k=1

(1− aqk−1), n = 1, 2, · · · ; (1.4)

this definition remains valid when n is infinite; see [12, p. 7]. In terms of these

notations, the q−1-Hermite polynomials hn(z|q) with z = sinh ξ, the Stieltjes-

Wigert polynomials Sn(z; q), and the q-Laguerre polynomials Lα
n(z; q) are defined
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by

hn(sinh ξ|q) :=
n∑

k=0

(qn−k+1; q)k

(q; q)k

qk2−kn(−1)ke(n−2k)ξ, (1.5)

Sn(z; q) :=
n∑

k=0

qk2

(q; q)k(q; q)n−k

(−z)k, (1.6)

Lα
n(z; q) :=

n∑

k=0

(qα+k+1; q)n−k

(q; q)k(q; q)n−k

qk2+αk(−z)k; (1.7)

see [13].

Unlike ordinary orthogonal polynomials, the q-orthogonal polynomials do

not satisfy any second-order ordinary differential equation or have any integral

representation. Therefore the powerful tools, such as the WKB method for dif-

ferential equations and the steepest-descent method for integrals, are not appli-

cable. Recently, Ismail and Zhang [15] intoduce a logarithmic scaling, namely

z = sinh ξ := (q−ntu− qntu−1)/2 with t ≥ 0 and u 6= 0, and derive three different

asymptotic formulas for the q−1-Hermite polynomials with respect to following

three cases:

1) t ≥ 1/2;

2) 0 ≤ t < 1/2 and t ∈ Q;

3) 0 ≤ t < 1/2 and t /∈ Q.

Their formulas involve the q-Airy function [14, (2.9)]

Aq(z) :=
∞∑

k=0

qk2

(q; q)k

(−z)k, (1.8)

and the q-Theta function [27, p. 463]

Θq(z) :=
∞∑

k=−∞
qk2

zk. (1.9)

Similar results are also obtained for the Stieltjes-Wigert polynomials and the

q-Laguerre polynomials.
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Note that their formula in the second case when t is rational is different

from that in the third case when t is irrational. One may be curious to know

if there exists a uniform asymptotic formula for all rational and irrational t ∈
[0, 1/2). Also, one would like to ask if it is possible to find a uniform asymptotic

formula when t is in a neighborhood of 1/2. With the aid of discrete Laplace’s

approximation (cf. [26]), we are able to answer these two questions. By the same

scaling as mentioned before, we derive two uniform asymptotic formulas for the

q−1-Hermite polynomials with respect to following two cases:

1) 0 ≤ t < 1/2;

2) t > 1/2− δ where δ > 0 is a fixed small number.

It turns out that, in stead of the q-Airy function given in (1.8), our formulas

involve the polynomial

Aq,n(z) :=
n∑

k=0

qk2

(q; q)k

(−z)k. (1.10)

Since this is simply the n-th partial sum of the q-Airy function, we call it the q-

Airy polynomial. Note that the chaotic behavior mentioned in [15] does not exist

in our formulas since we have a unified asymptotic formula for all 0 ≤ t < 1/2,

whether t is rational or not. Similar improvements are also given to the results

obtained by Ismail and Zhang for the Stieltjes-Wigert polynomials and the q-

Laguerre polynomials. Here, we would like to mention that our method is most

likely also applicable for other types of q-orthogonal polynomials.

1.2 Method of asymptotic analysis for the

Meixner polynomials

In this section we give an outline of the procedure in asymptotic analysis

for the Meixner polynomials. First, we use the orthogonality property (1.2) to

relate the Meixner polynomials with a 2× 2 matrix-valued function which is the
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unique solution to an interpolation problem. Our problem subsequently becomes

studying the asymptotic behavior of this matrix-valued function. Second, we

construct an equivalent Riemann-Hilbert problem, the solution of which can be

written explicitly based on the solution to the basic interpolation problem. This

is an invertible transformation and thus we only need to investigate the equiv-

alent Riemann-Hilbert problem. With the aid of the equilibrium measure, we

transform the Riemann-Hilbert problem into another oscillatory one. Finally,

the Deift-Zhou steepest-descent method for oscillatory Riemann-Hilbert problem

is applied and what remains is a study of a global Riemann-Hilbert problem which

can be divided into several locally solvable problems. It should be noted that the

solutions to these local problems are not unique. We must choose suitable solu-

tions that are asymptotically equal to each other in the overlapped region. By

piecing these solutions together, we build a function that is defined in the whole

complex plane. This matrix-valued function is proved to be an approximate

solution to the global Riemann-Hilbert problem. By tracing along the transfor-

mations back to the original interpolation problem, we obtain the asymptotic

formulas for the Meixner polynomials.

1.3 Method of asymptotic analysis for some q-

orthogonal polynomials

In this section we use a simple example to illustrate the idea of discrete

Laplace’s approximation, which will be used in asymptotic analysis for some

q-orthogonal polynomials. Let φ(x) and h(x) be two real-valued continuous func-

tions defined in the finite interval α ≤ x ≤ β. Assume that h(x) has a single

minimum in the interval, namely at x = α, and that the infimum of h(x) in any

closed sub-interval not containing α is greater than h(α). Furthermore, assume

that h′′(x) is continuous, h′(α) = 0 and h′′(α) > 0. Then, Laplace’s approxima-
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tion states that the integral

I(λ) =

∫ β

α

φ(x)e−λh(x)dx (1.11)

has the asymptotic formula

I(λ) ∼ φ(α)e−λh(α)

[
π

2λh′′(α)

] 1
2

(1.12)

as λ → +∞; see [5, p.39] or [28, p.57].

Now, put λ = n2 and make the change of variable x = α + (β − α)t so that

the integral in (1.11) becomes

I(n2) = (β − α)φ(α)e−n2h(α)

∫ 1

0

f(t)e−n2g(t)dt, (1.13)

where f(t) := φ(x)/φ(α) and g(t) := h(x) − h(α). If we set q := e−1, k := nt,

fn(k) := 1
n
f( k

n
) and gn(k) := n2g( k

n
), then the integral in (1.13) can be written

as ∫ 1

0

f(t)e−n2g(t)dt =

∫ n

0

fn(k)qgn(k)dk.

A discrete form of the last integral is the finite sum

In(1|q) :=
n∑

k=0

fn(k)qgn(k), (1.14)

where fn(k) and gn(k) are two functions defined on nonnegative integers N and

q ∈ (0, 1). We intend to investigate the behavior of the sum In(1|q) as n → ∞.

As we shall see, its asymptotic behavior is given in terms of the q-Theta function

(1.9)

Θq(z) :=
∞∑

k=−∞
qk2

zk, 0 < q < 1.

Note that Θq(1) is a continuous function of q ∈ (0, 1), since the infinite sum
∑∞

k=−∞ qk2
converges uniformly for q in any compact subset of (0, 1).

Theorem 1.1. Assume that the following conditions hold:

(i) fn(0) = 1, gn(0) = 0;
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(ii) there exists a constant M > 0 such that |fn(k)| ≤ M for 0 ≤ k ≤ n;

(iii) for any δ ∈ (0, 1) there exist a constant Aδ > 0 and a positive integer N(δ)

such that gn(k) ≥ Aδn
2 for all nδ ≤ k ≤ n and n > N(δ);

(iv) for some fixed c0 > 0 and for any small ε > 0, there exist δ(ε) > 0 and

N(ε) ∈ N such that |fn(k) − 1| < ε and |gn(k) − c0k
2| ≤ εk2, whenever

0 ≤ k ≤ nδ(ε) and n > N(ε).

Then, we have

In(1|q) :=
n∑

k=0

fn(k)qgn(k) ∼ 1

2
[Θq̃(1) + 1] as n →∞, (1.15)

where q̃ := qc0.

Proof. For any small ε > 0, we choose δ := δ(ε) and N(ε) as in (iv). Split the

sum In(1|q) into two so that In(1|q) = I∗1 + I∗2 , where

I∗1 :=

bnδc∑

k=0

fn(k)qgn(k)

and

I∗2 :=
n∑

k=bnδc+1

fn(k)qgn(k).

Simple estimation gives

I∗1 <

bnδc∑

k=0

(1 + ε)qk2(c0−ε)

and

I∗1 >

bnδc∑

k=0

(1− ε)qk2(c0+ε),

from which we obtain

1− ε

2
[Θqc0+ε(1) + 1] ≤ lim

n→∞
I∗1 ≤ lim

n→∞
I∗1 ≤

1 + ε

2
[Θqc0−ε(1) + 1].

By conditions (ii) and (iii), we also have

|I∗2 | ≤
n∑

k=bnδc+1

Mqn2Aδ ≤ nMqn2Aδ .
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Thus, lim
n→∞

I∗2 = 0 and

1− ε

2
[Θqc0+ε(1) + 1] ≤ lim

n→∞
In(1|q) ≤ lim

n→∞
In(1|q) ≤ 1 + ε

2
[Θqc0−ε(1) + 1].

Since ε is arbitrary, the desired result (1.15) follows.



Chapter 2

Asymptotics of the Meixner Poly-

nomials

2.1 The basic interpolation problem

From (1.1), the monic Meixner polynomials are given by

πn(z) := (β)n(1− 1

c
)−nMn(z; β, c). (2.1)

On account of (1.3), we obtain the recurrence relation

zπn(z) = πn+1(z) +
n + (n + β)c

1− c
πn(z) +

n(n + β − 1)c

(1− c)2
πn−1(z). (2.2)

The orthogonality property of πn(z) can be derived from (1.2), and we have

∞∑

k=0

πm(k)πn(k)w(k) = δmn/γ
2
n, (2.3)

where

γ2
n =

(1− c)2n+βc−n

Γ(n + β)Γ(n + 1)
(2.4)

and

w(z) :=
Γ(z + β)

Γ(z + 1)
cz. (2.5)

Let P (z) be the 2× 2 matrix defined by

P (z) :=




πn(z)
∞∑

k=0

πn(k)w(k)

z − k

γ2
n−1πn−1(z)

∞∑
k=0

γ2
n−1πn−1(k)w(k)

z − k




. (2.6)
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For consistency, we shall use capital letters to denote matrix-valued functions that

depend on the large parameter n. Therefore, all the matrices P,Q, R, S, T, M and

K depend on both z and n. The following proposition states that P (z) is the

unique solution to an interpolation problem, which is the discrete analogue of

the Riemann-Hilbert problem corresponding to the orthogonal polynomials with

continuous weights; see [10,11].

Proposition 2.1. The matrix-valued function P (z) defined in (2.6) is the unique

solution to the following interpolation problem:

(P1) P (z) is analytic in C \ N;

(P2) at each z = k ∈ N, the first column of P (z) is analytic and the second

column of P (z) has a simple pole with residue

Res
z=k

P (z) = lim
z→k

P (z)




0 w(z)

0 0


 =




0 w(k)P11(k)

0 w(k)P21(k)


 ; (2.7)

(P3) for z bounded away from N, P (z)




z−n 0

0 zn


 = I + O(|z|−1) as z →∞.

Proof. Since w(k) decays exponentially to zero as k → +∞, the summations in

the second column of P (z) in (2.6) are uniformly convergent for z in any compact

subset of C \ N. Therefore, (P1) is obvious.

For each k ∈ N, we have from (2.6)

Res
z=k

P12(z) = πn(k)w(k) = P11(k)w(k),

and

Res
z=k

P22(z) = γ2
n−1πn−1(k)w(k) = P21(k)w(k).

Thus, (P2) follows.

To prove (P3) we only need to show that P12(z)zn = O(|z|−1) and P22(z)zn =

1 + O(|z|−1) as z → ∞ and for z bounded away from N. Using the following
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expansion

1

z − k
=

n−1∑
i=0

ki

zi+1
+

1

zn+1

kn

1− k/z
,

we have

P12(z)zn =
n−1∑
i=0

zn−i−1

∞∑

k=0

kiπn(k)w(k) +
1

z

∞∑

k=0

knπn(k)w(k)

1− k/z
.

The orthogonality property (2.3) implies that
∞∑

k=0

kiπn(k)w(k) = 0 for any i =

0, 1, · · · , n− 1. Thus, we obtain

P12(z)zn =
1

z

∞∑

k=0

knπn(k)w(k)

1− k/z
.

Since z is bounded away from N, it is easily seen that the last sum is uniformly

bounded. Hence, we have P12(z)zn = O(|z|−1) as z → ∞. On the other hand,

we also have

P22(z)zn =
n−1∑
i=0

zn−i−1γ2
n−1

∞∑

k=0

kiπn−1(k)w(k) +
1

z

∞∑

k=0

γ2
n−1k

nπn−1(k)w(k)

1− k/z
.

Again, using the orthogonality property (2.3), we obtain
∞∑

k=0

kiπn−1(k)w(k) =

δi,n−1/γ
2
n−1 for any i = 0, 1, · · · , n − 1. Thus, it is readily seen that P22(z)zn =

1 + O(|z|−1) as z →∞ and for z bounded away from N. This ends our proof of

(P3).

The uniqueness of the solution follows from Liouville’s theorem. Indeed,

condition (2.7) implies that the residue of detP (z) at k ∈ N is zero. Thus, the

determinant function det P (z) can be analytically continued to an entire function.

Condition (P3), together with Liouville’s theorem, implies that detP (z) = 1.

Therefore, P (z) is invertible in C \ N. Let P̃ (z) be a second solution to the

interpolation problem (P1)-(P3). It is easily seen that the residue of P (z)P̃−1(z)

at k ∈ N is zero. Hence, P (z)P̃−1(z) can be extended to an entire function. Again,

using condition (P3), we obtain from Liouville’s theorem that P (z)P̃−1(z) = I.

This establishes the uniqueness.
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2.2 The equivalent Riemann-Hilbert problem

In this section we first introduce two transformations P → Q and Q → R.

It will be shown that the matrix-valued function R(z) is the unique solution

to a Riemann-Hilbert problem. At the end of this section we make the third

transformation R → S with the aid of the equilibrium measure.

The first transformation P → Q involves the following rescaling:

U(z) := n−nσ3P (nz − β/2) =




n−n 0

0 nn


 P (nz − β/2). (2.8)

Here, σ3 :=




1 0

0 −1


 is a Pauli matrix. In this chapter, we will also make use

of another Pauli matrix σ1 :=




0 1

1 0


; see (2.117). Let X denote the set defined

by

X := {Xk}∞k=0, where Xk :=
k + β/2

n
. (2.9)

The Xk’s are called nodes. Our first transformation is given by

Q(z) := U(z)

[ n−1∏
j=0

(z −Xj)

]−σ3

= n−nσ3P (nz − β/2)

[ n−1∏
j=0

(z −Xj)

]−σ3

=




n−n 0

0 nn


 P (nz − β/2)




n−1∏
j=0

(z −Xj)
−1 0

0
n−1∏
j=0

(z −Xj)


 , (2.10)

and the interpolation problem corresponding to Q(z) is given below.

Proposition 2.2. The matrix-valued function Q(z) defined in (2.10) is the unique

solution to the following interpolation problem:

(Q1) Q(z) is analytic in C \X;
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(Q2) at each node Xk with k ∈ N and k ≥ n, the first column of Q(z) is analytic

and the second column of Q(z) has a simple pole with residue

Res
z=Xk

Q(z) = lim
z→Xk

Q(z)




0 w(nz − β/2)
n−1∏
j=0

(z −Xj)
2

0 0


 ; (2.11)

at each node Xk with k ∈ N and k < n, the second column of Q(z) is

analytic and the first column of Q(z) has a simple pole with residue

Res
z=Xk

Q(z) = lim
z→Xk

Q(z)




0 0

1

w(nz − β/2)

n−1∏
j=0
j 6=k

(z −Xj)
−2 0


 ; (2.12)

(Q3) for z bounded away from X, Q(z) = I + O(|z|−1) as z →∞.

Proof. On account of (2.10), (Q1) and (Q3) follow from (P1) and (P3), respec-

tively.

Also from (2.10), we have

Q11(z) = n−nP11(nz − β/2)
n−1∏
j=0

(z −Xj)
−1

and

Q12(z) = n−nP12(nz − β/2)
n−1∏
j=0

(z −Xj).

At each node z = Xk with k ∈ N and k ≥ n, it is easily seen from (P2) that Q11(z)

is analytic and Q12(z) has a simple pole, where the residue can be calculated as

follows:

Res
z=Xk

Q12(z) = n−n Res
z=Xk

P12(nz − β/2)
n−1∏
j=0

(Xk −Xj)

= n−nw(nXk − β/2)P11(nXk − β/2)
n−1∏
j=0

(Xk −Xj)

= Q11(Xk)w(nXk − β/2)
n−1∏
j=0

(Xk −Xj)
2.
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Similarly, one can show from (P2) and (2.10) that Q21(z) is analytic and Q22(z)

has a simple pole at Xk, k ≥ n, with residue

Res
z=Xk

Q22(z) = Q21(Xk)w(nXk − β/2)
n−1∏
j=0

(Xk −Xj)
2.

This proves the first half of (Q2).

Now, we compute the singularities of Q(z) at the nodes Xk with k ∈ N and

k < n. First, it is easily seen from (P2) and (2.10) that Q12(z) can be analytically

continued to the node z = Xk and

lim
z→Xk

Q12(z) = lim
z→Xk

n−nP12(nz − β/2)
n−1∏
j=0

(z −Xj)

= n−n Res
z=Xk

P12(nz − β/2)
n−1∏
j=0
j 6=k

(Xk −Xj)

= n−nw(nXk − β/2)P11(nXk − β/2)
n−1∏
j=0
j 6=k

(Xk −Xj).

Furthermore, since P11(nz − β/2) is analytic at z = Xk by (P2), the function

Q11(z) has a simple pole at z = Xk and from the last equation we obtain

Res
z=Xk

Q11(z) = n−nP11(nXk − β/2)
n−1∏
j=0
j 6=k

(Xk −Xj)
−1

= Q12(Xk)w(nXk − β/2)−1

n−1∏
j=0
j 6=k

(Xk −Xj)
−2.

Similarly, we see from (P2) and (2.10) that Q22(z) is analytic and Q21(z) has a

simple pole with residue

Res
z=Xk

Q21(z) = n−nP21(nXk − β/2)
n−1∏
j=0
j 6=k

(Xk −Xj)
−1

= Q22(Xk)w(nXk − β/2)−1

n−1∏
j=0
j 6=k

(Xk −Xj)
−2.
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This proves the second half of (Q2).

As in the proof of Proposition 2.1, the uniqueness again follows from Liou-

ville’s theorem.

The purpose of the second transformation Q → R is to remove the poles in

the interpolation problem for Q(z). For any fixed 0 < c < 1 and 1 ≤ β < 2,

let δ0 > 0 be a small number that will be determined in Remark 2.9. Fix any

0 < δ < δ0, and define (cf. Figure 2.1)

R(z) := Q(z)




1 0

a
(±)
21 1


 (2.13a)

for Re z ∈ (0, 1) and Im z ∈ (0,±δ), and

R(z) := Q(z)




1 a
(±)
12

0 1


 (2.13b)

for Re z ∈ (0, 1) and Im z ∈ (0,±δ), and

R(z) := Q(z) (2.13c)

for Re z /∈ [0,∞) or Im z /∈ [−δ, δ], where

a
(±)
12 := −

nπw(nz − β/2)
n−1∏
j=0

(z −Xj)
2

e∓iπ(nz−β/2) sin(nπz − βπ/2)
, (2.14)

and

a
(±)
21 := −

e±iπ(nz−β/2) sin(nπz − βπ/2)

nπw(nz − β/2)
n−1∏
j=0

(z −Xj)2

. (2.15)

Lemma 2.3. For each k ∈ N, the singularity of R(z) at the node Xk = k+β/2
n

is

removable, that is, Res
z=Xk

R(z) = 0.
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iδ

−iδ

Q(z)

Q(z)

Q(z) 0 1

Q(z)
(

1 0
a
(+)
21 1

)

Q(z)
(

1 0
a
(−)
21 1

)

Q(z)
(

1 a
(+)
12

0 1

)

Q(z)
(

1 a
(−)
12

0 1

)

Figure 2.1 The transformation Q → R and the contour ΣR.

Proof. For any k ∈ N with k ≥ n, we have Xk = k+β/2
n

> 1 since 1 ≤ β < 2. For

any complex z with Re z ∈ (1,∞) and Im z ∈ (0,±δ), we obtain from (2.13) that

R11(z) = Q11(z) and

R12(z) = Q12(z) + Q11(z)a
(±)
12 . (2.16)

The analyticity of the function Q11(z) at the node Xk is clear from (Q2) in Propo-

sition 2.2. Hence, the function R11(z) is analytic. To show that the singularity

of the function R12(z) at the node Xk is removable, we first note from (Q2) that

Res
z=Xk

Q12(z) = Q11(Xk)w(nXk − β/2)
n−1∏
j=0

(Xk −Xj)
2. (2.17)

Furthermore, it follows from (2.14) that

Res
z=Xk

a
(±)
12 = −w(nXk − β/2)

n−1∏
j=0

(Xk −Xj)
2. (2.18)

Applying (2.17) and (2.18) to (2.16) yields Res
z=Xk

R12(z) = 0. Similarly, we can

prove that the functions R21(z) and R22(z) are analytic at the node Xk.

Now, we consider the case k ∈ N with k < n. Since 1 ≤ β < 2, we have

Xk = k+β/2
n

< 1. For any z with Re z ∈ (0, 1) and Im z ∈ (0,±δ), we obtain from

(2.13) that R12(z) = Q12(z) and

R11(z) = Q11(z) + Q12(z)a
(±)
21 . (2.19)
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From (Q2) in Proposition 2.2 we see that the function Q12(z), and hence the

function R12(z), is analytic at the node Xk. Moreover, we have

Res
z=Xk

Q11(z) = Q12(Xk)
1

w(nXk − β/2)

n−1∏
j=0
j 6=k

(Xk −Xj)
−2. (2.20)

Since

Res
z=Xk

a
(±)
21 =

− 1

w(nXk − β/2)

n−1∏
j=0
j 6=k

(Xk −Xj)
−2

by (2.15), we obtain from (2.19) and (2.20) that Res
z=Xk

R11(z) = 0. The analyticity

of the second row in R(z) at the node Xk can be verified similarly. This ends our

proof.

From the definition of R(z) in (2.13) and the analyticity condition (Q1) of

Q(z) in Proposition 2.2, it is easily seen that R(z) is analytic in C \ ΣR, where

ΣR is the oriented contour shown in Figure 2.1. Denote by R+(z) the limiting

value taken by R(z) on ΣR from the left and by R−(z) taken from the right. We

intend to calculate the jump matrix JR(z) := R−(z)−1R+(z) on the contour ΣR.

For convenience, we introduce the two functions

v(z) := −z log c (2.21)

and

W (z) := 2inπw(nz − β/2)env(z) =
2inπΓ(nz + β/2)c−β/2

Γ(nz + 1− β/2)
. (2.22)

Consequently, the functions a±12 and a±21 defined in (2.14) and (2.15) become

a
(±)
12 = −

W (z)e−nv(z)
n−1∏
j=0

(z −Xj)
2

2i sin(nπz − βπ/2)e∓iπ(nz−β/2)
, (2.23)

and

a
(±)
21 = −

2i sin(nπz − βπ/2)e±iπ(nz−β/2)

W (z)e−nv(z)
n−1∏
j=0

(z −Xj)2

. (2.24)
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It is easily seen from (2.23) and (2.24) that

a
(±)
12 · a(±)

21 = e±2iπ(nz−β/2), (2.25)

and

a
(+)
21 − a

(−)
21 =

4 sin2(nπz − βπ/2)

W (z)e−nv(z)
n−1∏
j=0

(z −Xj)2

, (2.26)

and

a
(+)
12 − a

(−)
12 = −W (z)e−nv(z)

n−1∏
j=0

(z −Xj)
2. (2.27)

The jump conditions of R(z) is given below.

Proposition 2.4. On the contour ΣR, the jump matrix JR(z) := R−(z)−1R+(z)

has the following explicit expressions. For z = 1 + i Im z with Im z ∈ (0,±δ), we

have

JR(z) =




1− e±2iπ(nz−β/2) −a
(±)
12

a
(±)
21 1


 . (2.28)

On the positive real line, we have

JR(x) =




1 0

a
(+)
21 − a

(−)
21 1


 (2.29a)

for x ∈ (0, 1), and

JR(x) =




1 a
(+)
12 − a

(−)
12

0 1


 (2.29b)

for x ∈ (1,∞). Furthermore, we have

JR(z) =




1 0

−a
(±)
21 1


 (2.30a)

for z ∈ (0,±iδ) ∪ (±iδ, 1± iδ), and

JR(z) =




1 −a
(±)
12

0 1


 (2.30b)

for z = Re z ± iδ with Re z ∈ (1,∞).
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Proof. For z = 1 + i Im z with Im z ∈ (0, δ), we obtain from (2.13) that

R+(z) = Q(z)




1 0

a
(+)
21 1


 ,

and

R−(z) = Q(z)




1 a
(+)
12

0 1


 .

Thus, we have from (2.25)

JR(z) =




1 −a
(+)
12

0 1







1 0

a
(+)
21 1


 =




1− e2iπ(nz−β/2) −a
(+)
12

a
(+)
21 1


 .

Similarly, for z = 1+ i Im z with Im z ∈ (−δ, 0), we obtain from (2.13) and (2.25)

that

JR(z) =




1 −a
(−)
12

0 1







1 0

a
(−)
21 1


 =




1− e−2iπ(nz−β/2) −a
(−)
12

a
(−)
21 1


 .

Hence, formula (2.28) is proved.

For any x > 0 with x /∈ X, we obtain from (2.13) and (2.22) that

R±(x) = Q(x)




1 0

a
(±)
21 1




for x ∈ (0, 1), and

R±(x) = Q(x)




1 a
(±)
12

0 1




for x ∈ (1,∞). A simple calculation gives (2.29). Since R(z) has no singularity

at X (Lemma 2.3), formula (2.29) remains valid when x ∈ X.

Finally, (2.30) is clear from (2.13). This completes our proof.

Proposition 2.5. The matrix-valued function R(z) defined in (2.13) is the unique

solution to the following Riemann-Hilbert problem:



Chapter 2. Asymptotics of the Meixner Polynomials 20

(R1) R(z) is analytic in C \ ΣR;

(R2) for z ∈ ΣR, R+(z) = R−(z)JR(z), where the jump matrix JR(z) is given in

Proposition 2.4;

(R3) for z ∈ C \ ΣR, R(z) = I + O(|z|−1) as z →∞.

Proof. Condition (R1) follows from the analyticity condition (Q1) in Proposition

2.2 and the definition of R(z) in (2.13). Proposition 2.4 gives (R2). Furthermore,

the normalization condition (Q3) in Proposition 2.2 yields (R3). The uniqueness

of solution is again a direct consequence of Liouville’s theorem.

For the preparation of the third transformation R → S, we investigate the

equilibrium measure corresponding to the Meixner polynomials. In the existing

literature, the equilibrium measure is usually obtained by solving a minimization

problem of a certain quadratic functional (cf. [2, 3, 6, 7]). Here, we prefer to use

the method introduced by Kuijlaars and Van Assche [20].

Consider the monic polynomials qn,N(x) := N−nπn(Nx−β/2), where N ∈ N.

From (2.2), we have

xqn,N(x) = qn+1,N(x) +
(n + β/2)(1 + c)

N(1− c)
qn,N(x) +

n(n + β − 1)c

N2(1− c)2
qn,N(x).

The coefficients (n+β/2)(1+c)
N(1−c)

and n(n+β−1)c
N2(1−c)2

correspond to the recurrence coefficients

bn,N and a2
n,N in [20, (1.6)]. Suppose n/N → t > 0 as n → ∞. It can be shown

that

(n + β/2)(1 + c)

N(1− c)
→ 1 + c

1− c
t,

√
n(n + β − 1)c

N2(1− c)2
→

√
c

1− c
t.

Define two constants

a :=
1−√c

1 +
√

c
and b :=

1 +
√

c

1−√c
, (2.31)

and note that ab = 1. The functions α(t) and β(t) in [20, (1.8)] are equal to

at and bt respectively. Therefore, from Theorem 1.4 in [20], the asymptotic zero
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distribution of qn,N(x) with n/N → t > 0 is given by

µt(x) =
1

t

∫ t

0

ω[as,bs](x)ds,

where
dω[as,bs](x)

dx
=

1

π
√

(bs− x)(x− as)

for x ∈ (as, bs), and
dω[as,bs](x)

dx
= 0 elsewhere; see [20, (1.4)]. Thus, the density

function of µt(x) is

dµt(x)

dx
=

1

πt

∫ bx

ax

ds
√

(bs− x)(x− as)

for x ∈ [0, at], and

dµt(x)

dx
=

1

πt

∫ t

ax

ds
√

(bs− x)(x− as)

for x ∈ [at, bt]. We only need to consider the special case N = n. Therefore,

when t = 1, the density function becomes

ρ(x) :=
dµ1(x)

dx
=





1, 0 < x < a,

1

π
arccos

x(b + a)− 2

x(b− a)
, a < x < b,

(2.32)

where we have used the equality

∫ 1

ax

ds
√

(bs− x)(x− as)
= arccos

x(b + a)− 2

x(b− a)
;

see (4.1) in Appendix. The equilibrium measure for our problem is dµ1(x) =

ρ(x)dx. Note that the constants a and b defined in (2.31) are the same as the

constants α− and α+ in [16, (2.6)]. They are called the Mhaskar-Rakhmanov-Saff

numbers or the turning points. We now define the so-called g – function.

g(z) :=

∫ b

0

log(z − x)ρ(x)dx (2.33)
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for z ∈ C \ (−∞, b]. On account of (2.31) and (2.32), the derivative of g(z) can

be calculated as shown below (cf. (4.23) in Appendix).

g′(z) =

∫ b

0

1

z − x
ρ(x)dx

=− log
z(b + a)− 2 + 2

√
(z − a)(z − b)

z(b− a)
+
− log c

2
. (2.34)

Proposition 2.6. The function g′(z) given in (2.34) is the unique solution to

the following scalar Riemann-Hilbert problem:

(g1) g′(z) is analytic in C \ [0, b];

(g2) denoting the limiting value taken by g′(z) on the real line from the upper

half plane by g′+(x) and that taken from the lower half plane by g′−(x), the

function g′(z) satisfies the jump conditions:

g′+(x)− g′−(x) = −2πi, 0 < x < a, (2.35)

g′+(x) + g′−(x) = − log c, a < x < b; (2.36)

(g3) g′(z) =
1

z
+ O(|z|−2), as z →∞.

Proof. The analyticity condition (g1) is trivial by (2.34). The normalization

condition (g3) follows from the fact
∫ b

0

ρ(x)dx = 1;

see (4.22) in Appendix. For 0 < x < a, we obtain from (2.34) that

g′±(x) = − log
− x(b + a) + 2 + 2

√
(a− x)(b− x)

x(b− a)
∓ iπ +

− log c

2
.

Therefore, the relation (2.35) follows. For a < x < b, we obtain from (2.34) that

g′±(x) = − log
x(b + a)− 2± 2i

√
(x− a)(b− x)

x(b− a)
+
− log c

2
.

Therefore, the relation (2.36) follows. Finally, the uniqueness is again guaranteed

by Liouville’s theorem.
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Remark 2.7. From (2.32) we observe that the equilibrium measure of the Meixner

polynomials corresponds to the saturated-band-void configuration defined in [3];

see also [6]. We point out that the equilibrium measure ρ(x)dx can be solved in a

different way, that is, regard ρ(x)dx as the measure which satisfies the constraint

0 ≤ ρ(x) ≤ 1

on the interval [0,∞), and minimizes the quadratic functional

∫ ∞

0

∫ ∞

0

log
1

|x− y|ρ(x)ρ(y)dxdy +

∫ ∞

0

v(x)ρ(x)dx,

where v(x) is defined in (2.21); see [9,24]. Following the procedure in [3, Section

B.3], we first show that the Mhaskar-Rakhmanov-Saff numbers a and b are the

solutions to the following equations

∫ b

a

v′(x)√
(x− a)(b− x)

dx−
∫ a

0

2π√
(a− x)(b− x)

dx = 0,

∫ b

a

xv′(x)√
(x− a)(b− x)

dx−
∫ a

0

2πx√
(a− x)(b− x)

dx = 2π.

In the second step we find that the function g′(z), which corresponds to the func-

tion F (z) in [3, (710)], has the explicit expression

g′(z) =

∫ a

0

√
(z − a)(z − b)√
(a− x)(b− x)

dx

x− z
−

∫ b

a

√
(z − a)(z − b)√
(x− a)(b− x)

v′(x)dx

2π(x− z)
.

Finally, the equilibrium measure ρ(x)dx is supported on the interval [0, b] and

ρ(x) =
g′−(x)− g′+(x)

2πi

for x ∈ [0, b]. A direct calculation shows that ρ(x) = 1 on the saturated interval

[0, a], and ρ(x) = 1
π

arccos x(b+a)−2
x(b−a)

on the band [a, b]. This agrees with formula

(2.32).

Recall that v(z) = −z log c in (2.21). It is easily seen from (2.34) that

−g′(ζ) +
v′(ζ)

2
= log

ζ(b + a)− 2 + 2
√

(ζ − a)(ζ − b)

ζ(b− a)



Chapter 2. Asymptotics of the Meixner Polynomials 24

for ζ ∈ C \ (−∞, b]. We introduce the so-called φ – function.

φ(z) :=

∫ z

b

(−g′(ζ) +
v′(ζ)

2
)dζ

=

∫ z

b

log
ζ(b + a)− 2 + 2

√
(ζ − a)(ζ − b)

ζ(b− a)
dζ (2.37)

for z ∈ C \ (−∞, b]. From the definition we observe

φ(z) =−g(z) + v(z)/2 + g(b)− v(b)/2

=−g(z) + v(z)/2 + l/2,

where

l := 2g(b)− v(b) = 2 log
b− a

4
− 2 (2.38)

is called the Lagrange multiplier. The calculation of the last equality is given in

Appendix; see (4.24). We also introduce the so-called φ̃ – function.

φ̃(z) :=

∫ z

a

log
−ζ(b + a) + 2− 2

√
(ζ − a)(ζ − b)

ζ(b− a)
dζ

= φ(z)± iπ(1− z) (2.39)

for z ∈ C±. Note that the integrand of the integral in the last equation can be

analytically continued to the interval (0, a). Thus the function φ̃(z) is analytic in

(0, a); see also (2.42) below. We now provide some important properties of the

g –, φ – and φ̃ – functions.

Proposition 2.8. Let the functions g, φ and φ̃ be defined as in (2.33), (2.37)

and (2.39), respectively. Recall from (2.21) and (2.38) that v(z) = −z log c and

l = 2 log b−a
4
− 2. We have

2g(z) + 2φ(z)− v(z)− l = 0 (2.40)

for all z ∈ C \ (−∞, b]. Denote the boundary value taken by φ(z) on the real line

from the upper half plane by φ+ and that taken from the lower half plane by φ−.
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We have

φ+ =





φ− − 2iπ(1− x) : 0 < x < a,

−φ− : a < x < b,

φ− : x > b.
(2.41)

Denote the boundary value taken by φ̃(z) on the real line from the upper half plane

by φ̃+ and that taken from the lower half plane by φ̃−. We have

φ̃+ =





φ̃− : 0 < x < a,

−φ̃− : a < x < b,

φ̃− + 2iπ(1− x) : x > b.

(2.42)

Denote the boundary value taken by g(z) on the real line from the upper half plane

by g+ and that taken from the lower half plane by g−. We have

g+ + g− − v − l =





−2φ+ − 2iπ(1− x) : 0 < x < a,

0 : a < x < b,

−2φ : x > b.
(2.43)

Furthermore, we have

g+ − g− =





2iπ(1− x) : 0 < x < a,

−2φ+ = 2φ− : a < x < b,

0 : x > b.
(2.44)

For any small ε > 0 and z ∈ U(b, ε) := {z ∈ C : |z − b| < ε}, we have

φ(z) =
4(z − b)3/2

3b
√

b− a
+ O(ε2). (2.45)

For any small ε > 0 and z ∈ U(a, ε) := {z ∈ C : |z − a| < ε}, we have

φ̃(z) =
−4(a− z)3/2

3a
√

b− a
+ O(ε2). (2.46)

For any small ε > 0 and x > b + ε, we have

φ(x) > φ(b + ε) =
4ε3/2

3b
√

b− a
+ O(ε2). (2.47)

For any small ε > 0 and 0 < x < a− ε, we have

φ̃(x) < φ̃(a− ε) =
−4ε3/2

3a
√

b− a
+ O(ε2). (2.48)
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For any x ∈ (a, b) and sufficiently small y > 0, we have

Re φ(x± iy) =−y arccos
x(b + a)− 2

x(b− a)
+ O(y2), (2.49)

Re φ̃(x± iy) = y arccos
2− x(b + a)

x(b− a)
+ O(y2). (2.50)

For any x ∈ (b,∞) and sufficiently small y > 0, we have

Re φ(x± iy) = φ(x) + O(y2), Re φ̃(x± iy) = φ(x) + πy + O(y2). (2.51)

For any x ∈ (0, a) and sufficiently small y > 0, we have

Re φ̃(x± iy) = φ̃(x) + O(y2), Re φ(x± iy) = φ̃(x)− πy + O(y2). (2.52)

Proof. The relation (2.40) follows from the definition of φ – function in (2.37)

and Lagrange multiplier in (2.38).

To prove (2.41), we first see from (2.37) that φ(z) is analytic for z ∈ C \
(−∞, b]. Thus, we have φ+(x)− φ−(x) = 0 for x > b. Moreover, we obtain from

(2.37) that for a < x < b,

φ±(x) =

∫ x

b

log
s(b + a)− 2± 2i

√
(s− a)(b− s)

s(b− a)
ds,

which implies φ+(x) + φ−(x) = 0. On the other hand, for 0 < x < a, it follows

from (2.37) that

φ±(x) =

∫ a

b

log
s(b + a)− 2± 2i

√
(s− a)(b− s)

s(b− a)
ds

+

∫ x

a

(log
−s(b + a) + 2 + 2i

√
(a− s)(b− s)

s(b− a)
± iπ)ds.

In view of the equality (cf. (4.4) in Appendix)

∫ a

b

log
s(b + a)− 2± 2i

√
(s− a)(b− s)

s(b− a)
ds =∓i

∫ b

a

arccos
s(b + a)− 2

s(b− a)
ds

=∓iπ(1− a),
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we have

φ+(x)− φ−(x) = −2iπ(1− a) + 2iπ(x− a) = −2iπ(1− x)

for 0 < x < a. This ends the proof of (2.41).

Applying (2.39) to (2.41) gives (2.42).

From (2.40) we have

g+(x) + g−(x)− v(x)− l = −φ+(x)− φ−(x)

for x ∈ R. Hence, the relation (2.43) follows immediately from (2.41).

It is easily seen from (2.33) that the function g(z) is analytic for z ∈ C \
(−∞, b]. Coupling (2.40) and (2.41) yields

g+ − g− = φ− − φ+ = −2φ+ = 2φ−

for a < x < b. On the other hand, a combination of (2.37), (2.40) and (2.41)

gives

g+(a)− g−(a) = φ−(a)− φ+(a)

= 2φ−(a)

= 2

∫ a

b

log
s(b + a)− 2− 2i

√
(s− a)(b− s)

s(b− a)
ds

= 2i

∫ b

a

arccos
s(b + a)− 2

s(b− a)
ds = 2iπ(1− a).

Coupling this with (2.35) gives

g+(x)− g−(x) = g+(a)− g−(a) + 2iπ(a− x) = 2iπ(1− x)

for 0 < x < a. This completes the proof of (2.44).

For any small ε > 0 and z ∈ U(b, ε) := {z ∈ C : |z − b| < ε}, from (2.37) we

have

φ(z) =

∫ z

b

log


1 +

2
√

(b− a)(ζ − b)

b(b− a)
+ O(ε)


 dζ

=
4(z − b)3/2

3b
√

b− a
+ O(ε2).
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Here again, we have used the fact that ab = 1. This gives (2.45).

For any small ε > 0 and z ∈ U(a, ε) := {z ∈ C : |z − a| < ε}, from (2.39)

and the fact ab = 1 we have

φ(z) =

∫ z

a

log


1 +

2
√

(a− ζ)(b− a)

a(b− a)
+ O(ε)


 dζ

=
−4(a− z)3/2

3a
√

b− a
+ O(ε2).

This gives (2.46).

From (2.37) and (2.39), we have

φ′(x) = log
x(b + a)− 2 + 2

√
(x− a)(x− b)

x(b− a)
> 0

for x > b and

φ̃′(x) = log
− ζ(b + a) + 2− 2

√
(ζ − a)(ζ − b)

ζ(b− a)
> 0

for 0 < x < a. Consequently, φ(x) > φ(b + ε) for x > b + ε, and φ̃(x) < φ̃(a− ε)

for 0 < x < a − ε. Therefore, the formulas (2.47) and (2.48) follow from (2.45)

and (2.46), respectively.

It is easily seen from (2.37) and (2.39) that φ±(x) and φ̃±(x) are purely

imaginary for a < x < b. Hence, for any x ∈ (a, b) and sufficiently small y > 0,

we have

Re φ(x± iy) = Re

∫ x±iy

x

log
ζ(b + a)− 2 + 2

√
(ζ − a)(ζ − b)

ζ(b− a)
dζ

= Re

∫ x±iy

x


±i arccos

x(b + a)− 2

x(b− a)
+ O(y)


 dζ

=−y arccos
x(b + a)− 2

x(b− a)
+ O(y2),
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and

Re φ̃(x± iy) = Re

∫ x±iy

x

log
−ζ(b + a) + 2− 2

√
(ζ − a)(ζ − b)

ζ(b− a)
dζ

= Re

∫ x±iy

x


∓i arccos

2− x(b + a)

x(b− a)
+ O(y)


 dζ

= y arccos
2− x(b + a)

x(b− a)
+ O(y2).

This ends the proof of (2.49) and (2.50).

For any x ∈ (b,∞) and sufficiently small y > 0, from (2.37) we have

φ(x± iy)− φ(x) =

∫ x±iy

x

log
ζ(b + a)− 2 + 2

√
(ζ − a)(ζ − b)

ζ(b− a)
dζ.

Since the integral on the right-hand side equals to

±iy log
x(b + a)− 2 + 2

√
(x− a)(x− b)

x(b− a)
+ O(y2),

it follows that

Re φ(x± iy) = φ(x) + O(y2).

Moreover, we obtain from (2.39) and the last equation that

Re φ̃(x± iy) = Re φ(x± iy) + πy = φ(x) + πy + O(y2),

thus proving (2.51).

Similarly, for any x ∈ (0, a) and sufficiently small y > 0, we have from (2.39)

φ̃(x± iy)− φ̃(x) =

∫ x±iy

x

log
−ζ(b + a) + 2− 2

√
(ζ − a)(ζ − b)

ζ(b− a)
dζ.

Since the integral on the right-hand side equals to

±iy log
−x(b + a) + 2 + 2

√
(a− x)(b− x)

x(b− a)
+ O(y2),

it follows that

Re φ̃(x± iy) = φ̃(x) + O(y2).
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Moreover, we obtain from (2.39) and the last equation that

Re φ(x± iy) = Re φ̃(x± iy)− πy = φ̃(x)− πy + O(y2),

thus proving (2.52).

Remark 2.9. Recall that the constant δ0 > 0 introduced in the definition of R(z)

has not been determined; see (2.13). Fix any 0 < c < 1 and 1 ≤ β < 2, we choose

δ0 > 0 to be sufficiently small such that the function φ(z)2/3 is analytic in the

open disk U(b, δ0) and the function φ̃(z)2/3 is analytic in the open disk U(a, δ0).

We also require δ0 to be so small that the formulas (2.45)-(2.52) in Proposition

2.8 are valid whenever ε, y ∈ (0, δ0). The existence of such a positive constant δ0

is obvious. Furthermore, since the functions φ(z) and φ̃(z) depend only on the

constants c and β. the constant δ0 is independent of the polynomial degree n.

For the sake of simplicity, we introduce some auxiliary functions. Define

E(z) :=

(
z − 1

z

) 1−β
2

exp

{
−n

∫ 1

0

log(z − x)dx

} n−1∏

k=0

(z −Xk) (2.53)

for z ∈ C \ [0, 1], and

Ẽ(z) :=
± iE(z)e∓iπ(nz−β/2)

2 sin(nπz − βπ/2)
(2.54)

for z ∈ C±, and

H(z) :=

(
z

z − 1

)1−β

W (z) (2.55)

for z ∈ C \ [0, 1], and

H̃(z) :=

(
z

1− z

)1−β

W (z) (2.56)

for z ∈ C \ (−∞, 0]∪ [1,∞), where W (z) is defined in (2.22). We also recall from

(2.9) that Xk = k+β/2
n

. The properties of the above auxiliary functions are given

in the following lemma.
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Lemma 2.10. The function Ẽ(z) defined in (2.54) can be analytically continued

to the interval (0, 1). Moreover, for any 0 < x < 1, we have

Ẽ(x)2 =
E+(x)E−(x)

4 sin2(nπx− βπ/2)
. (2.57)

For any z ∈ C±, we have

E(z)/Ẽ(z) =∓2ie±iπ(nz−β/2) sin(nπz − βπ/2) = 1− e±2iπ(nz−β/2), (2.58)

H̃(z) = H(z)e±iπ(1−β) = −H(z)e∓iπβ. (2.59)

As n → ∞, we have E(z) ∼ 1 uniformly for z bounded away from the interval

[0, 1] and E(z)/Ẽ(z) ∼ 1 uniformly for z bounded away from the real line.

Proof. For 0 < x < 1, from (2.53) we have

E±(x) =

(
1− x

x

) 1−β
2

e±iπ(1−β)/2 exp

{
−n

∫ 1

0

log |x− s|ds

}
e∓nπi(1−x)

n−1∏

k=0

(z−Xk).

Consequently, we obtain E+(x)/E−(x) = −e2iπ(nx−β/2). Therefore, it is readily

seen from (2.54) that Ẽ+(x) = Ẽ−(x) on the interval (0, 1). Moreover, we have

Ẽ2(x) =
E+(x)E−(x)

4 sin2(nπx− βπ/2)
, 0 < x < 1.

This gives (2.57).

The relation (2.58) follows from (2.54). The relation (2.59) follows from

(2.55) and (2.56).

Let z be bounded away from the interval [0, 1]. Since Xk = k+β/2
n

by (2.9),

we have

n−1∏

k=0

(z −Xk) =
n−1∏

k=0

(
z − k + β/2

n

)

=
Γ(nz − β/2 + 1)

nnΓ(nz − β/2− n + 1)
.
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Using Stirling’s formula, it follows that

n−1∏

k=0

(z −Xk)∼
√

2π(nz − β/2)(nz−β/2
e

)nz−β/2

nn
√

2π(nz − β/2− n)(nz−β/2−n
e

)nz−β/2−n

=
(nz − β/2)

1−β
2 (nz−β/2

nz
)nz(nz)nz

nn(nz − β/2− n)
1−β

2 (nz−β/2−n
nz−n

)nz−n(nz − n)nz−nen

∼
(

z

z − 1

) 1−β
2

(
z

z − 1

)nz (
z − 1

e

)n

as n →∞. In view of the equality

exp

{
−n

∫ 1

0

log(z − x)dx

}
=

en(z − 1)nz

znz(z − 1)n
,

we then obtain from (2.53) that

E(z)∼
(

z − 1

z

) 1−β
2 en(z − 1)nz

znz(z − 1)n

(
z

z − 1

) 1−β
2

(
z

z − 1

)nz (
z − 1

e

)n

= 1

as n →∞.

Finally, as n →∞, it is easily seen from (2.58) that E(z)/Ẽ(z) ∼ 1 uniformly

for z bounded away from the real line. This ends the proof of the lemma.

Recalling the definition of g(z) in (2.33), we introduce the function

G(z) := ng(z)− n

∫ 1

0

log(z − x)dx

= n

∫ b

0

log(z − x)ρ(x)dx− n

∫ 1

0

log(z − x)dx. (2.60)

Since ∫ b

0

ρ(x)dx = 1;

see (4.22) in Appendix, it is easily seen that G(z) = O(|z|−1) as z → ∞ and

G+(x) = G−(x) for x < 0. Furthermore, applying (2.39) and (2.44) to (2.60)

implies

G+ −G− =





0 : x < a,

−2nφ̃+ = 2nφ̃− : a < x < 1,

−2nφ+ = 2nφ− : 1 < x < b.
(2.61)
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Thus, the function G(z) can be analytically continued to C \ [a, b]. In terms of

G(z), we make the third transformation

S(z) := e(−nl/2)σ3R(z)e(−G(z)+nl/2)σ3 . (2.62)

To compute the jump conditions of S(z), we first state the following lemma.

Lemma 2.11. Let the functions a
(±)
12 and a

(±)
21 be defined in (2.14) and (2.15);

see also (2.23) and (2.24). For 0 < x < 1, we have

(a
(+)
21 − a

(−)
21 )e−G+−G−+nl =

en(φ̃++φ̃−)

H̃Ẽ2
. (2.63)

For x > 1, we have

(a
(+)
12 − a

(−)
12 )eG++G−−nl =

−HE2

en(φ++φ−)
. (2.64)

For z ∈ C±, we have

a
(±)
21 e−2G+nl =

e2nφ

±HẼE
, (2.65)

a
(±)
12 e2G−nl =

∓ H̃ẼE

e2nφ̃
. (2.66)

Proof. Coupling (2.53) and (2.60) gives

Ee−G = e−ng

(
z − 1

z

) 1−β
2

n−1∏

k=0

(z −Xk), z ∈ C±.

Therefore, we have

E+E−e−(G++G−) = e−n(g++g−)

(
1− x

x

)1−β n−1∏

k=0

(x−Xk)
2 (2.67)

for x ∈ (0, 1), and

E2e−(G++G−) = e−n(g++g−)

(
x− 1

x

)1−β n−1∏

k=0

(x−Xk)
2 (2.68)
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for x ∈ (1,∞), and

E2e−2G = e−2ng

(
z − 1

z

)1−β n−1∏

k=0

(z −Xk)
2 (2.69)

for z ∈ C±.

For x ∈ (0, 1), we have from (2.39) and (2.40)

g+ + g− = v + l − (φ+ + φ−) = v + l − (φ̃+ + φ̃−).

Thus, applying (2.56) and (2.57) to (2.67) yields

4Ẽ2 sin2(nπx− βπ/2)e−(G++G−) = e−n(v+l)+n(φ̃++φ̃−)(W/H̃)
n−1∏

k=0

(x−Xk)
2.

This equality is same as

4 sin2(nπx− βπ/2)

W exp(G+ + G− − nv − nl)

n−1∏

k=0

(x−Xk)
−2 =

en(φ̃++φ̃−)

H̃Ẽ2
.

Therefore, (2.63) follows from (2.26).

For x > 1, we have from (2.40)

g+ + g− = v + l − (φ+ + φ−).

Thus, applying (2.55) to (2.68) yields

E2e−(G++G−) = e−n(v+l)+n(φ++φ−)(E/H)
n−1∏

k=0

(x−Xk)
2.

This equality is same as

−WeG++G−−nv−nl

n−1∏

k=0

(x−Xk)
2 =

−HE2

en(φ++φ−)
.

Therefore, (2.64) follows from (2.27).

For z ∈ C±, applying (2.40), (2.54) and (2.55) to (2.69) yields

∓2i sin(nπz − βπ/2)e±iπ(nz−β/2)ẼEe−2G = e−n(v+l)+2nφ(W/H)
n−1∏

k=0

(z −Xk)
2.
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This equality is same as

− 2i sin(nπz − βπ/2)

e∓iπ(nz−β/2)We2G−nv−nl

n−1∏

k=0

(z −Xk)
−2 =

e2nφ

±HẼE
.

Therefore, (2.65) follows from (2.24). Moreover, from (2.39) and (2.59) we have

(H̃/H)e2n(φ−φ̃) = −e±2iπ(nz−β/2).

Thus, (2.66) follows from (2.25) and (2.65).

Now, we come back to the transformation (2.62). It is easily seen from

(R1) and (2.61) that the matrix-valued function S(z) is analytic in C \ ΣR. Let

ΣS := ΣR be the oriented contour depicted in Figure 2.1. We calculate the jump

matrices for S(z) in the following proposition.

Proposition 2.12. On the contour ΣS, the jump matrix JS(z) := S−(z)−1S+(z)

has the following explicit expressions. For 0 < x < a, we have

JS(x) =




1 0

e2nφ̃

H̃Ẽ2
1


 . (2.70)

For a < x < 1, we have

JS(x) =




e−2nφ̃− 0

1

H̃Ẽ2
e−2nφ̃+


 . (2.71)

For 1 < x < b, we have

JS(x) =




e2nφ+ −HE2

0 e2nφ−


 . (2.72)

For x > b, we have

JS(x) =




1
−HE2

e2nφ

0 1


 . (2.73)
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For z = 1 + i Im z with Im z ∈ (0,±δ), we have

JS(z) =




E/Ẽ
± H̃ẼE

e2nφ̃

e2nφ

±HẼE
1




. (2.74)

For z ∈ (0,±iδ) ∪ (±iδ, 1± iδ), we have

JS(z) =




1 0

e2nφ

∓HẼE
1


 . (2.75)

For z = Re z ± iδ with Re z ∈ (1,∞), we have

JS(z) =




1
± H̃ẼE

e2nφ̃

0 1


 . (2.76)

The jump conditions of S(z) on the contour ΣS are illustrated in Figure 2.2.

iδ

−iδ

1 + iδ

1− iδ

0 1a b




e2nφ+ −HE2

0 e2nφ−







E/Ẽ H̃ẼE

e2nφ̃

e2nφ

HẼE
1







E/Ẽ −H̃ẼE

e2nφ̃

e2nφ

−HẼE
1







e−2nφ̃− 0

1

H̃Ẽ2 e−2nφ̃+







1 0

e2nφ̃

H̃Ẽ2 1







1 −HE2

e2nφ

0 1




(
1 0

e2nφ

−HẼE
1

)




1 0

e2nφ

−HẼE
1







1 H̃ẼE

e2nφ̃

0 1







1 0

e2nφ

HẼE
1







1 0

e2nφ

HẼE
1







1 −H̃ẼE

e2nφ̃

0 1




Figure 2.2 The jump conditions of S(z) on the contour ΣS .

Proof. From (2.62), we have

JS(z) = e(G−(z)−nl/2)σ3JR(z)e(−G+(z)+nl/2)σ3 . (2.77)
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Combining (2.29), (2.63), (2.64) and (2.77) implies

JS(x) =




eG−−G+ 0

en(φ̃++φ̃−)

H̃Ẽ2
eG+−G−


 (2.78a)

for x ∈ (0, 1), and

JS(x) =




eG−−G+

−HE2

en(φ++φ−)

0 eG+−G−


 (2.78b)

for x ∈ (1,∞). Applying (2.41), (2.42) and (2.61) to (2.78) gives (2.70)-(2.73)

immediately.

Recall that the function G(z) is analytic in C\[a, b]. A combination of (2.28),

(2.30), (2.58), (2.65), (2.66) and (2.77) gives (2.74)-(2.76) immediately.

Proposition 2.13. The matrix-valued function S(z) defined in (2.62) is the

unique solution to the following Riemann-Hilbert problem:

(S1) S(z) is analytic in C \ ΣS;

(S2) for z ∈ ΣS, S+(z) = S−(z)JS(z), where JS(z) is given in Proposition 2.12;

(S3) for z ∈ C \ ΣS, S(z) = I + O(|z|−1) as z →∞.

Proof. The analyticity condition (S1) is clear from the definition of S(z) in (2.62),

and from the analyticity condition (R1) of R(z) in Proposition 2.5. The jump

condition (S2) is proved in Proposition 2.12. Furthermore, the normalization

condition (R3) of R(z) in Proposition 2.5 gives (S3). The uniqueness is again a

direct consequence of Liouville’s theorem.
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2.3 The nonlinear steepest-descent method

For a < x < 1, we can factorize the jump matrix JS(x) in (2.71) as below




e−2nφ̃− 0

1

H̃Ẽ2
e−2nφ̃+


 =




Ẽ
H̃Ẽ

e2nφ̃−

0 1/Ẽ







0 −H̃

1/H̃ 0







1/Ẽ
H̃Ẽ

e2nφ̃+

0 Ẽ


 ,

(2.79)

where we have used (2.42). Similarly, by using (2.41), for 1 < x < b we can

factorize the jump matrix JS(x) in (2.72) as below




e2nφ+ −HE2

0 e2nφ−


 =




E 0

e2nφ−

−HE
1/E







0 −H

1/H 0







1/E 0

e2nφ+

−HE
E


 .

(2.80)

This suggests the final transformation S → T . Let the domain ΩT = Ω1
T,± ∪

· · · ∪ Ω4
T,± ∪ Ω∞

T and the oriented contour ΣT = Σ1
T,± ∪ · · · ∪ Σ7

T,± ∪ (0,∞) be as

depicted in Figure 2.3.

iδ

−iδ

0 1a b

Ω3
T,+

Ω3
T,−

Ω2
T,+

Ω2
T,−

Ω1
T,+

Ω1
T,−

Ω4
T,+

Ω4
T,−

Ω∞T

Ω∞T

Ω∞T

Σ1
T,+

Σ1
T,+

Σ2
T,+

Σ3
T,+

Σ4
T,+

Σ5
T,+

Σ6
T,+

Σ7
T,+

Σ1
T,−

Σ1
T,−

Σ2
T,−

Σ3
T,−

Σ4
T,−

Σ5
T,−

Σ6
T,−

Σ7
T,−

Figure 2.3 The region ΩT and the contour ΣT .

We define

T (z) := S(z)Ẽσ3 (2.81a)
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for z ∈ Ω1
T,±, and

T (z) := S(z)




Ẽ
∓ H̃Ẽ

e2nφ̃

0 1/Ẽ


 (2.81b)

for z ∈ Ω2
T,±, and

T (z) := S(z)




E 0

e2nφ

±HE
1/E


 (2.81c)

for z ∈ Ω3
T,±, and

T (z) := S(z)Eσ3 (2.81d)

for z ∈ Ω4
T,± ∪ Ω∞

T . For easy reference, we use Figure 2.4 to illustrate the trans-

formation S → T .

iδ

−iδ

0 1a b

S(z)




E 0

e2nφ

HE 1/E




S(z)




E 0

e2nφ

−HE 1/E




S(z)




Ẽ −H̃Ẽ

e2nφ̃

0 1/Ẽ




S(z)




Ẽ H̃Ẽ

e2nφ̃

0 1/Ẽ




S(z)Ẽσ3

S(z)Ẽσ3

S(z)Eσ3

S(z)Eσ3

S(z)Eσ3

S(z)Eσ3

Figure 2.4 The transformation S → T .

We now study the jump conditions of T (z) on the contour ΣT .

Proposition 2.14. On the contour ΣT , the jump matrix JT (z) := T−(z)−1T+(z)

can be calculated as below. For z ∈ Σ4
T,±, we have

JT (z) = I. (2.82)
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For z ∈ Σ3
T,±, we have

JT (z) =




1
± H̃Ẽ

e2nφ̃E

e2nφ

∓H
Ẽ/E




. (2.83)

For z ∈ Σ5
T,±, we have

JT (z) =




1
± H̃Ẽ

e2nφ̃E

e2nφ

∓H
Ẽ/E




. (2.84)

For z ∈ Σ1
T,±, we have

JT (z) =




E/Ẽ 0

e2nφ

∓H
Ẽ/E


 . (2.85)

For z ∈ Σ7
T,±, we have

JT (z) =




1
± H̃Ẽ

e2nφ̃E

0 1


 . (2.86)

On the positive real line, we have

JT (x) =




1 0

e2nφ̃

H̃
1


 (2.87a)

for 0 < x < a, and

JT (x) =




0 −H̃

1/H̃ 0


 (2.87b)

for a < x < 1, and

JT (x) =




0 −H

1/H 0


 (2.87c)
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for 1 < x < b, and

JT (x) =




1
−H

e2nφ

0 1


 (2.87d)

for x > b. Furthermore, we have

JT (z) =




1
± H̃

e2nφ̃

0 1


 (2.88a)

for z ∈ Σ2
T,±, and

JT (z) =




1 0

e2nφ

±H
1


 (2.88b)

for z ∈ Σ6
T,±. The jump conditions of T (z) on the contour ΣT are illustrated in

Figure 2.5.

iδ

−iδ

0 1a b




1 0

e2nφ̃

H̃
1




(
0 −H̃

1/H̃ 0

)

(
0 −H

1/H 0

)




1 −H
e2nφ

0 1







1 0

e2nφ

H 1







1 0

e2nφ

−H 1







1 H̃

e2nφ̃

0 1







1 −H̃

e2nφ̃

0 1







E

Ẽ
0

e2nφ

−H
Ẽ
E







E

Ẽ
0

e2nφ

H
Ẽ
E







1 H̃Ẽ

e2nφ̃E

e2nφ

−H
Ẽ
E







1 −H̃Ẽ

e2nφ̃E

e2nφ

H
Ẽ
E







1 H̃Ẽ

e2nφ̃E

e2nφ

−H
Ẽ
E







1 −H̃Ẽ

e2nφ̃E

e2nφ

H
Ẽ
E







1 H̃Ẽ

e2nφ̃E

0 1







1 −H̃Ẽ

e2nφ̃E

0 1







E

Ẽ
0

e2nφ

−H
Ẽ
E







E

Ẽ
0

e2nφ

H
Ẽ
E




Figure 2.5 The jump conditions of T (z). The dashed line means that there is actually no

jump on this line.
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Proof. For z ∈ Σ4
T,±, we obtain from (2.74) and (2.81)

JT (z) =




E 0

e2nφ

±HE
1/E




−1




E/Ẽ
± H̃ẼE

e2nφ̃

e2nφ

±HẼE
1







Ẽ
∓ H̃Ẽ

e2nφ̃

0 1/Ẽ


 .

(2.89)

A combination of (2.39), (2.58) and (2.59) gives

(H̃/H)e2n(φ−φ̃) = −e±2iπ(nz−β/2) = E/Ẽ − 1.

This equality can be rewritten as

− e2n(φ−φ̃)H̃

HE
+

1

Ẽ
=

1

E
. (2.90)

Therefore, we have




E/Ẽ
± H̃ẼE

e2nφ̃

e2nφ

±HẼE
1







Ẽ
∓ H̃Ẽ

e2nφ̃

0 1/Ẽ


 =




E 0

e2nφ

±HE
1/E


 . (2.91)

Coupling (2.89) and (2.91) yields (2.82).

For z ∈ Σ3
T,±, by applying (2.75) to (2.81) we obtain

JT (z) =




Ẽ
∓ H̃Ẽ

e2nφ̃

0 1/Ẽ




−1 


1 0

e2nφ

∓HẼE
1


 E(z)σ3 .

On account of (2.90), we have

JT (z) =




1
± H̃Ẽ

e2nφ̃E

e2nφ

∓H
Ẽ/E




.
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Thus, (2.83) is proved. Similarly, for z ∈ Σ5
T,±, we have from (2.76) and (2.81)

JT (z) =




E 0

e2nφ

±HE
1/E




−1



1
± H̃ẼE

e2nφ̃

0 1


 E(z)σ3

Applying (2.90) to the last equation yields (2.84).

For z ∈ Σ1
T,±, we have from (2.75) and (2.81)

JT (z) = Ẽ(z)−σ3




1 0

e2nφ

∓HẼE
1


 E(z)σ3 =




E/Ẽ 0

e2nφ

∓H
Ẽ/E


 .

This proves (2.85). Similarly, for z ∈ Σ7
T,±, we have from (2.76) and (2.81)

JT (z) = E(z)−σ3




1
± H̃ẼE

e2nφ̃

0 1


 E(z)σ3 =




1
± H̃Ẽ

e2nφ̃E

0 1


 .

This gives (2.86).

For 0 < x < a, we obtain from (2.70) and (2.81)

JT (x) = Ẽ(x)−σ3




1 0

e2nφ̃

H̃Ẽ2
1


 Ẽ(x)σ3 =




1 0

e2nφ̃

H̃
1


 .

Similarly, for x > b, we obtain from (2.73) and (2.81)

JT (x) = E(x)−σ3




1
−HE2

e2nφ

0 1


 E(x)σ3 =




1
−H

e2nφ

0 1


 .

Thus, (2.87a) and (2.87d) are proved.

For a < x < 1, by applying (2.71) to (2.81) we obtain

JT (x) =




Ẽ
H̃Ẽ

e2nφ̃−

0 1/Ẽ




−1 


e−2nφ̃− 0

1

H̃Ẽ2
e−2nφ̃−







Ẽ
− H̃Ẽ

e2nφ̃+

0 1/Ẽ


 .
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This together with (2.79) gives (2.87b). Similarly, for 1 < x < b, by applying

(2.72) to (2.81) we obtain

JT (x) =




E 0

e2nφ−

−HE
1/E




−1 


e2nφ+ −HE2

0 e2nφ−







E 0

e2nφ+

HE
1/E


 .

Thus, (2.87c) follows from (2.80).

Finally, since S(z) has no jump on Σ2
T,± and Σ6

T,±, we obtain (2.88) from the

definition of T (z) in (2.81). This ends the proof of the proposition.

Proposition 2.15. The matrix-valued function T (z) defined in (2.81) is the

unique solution to the following Riemann-Hilbert problem:

(T1) T (z) is analytic in C \ ΣT ;

(T2) for z ∈ ΣT , T+(z) = T−(z)JT (z), where JT (z) is given in Proposition 2.14;

(T3) for z ∈ C \ ΣT , T (z) = I + O(|z|−1) as z →∞.

Proof. The analyticity follows from (S1) in Proposition 2.13 and the definition

of T (z). Proposition 2.14 gives (T2). Furthermore, (S3) in Proposition 2.13

yields (T3). The uniqueness is again an immediate consequence of Liouville’s

theorem.

With the aid of Figure 2.5, we observe from (2.58) and Propositions 2.8

& 2.14 that as n → ∞, the jump matrix JT (z) converges exponentially fast

to the identity for z bounded away from [a, b] ∪ {0}. The limiting Riemann-

Hilbert problem can be divided into several local problems, whose solutions can

be constructed explicitly. Since these solutions to the local Riemann-Hilbert

problems are not unique, we shall choose as in [7] some specific ones, which are

asymptotically equal to each other in the overlapping regions. By piecing them

together, we build a function that is defined in the whole complex plane. This

matrix-valued function is our desired parametrix.

We first consider the Riemann-Hilbert problem:
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(M1) M(z) is analytic in C \ [a, b];

(M2) M(z) satisfies the following jump conditions

M+(x) = M−(x)




0 −H̃

1/H̃ 0


 (2.92a)

for a < x < 1, and

M+(x) = M−(x)




0 −H

1/H 0


 (2.92b)

for 1 < x < b;

(M3) M(z) = I + O(|z|−1), as z →∞.

Recall that H(z) = [z/(z − 1)]1−βW (z) and H̃(z) = [z/(1− z)]1−βW (z), where

W (z) =
2niπΓ(nz + β/2)c−β/2

Γ(nz + 1− β/2)
;

see (2.22), (2.55) and (2.56). Define

V (z) := log
Γ(nz + 1− β/2)

z1−βΓ(nz + β/2)
− log(2niπc−β/2). (2.93)

Clearly,

H(z) = (z − 1)β−1e−V (z), H̃(z) = (1− z)β−1e−V (z). (2.94)

From the Stirling series [1, (6.1.40) and (6.3.18)], we have

log Γ(z) = (z−1

2
) log z−z+

1

2
log(2π)+O(|z|−1),

Γ′(z)

Γ(z)
= log z− 1

2z
+O(|z|−2)

as z →∞. The estimate holds uniformly for z bounded away from the negative

real line. Thus, we obtain the double asymptotic behavior for V (z) as n →∞ or

z →∞,

V (z) = −β log n− log(2iπc−β/2) + O(
1

n|z|), V ′(z) = O(
1

n|z|2 ), (2.95)
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which again holds uniformly for z bounded away from the negative real line. For

z bounded away from (−∞, 0] ∪ {1}, it follows from (2.94) and (2.95) that

|n−βH(z)|+ |nβH(z)−1|+ |n−βH̃(z)|+ |nβH̃(z)−1| = O(1) (2.96)

as n →∞. Furthermore, for Re z ≥ 0, we have from (2.22) and Stirling’s formula

that W (z)−1 is uniformly bounded as n →∞. Thus, from (2.55) and (2.56), we

obtain

|H(z)−1|+ |H̃(z)−1| = O(1) (2.97)

uniformly for Re z ≥ 0 and z 6= 1. Here, we have used the assumption 1 ≤ β < 2.

Now, we introduce the function

G̃(z) := −
∫ ∞

z

∫ b

a

V ′(s)
√

(s− a)(b− s)

2π(s− ζ)
√

(ζ − a)(ζ − b)
dsdζ. (2.98)

Lemma 2.16. The function G̃(z) defined in (2.98) is a solution to the Riemann-

Hilbert problem:

(G1) G̃(z) is analytic in C \ [a, b];

(G2) for x ∈ (a, b), G̃(z) satisfies the jump condition

G̃+(x) + G̃−(x)− V (x)− L = 0, (2.99)

where L := 2G̃(b)− V (b) is a constant independent of x;

(G3) G̃(z) = O(|z|−1), as z →∞.

As n →∞, we have

G̃(z) = O(1/n) (2.100)

uniformly for z ∈ C. Here, the value of G̃(x) at x ∈ (a, b) takes the meaning

of boundary value from the upper or lower half-plane. Therefore (2.100) implies

that |G̃+(x)| + |G̃−(x)| = O(1/n) for x ∈ (a, b). Furthermore, we have following

asymptotic formula for the constant

L := 2G̃(b)− V (b) = β log n + log(2iπc−β/2) + O(1/n). (2.101)
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Proof. From (2.98), we obtain

G̃′(z) =

∫ b

a

V ′(s)
√

(s− a)(b− s)ds

2π(s− z)
√

(z − a)(z − b)
. (2.102)

It is easily seen that G̃′(z) is analytic in C \ [a, b] and G̃′
+(x)+ G̃′

−(x) = V ′(x) for

x ∈ (a, b). Moreover, G̃′(z) = O(|z|−2) as z →∞. Thus, (G1)-(G3) follows.

From (2.95) and (2.102), we have (1+ |z|2)|G̃′(z)| = O(1/n) as n →∞. This

estimate is uniform for z ∈ C. Therefore, G̃(z) = O(1/n), thus giving (2.100).

Finally, (2.101) follows from (2.95) and (2.100).

With the aid of the function G̃(z), we now solve the Riemann-Hilbert problem

(M1)-(M3) explicitly.

Proposition 2.17. The Riemann-Hilbert problem (M1)-(M3) has a solution given

by

M(z) =




(z − 1)
1−β

2 (
√

z−a+
√

z−b
2

)β

(z − a)1/4(z − b)1/4e−G̃(z)

− i(z − 1)
β−1

2 (
√

z−a−√z−b
2

)β

(z − a)1/4(z − b)1/4eG̃(z)−L

i(z − 1)
1−β

2 (
√

z−a−√z−b
2

)2−β

(z − a)1/4(z − b)1/4eL−G̃(z)

(z − 1)
β−1

2 (
√

z−a+
√

z−b
2

)2−β

(z − a)1/4(z − b)1/4eG̃(z)




.

(2.103)

Proof. Since G̃(z) is analytic in C \ [a, b], the entries of M(z) can be analytically

continued to the interval (−∞, a). Thus, (M1) follows.

The jump conditions in (M2) can be verified as below. For x ∈ (1, b), we

obtain from (2.94) and (2.103) that

M11
± (x) =

(x− 1)
1−β

2 (
√

x−a±i
√

b−x
2

)β

(x− a)1/4(b− x)1/4e±iπ/4e−G̃±(x)
,

M12
∓ (x) =

− iH(x)(x− 1)
1−β

2 (
√

x−a±i
√

b−x
2

)β

(x− a)1/4(b− x)1/4e∓iπ/4eG̃∓(x)−V (x)−L
.
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Thus, the relation (2.99) implies that M12
∓ (x)/M11

± (x) = ±H(x) for x ∈ (1, b).

On the other hand, for x ∈ (a, 1), we have from (2.94) and (2.103)

M11
± (x) =

(1− x)
1−β

2 e
±iπ(1−β)

2 (
√

x−a±i
√

b−x
2

)β

(x− a)1/4(b− x)1/4e±iπ/4e−G̃±(x)
,

M12
∓ (x) =

− iH̃(x)(1− x)
1−β

2 e
±iπ(1−β)

2 (
√

x−a±i
√

b−x
2

)β

(x− a)1/4(b− x)1/4e∓iπ/4eG̃∓(x)−V (x)−L
.

Coupling this with (2.99) yields M12
∓ (x)/M11

± (x) = ±H̃(x) for x ∈ (a, 1). Simi-

larly, a combination of (2.94), (2.99) and (2.103) gives

M22
∓ (x)

M21± (x)
=

{±H(x), x ∈ (1, b),

±H̃(x), x ∈ (a, 1).

This proves (M2).

By (G3) in Lemma 2.16, we have G̃(z) = O(|z|−1) as z → ∞. Hence, it is

easily seen from (2.103) that M(z) = I + O(|z|−1) as z →∞.

From (2.95), (2.100) and (2.101) we have, as n →∞, |G̃(z)|+ |V (z) + L| =
O(1/n) uniformly for z bounded away from the negative real line. By virtue of

the relations

√
z − a +

√
z − b = e±iπ/2(

√
b− z +

√
a− z),

√
z − a−

√
z − b = e∓iπ/2(

√
b− z −√a− z),

we obtain from (2.94) and (2.103) that

H̃−σ3/2MH̃σ3/2

=




(1− z)
1−β

2 (
√

b−z+
√

a−z
2

)β

(b− z)1/4(a− z)1/4

i(1− z)
1−β

2 (
√

b−z−√a−z
2

)β

(b− z)1/4(a− z)1/4

− i(1− z)
β−1

2 (
√

b−z−√a−z
2

)2−β

(b− z)1/4(a− z)1/4

(1− z)
β−1

2 (
√

b−z+
√

a−z
2

)2−β

(b− z)1/4(a− z)1/4




×
(

I + O(
1

n
)

)
,
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which holds uniformly for z bounded away from the negative real line. Define

m̃(z) :=
(1− z)

1−β
2

σ3

(b− z)1/4(a− z)1/4




(
√

b−z+
√

a−z
2

)β i(
√

b−z−√a−z
2

)β

−i(
√

b−z−√a−z
2

)2−β (
√

b−z+
√

a−z
2

)2−β




×



1 i

i 1


 . (2.104)

As n →∞, we have

H̃(z)−σ3/2M(z)H̃(z)σ3/2




1 i

i 1


 = m̃(z)

(
I + O(

1

n
)

)
. (2.105)

Similarly, define

m(z) :=
(z − 1)

1−β
2

σ3

(z − a)1/4(z − b)1/4




(
√

z−a+
√

z−b
2

)β −i(
√

z−a−√z−b
2

)β

i(
√

z−a−√z−b
2

)2−β (
√

z−a+
√

z−b
2

)2−β




×



1 i

i 1


 . (2.106)

From (2.94) and (2.103), we obtain

H(z)−σ3/2M(z)H(z)σ3/2




1 i

i 1


 = m(z)

(
I + O(

1

n
)

)
(2.107)

as n →∞. The estimates (2.105) and (2.107) hold uniformly for z bounded away

from the negative real line. Recall that we are using capital letters to emphasize

the dependence on n; see the paragraph before Proposition 2.1. The small letters

m̃ and m in (2.104) and (2.106), respectively, indicate that these two matrix-

valued functions are independent of n. We would also like to emphasize that

for any small ε > 0, the matrix-valued function m(z)(z − b)σ3/4 is analytic in

U(b, ε) := {z ∈ C : |z− b| < ε}, and the matrix-valued function m̃(z)(a− z)−σ3/4

is analytic in U(a, ε) := {z ∈ C : |z − a| < ε}.
Next, we find the solution to the scalar Riemann-Hilbert problem:

(D1) D(z) is analytic in C \ (−i∞, i∞);
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(D2) D(z) satisfies the jump condition

D+(z) = D−(z)
E(z)

Ẽ(z)
, z ∈ (−i∞, i∞), (2.108)

where the functions D+(z) and D−(z) denote the boundary values of D(z)

taken from the left and right of the imaginary line respectively;

(D3) for z ∈ C \ (−i∞, i∞), D(z) = 1 + O(|z|−1) as z →∞.

Recall from (2.58) that E(z)/Ẽ(z) = 1 − e±2iπ(nz−β/2). The solution to the

Riemann-Hilbert problem (D1)-(D3) is given by

D(z) = exp

{
1

2πi

∫ i∞

−i∞
log

(
E(ζ)

Ẽ(ζ)

)
dζ

ζ − z

}

= exp

{
1

2πi

∫ ∞

0

[
log(1− e−2nπs−iπβ)

s + iz
− log(1− e−2nπs+iπβ)

s− iz

]
ds

}
.

(2.109)

It can be shown that as n → ∞, the function D(z) converges uniformly to the

constant “1” for z bounded away from the origin; see Section 4.3 in Appendix.

We now introduce the so-called Airy parametrix defined by

A(z) :=




Ai(z) ω2 Ai(ω2z)

i Ai′(z) iω Ai′(ω2z)


 (2.110a)

for arg z ∈ (0, 2π/3), and

A(z) :=




−ω Ai(ωz) ω2 Ai(ω2z)

−iω2 Ai′(ωz) iω Ai′(ω2z)


 (2.110b)

for arg z ∈ (2π/3, π), and

A(z) :=



−ω2 Ai(ω2z) −ω Ai(ωz)

−iω Ai′(ω2z) −iω2 Ai′(ωz)


 (2.110c)

for arg z ∈ (−π,−2π/3), and

A(z) :=




Ai(z) −ω Ai(ωz)

i Ai′(z) −iω2 Ai′(ωz)


 (2.110d)
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for arg z ∈ (−2π/3, 0). By virtue of the identity of the Airy function Ai(z) +

ω Ai(ωz) + ω2 Ai(ω2z) = 0, the Airy parametrix defined in (2.110) has the jump

conditions:

A+(z) = A−(z)




1 0

±1 1


 (2.111a)

for z ∈ (0,∞e±2π/3), and

A+(z) = A−(z)




0 −1

1 0


 (2.111b)

for z ∈ (−∞, 0), and

A+(z) = A−(z)




1 −1

0 1


 (2.111c)

for z ∈ (0,∞). The Airy parametrix and its jump conditions are illustrated in

Figure 2.6.

0




Ai(z) ω2 Ai(ω2z)

iAi′(z) iω Ai′(ω2z)







−ω Ai(ωz) ω2 Ai(ω2z)

−iω2 Ai′(ωz) iω Ai′(ω2z)







−ω2 Ai(ω2z) −ω Ai(ωz)

−iω Ai′(ω2z) −iω2 Ai′(ωz)







Ai(z) −ω Ai(ωz)

iAi′(z) −iω2 Ai′(ωz)




(
1 −1
0 1

)(
0 −1
1 0

)

(
1 0
1 1

)

(
1 0
−1 1

)

Figure 2.6 The Airy parametrix and its jump conditions.

Recall the asymptotic expansions of the Airy function and its derivative

(cf. [22, p. 392] or [28, p. 47])

Ai(z) ∼ z−1/4

2
√

π
e−

2
3
z3/2

∞∑
s=0

(−1)sus

(2
3
z3/2)s

, Ai′(z) ∼ − z1/4

2
√

π
e−

2
3
z3/2

∞∑
s=0

(−1)svs

(2
3
z3/2)s

(2.112)
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as z → ∞ with | arg z| < π, where us and vs are constants with u0 = v0 = 1.

Therefore, by applying (2.112) to (2.110), we obtain

A(z) =
z−σ3/4

2
√

π




1 −i

−i 1


 (I + O(|z|−3/2))e−

2
3
z3/2σ3 , z →∞. (2.113)

Finally, we construct the parametrix Tpar(z). Let δ0 be determined in Remark

2.9. Fix any 0 < ε < δ < δ0 and denote by U(z0, ε) the open disk centered at z0

with radius ε, where z0 = 0, a or b. We define

Tpar(z) := M(z) (2.114)

for z ∈ C \ (U(0, ε) ∪ U(a, ε) ∪ U(b, ε)), and

Tpar(z) := M(z)D(z)σ3 (2.115)

for z ∈ U(0, ε), and

Tpar(z) :=
√

πH(z)σ3/2m(z)F (z)σ3/4A(F (z))enφ(z)σ3H(z)−σ3/2 (2.116)

for z ∈ U(b, ε), and

Tpar(z) :=
√

πH̃(z)
σ3/2

m̃(z)F̃ (z)−σ3/4σ1A(F̃ (z))σ1e
nφ̃(z)σ3H̃(z)

−σ3/2
(2.117)

for z ∈ U(a, ε), where the functions F (z) and F̃ (z) are defined by

F (z) :=

(
3

2
nφ(z)

)2/3

, F̃ (z) :=

(
−3

2
nφ̃(z)

)2/3

, (2.118)

and σ1 :=




0 1

1 0


 and σ3 :=




1 0

0 −1


 are Pauli matrices.

Remark 2.18. Now, we determine the precise shape of the curves Σ2
T,± and Σ6

T,±

in Figure 2.3. Recall the definition of the functions F and F̃ in (2.118). It follows

from (2.45) and (2.46) that

F (z) ∼
(

2n

b
√

b− a

)2/3

(z − b) (2.119)
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as z → b, and

F̃ (z) ∼
(

2n

a
√

b− a

)2/3

(a− z) (2.120)

as z → a. Furthermore, the function F (z) is analytic in U(b, δ0) and the function

F̃ (z) is analytic in U(a, δ0); see the choice of δ0 in Remark 2.9. We choose Σ6
T,±

to be the inverse image of the rays (0,∞e±2π/3) under the holomorphic map F ,

and Σ2
T,± to be the inverse image of the rays (0,∞e∓2π/3) under the holomorphic

map F̃ .

Define

K(z) := n−βσ3/2T (z)T−1
par(z)nβσ3/2. (2.121)

The jump conditions of the function K(z) are studied in the following proposition.

Proposition 2.19. Let ΣK be the contour shown in Figure 2.7. The matrix-

valued function K(z) is analytic in C \ΣK. On the contour ΣK, the jump matrix

JK(z) := K−(z)−1K+(z) has the following explicit expressions. For z ∈ Σ1
K,±, we

have

JK(z) = n−βσ3/2M




E/Ẽ 0

e2nφ

∓H
Ẽ/E


 M−1nβσ3/2. (2.122)

For z ∈ Σ2
K,±, we have

JK(z) = n−βσ3/2M




1
± H̃

e2nφ̃

0 1


 M−1nβσ3/2. (2.123)

For z ∈ Σ3
K,± ∪ Σ5

K,±, we have

JK(z) = n−βσ3/2M




1
± H̃Ẽ

e2nφ̃E

e2nφ

∓H
Ẽ/E




M−1nβσ3/2. (2.124)
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For z ∈ Σ6
K,±, we have

JK(z) = n−βσ3/2M




1 0

e2nφ

±H
1


 M−1nβσ3/2. (2.125)

For z ∈ Σ7
K,±, we have

JK(z) = n−βσ3/2M




1
± H̃Ẽ

e2nφ̃E

0 1


 M−1nβσ3/2. (2.126)

For z ∈ Σb
K, we have

JK(z) =
√

πn−βσ3/2Hσ3/2mF σ3/4A(F )enφσ3H−σ3/2M−1nβσ3/2. (2.127)

For z ∈ Σa
K, we have

JK(z) =
√

πn−βσ3/2H̃σ3/2m̃F̃−σ3/4σ1A(F̃ )σ1e
nφ̃σ3H̃−σ3/2M−1nβσ3/2. (2.128)

For z ∈ Σ0
K, we have

JK(z) = n−βσ3/2MDσ3M−1nβσ3/2. (2.129)

For z ∈ Σ′
K,±, we have

JK(z) = n−βσ3/2M




1 0

e2nφ

∓HD+D−
1


 M−1nβσ3/2. (2.130)

Furthermore, the jump conditions of K(z) on the positive real line are given as

JK(x) = n−βσ3/2M




1 0

e2nφ̃

H̃D2
1


 M−1nβσ3/2 (2.131a)

for 0 < x < ε, and

JK(x) = n−βσ3/2M




1 0

e2nφ̃

H̃
1


 M−1nβσ3/2 (2.131b)
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for ε < x < a− ε, and

JK(x) = n−βσ3/2M




1
−H

e2nφ

0 1


 M−1nβσ3/2 (2.131c)

for x > b + ε. On the contour ΣK \ (Σa
K ∪ Σb

K ∪ Σ0
K), the L∞ and L1 norms

of the difference JK − I are exponentially small as n → ∞. On the contour

Σa
K ∪ Σb

K ∪ Σ0
K, we have

‖JK − I‖L∞(Σa
K∪Σb

K∪Σ0
K) = O(

1

n
), n →∞.

iδ

−iδ

0 1a b

Σ′K,+

Σ1
K,+

Σ1
K,+

Σ2
K,+

Σ3
K,+ Σ5

K,+

Σ6
K,+

Σ7
K,+

Σ′K,−

Σ1
K,−

Σ1
K,−

Σ2
K,−

Σ3
K,− Σ5

K,−

Σ6
K,−

Σ7
K,−

Σ0
K

Σa
K Σb

K

Figure 2.7 The contour ΣK .

Proof. In Remark 2.18 we have shown that the function F (z) is analytic in U(b, δ0)

and the function F̃ (z) is analytic in U(a, δ0). Since 0 < ε < δ < δ0, we obtain from

(2.106) and (2.119) that the matrix-valued function mF σ3/4 is analytic in U(b, ε),

and from (2.104) and (2.120) that the matrix-valued function m̃F̃−σ3/4 is analytic

in U(a, ε). Therefore, applying (2.111) to (2.116) and (2.117) implies that the

parametrix Tpar(z) possesses the same jump conditions as T (z) in U(a, ε)∪U(b, ε);

see (2.87) and (2.88) in Proposition 2.14. Thus, the function K(z) defined in

(2.121) is analytic in U(a, ε) ∪ U(b, ε). Moreover, applying (2.87), (2.92) and

(2.114) to (2.121) implies that the function K(z) can be analytically continued
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to the interval (a + ε, b− ε). Therefore, the analyticity of K(z) in C \ΣK is clear

from the analyticity of T (z) in C \ ΣT .

Since the function M(z) is analytic in C \ [a, b], we obtain (2.122)-(2.126)

from (2.83)-(2.86), (2.88), (2.114) and (2.121).

Since T (z) has no jump on Σa
K ∪ Σb

K ∪ Σ0
K , the formulas (2.127)-(2.129)

follow immediately from the definition of Tpar(z) in (2.114)-(2.117), and from the

definition of K(z) in (2.121).

For z ∈ Σ′
K,±, applying (2.115) to (2.121) gives

JK(z) = n−βσ3/2MDσ3
− T−1

− T+D−σ3
+ M−1nβσ3/2.

Thus, formula (2.130) follows from (2.85) and (2.92).

Moreover, a combination of (2.87), (2.114), (2.115) and (2.121) yields (2.131).

From (2.100), (2.101) and (2.103), we obtain

|n−βσ3/2M(z)nβσ3/2| = O(1), n →∞. (2.132)

By applying (2.47)-(2.52), (2.58), (2.97), (2.109) and (2.132) to (2.122)-(2.126)

and (2.129)-(2.131), it follows that the norm ‖JK − I‖L∞(ΣK\(Σa
K∪Σb

K∪Σ0
K)) is ex-

ponentially small as n →∞.

To prove the norm ‖JK − I‖L1(ΣK\(Σa
K∪Σb

K∪Σ0
K)) decays exponentially as n →

∞, we only need to show the L1 norm of the difference JK − I on the infinite

contour Σ7
K,±∪(b+ε,∞) is exponentially small as n →∞. Firstly, since φ′′(x) > 0

for x > b by (2.37) and the fact that ab = 1, we have

φ(x) > φ(b + ε) + (x− b− ε)φ′(b + ε)

for any x > b + ε. Hence, we obtain

‖e−2nφ‖L1(b+ε,∞) ≤ e−2nφ(b+ε)

2nφ′(b + ε)
.

Applying (2.97) and (2.132) to (2.131) implies that the norm ‖JK − I‖L1(b+ε,∞)

is exponentially small as n → ∞. Furthermore, we observe from (2.37), (2.50)
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and (2.51) that the L1 norm of the function e−2nφ̃ on the contour Σ7
K,± is also

exponentially small as n →∞. Therefore, applying (2.58), (2.97) and (2.101) to

(2.126) implies that the norm ‖JK − I‖L1(Σ7
K,±) is exponentially small as n →∞.

Thus, the exponential decay property of the norm ‖JK − I‖L1(ΣK\(Σa
K∪Σb

K∪Σ0
K))

follows.

Now, we prove the last statement of the proposition. For z ∈ Σb
K , applying

(2.107), (2.113) and (2.118) to (2.127) yields

JK(z)− I = n−βσ3/2H(z)σ3/2m(z)O(
1

n
)m(z)−1H(z)−σ3/2nβσ3/2, n →∞.

The estimate holds uniformly for z ∈ Σb
K . Thus, we obtain from (2.96)

‖JK − I‖L∞(Σb
K) = O(

1

n
), n →∞.

Similarly, a combination of (2.96), (2.105), (2.113), (2.118) and (2.128) gives

‖JK − I‖L∞(Σa
K) = O(

1

n
), n →∞.

Finally, by (2.109) we have D(z) = 1 + O(1/n) uniformly for z ∈ Σ0
K . Hence, it

follows from (2.129) and (2.132) that

‖JK − I‖L∞(Σ0
K) = O(

1

n
), n →∞.

This ends the proof of the proposition.

Proposition 2.20. The matrix-valued function K(z) defined in (2.121) is the

unique solution to the Riemann-Hilbert problem:

(K1) K(z) is analytic in C \ ΣK;

(K2) for z ∈ ΣK, K+(z) = K−(z)JK(z), where JK(z) is given in Proposition

2.19;

(K3) for z ∈ C \ ΣK, K(z) = I + O(|z|−1) as z →∞.

Furthermore, as n →∞, we have K(z) = I + O(1/n) uniformly for z ∈ C \ ΣK.
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Proof. The analyticity condition (K1) and the jump conditions (K2) have been

shown in Proposition 2.19. The normalization condition (K3) is clear from the

normalization conditions of the functions T (z) and M(z), and from the definition

of the function K(z). The uniqueness again follows from Liouville’s theorem.

Finally, as in [7, Theorem 7.10], we can obtain from Proposition 2.19 that K(z) =

I + O(1/n) as n →∞. The estimate is uniform for all z ∈ C \ ΣK .

2.4 Uniform asymptotic formulas for the

Meixner polynomials

Theorem 2.21. For any 0 < c < 1 and 1 ≤ β < 2, let δ0 > 0 be a sufficiently

small number depending only on the constants c and β; see Remark 2.9. Recall

from (2.21) and (2.38) that v(z) = −z log c and l/2 = log b−a
4
− 1, where a

and b are the Mhaskar-Rakhmanov-Saff numbers given in (2.31). The functions

g, φ, φ̃ and D are defined in (2.33), (2.37), (2.39) and (2.109), respectively. For

any 0 < ε < δ < δ0, the large – n behavior of the monic Meixner polynomial

πn(nz − β/2) is given below (see Figure 2.8).

(i) For z ∈ Ω4 ∪ Ω∞, we have

πn(nz − β/2) = nneng(z) z
(1−β)/2(

√
z−a+

√
z−b

2
)β

(z − a)1/4(z − b)1/4

[
1 + O(

1

n
)

]
. (2.133)

(ii) For z ∈ Ω1
±, we have

πn(nz − β/2) =−2(−n)nenv(z)/2+nl/2 z(1−β)/2(
√

b−z+
√

a−z
2

)β

(a− z)1/4(b− z)1/4

×
{

sin(nπz − βπ/2)e−nφ̃(z)

[
1 + O(

1

n
)

]

+O(nβen Re φ(z))

}
. (2.134)
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(iii) For z ∈ Ω0
l , we have

πn(nz − β/2) = D(z)nneng(z) (−z)(1−β)/2(
√

b−z+
√

a−z
2

)β

(b− z)1/4(a− z)1/4

×
[
1 + O(

1

n
)

]
. (2.135)

(iv) For z ∈ Ω0
r,±, we have

πn(nz − β/2) =−2D(z)(−n)nenv(z)/2+nl/2 z(1−β)/2(
√

b−z+
√

a−z
2

)β

(a− z)1/4(b− z)1/4

×
{

sin(nπz − βπ/2)e−nφ̃(z)

[
1 + O(

1

n
)

]

+O(nβen Re φ(z))

}
. (2.136)

(v) Recall the definition of the functions F (z) and F̃ (z) in (2.118). For z ∈ Ωa,

we have

πn(nz − β/2) = (−n)n
√

πenv(z)/2+nl/2

{
Ã(z, n)

[
1 + O(

1

n
)

]

+B̃(z, n)

[
1 + O(

1

n
)

]}
, (2.137)

where

Ã(z, n) :=
(
√

b−z+
√

a−z
2

)β + (
√

b−z−√a−z
2

)β

z(β−1)/2(b− z)1/4(a− z)1/4F̃ (z)−1/4

×[cos(nπz − βπ/2) Ai(F̃ (z))− sin(nπz − βπ/2) Bi(F̃ (z))],

and

B̃(z, n) :=
(
√

b−z+
√

a−z
2

)β − (
√

b−z−√a−z
2

)β

z(β−1)/2(b− z)1/4(a− z)1/4F̃ (z)1/4

×[cos(nπz − βπ/2) Ai′(F̃ (z))− sin(nπz − βπ/2) Bi′(F̃ (z))].

(vi) For z ∈ Ωb, we have

πn(nz − β/2) = nn
√

πenv(z)/2+nl/2

{
A(z, n)

[
1 + O(

1

n
)

]

+B(z, n)

[
1 + O(

1

n
)

]}
, (2.138)
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where

A(z, n) :=
(
√

z−a+
√

z−b
2

)β + (
√

z−a−√z−b
2

)β

z(β−1)/2(z − a)1/4(z − b)1/4F (z)−1/4
Ai(F (z)),

and

B(z, n) := − (
√

z−a+
√

z−b
2

)β − (
√

z−a−√z−b
2

)β

z(β−1)/2(z − a)1/4(z − b)1/4F (z)1/4
Ai′(F (z)).

(vii) Let z = b−a
2

cos u + b+a
2

= − b−a
2

cos ũ + b+a
2

. We have

πn(nz − β/2) = 2(−n)nenv(z)/2+nl/2 z(1−β)/2( b−a
4

)β/2

(z − a)1/4(b− z)1/4

×
{

cos(nπz − βπ/2 + π/4 + βũ/2∓ inφ̃(z))

[
1 + O(

1

n
)

]

+O(n−1en|Re φ̃(z)|+nπ| Im z|)
}

(2.139)

for z ∈ Ω2
±, and

πn(nz − β/2) = 2nnenv(z)/2+nl/2 z(1−β)/2( b−a
4

)β/2

(z − a)1/4(b− z)1/4

×
{

cos(π/4− βu/2∓ inφ(z))

[
1 + O(

1

n
)

]

+O(n−1en|Re φ(z)|)
}

(2.140)

for z ∈ Ω3
±. In view of (2.39) and the fact that ũ + u = π, the asymptotic

formulas (2.139) and (2.140) are exactly the same.

Proof. By applying (2.10), (2.22) and (2.58) to (2.13) we obtain

U(z) = R(z)

[
n−1∏
j=0

(z −Xj)

]σ3




1 0

∓ Eenv

WẼ
1


 (2.141a)

for Re z ∈ (0, 1) and Im z ∈ (0,±δ), and

U(z) = R(z)

[
n−1∏
j=0

(z −Xj)

]σ3




1
∓WẼe−nv

Ee∓2iπ(nz−β/2)

0 1


 (2.141b)
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iδ

−iδ

1Ω0
l

Ω0
r,+

Ω0
r,−

Ωa Ωb

Ω∞

Ω∞

Ω1
+ Ω2

+ Ω3
+ Ω4

+

Ω1
− Ω2

− Ω3
− Ω4

−

Figure 2.8 Regions of asymptotic approximations. A dashed line indicates that the

asymptotic formulas on its two sides are the same.

for Re z ∈ (1,∞) and Im z ∈ (0,±δ), and

U(z) = R(z)

[
n−1∏
j=0

(z −Xj)

]σ3

(2.141c)

for Re z /∈ [0,∞) or Im z /∈ [−δ, δ]. It is easily seen from (2.53) and (2.60) that

n−1∏
j=0

(z −Xj) =

(
z

z − 1

) 1−β
2

E(z)eng(z)−G(z). (2.142)

For the sake of convenience, we put

Ũ(z) := e(−nl/2)σ3U(z)e(−nv(z)/2)σ3 . (2.143)

Thus, we have from (2.6) and (2.8) that

Ũ11(z) = n−ne−nv(z)/2−nl/2πn(nz − β/2). (2.144)

A combination of (2.40), (2.55), (2.62) and (2.141)-(2.143) yields

Ũ(z) = S(z)Eσ3e−nφσ3




1 0

∓ E

HẼ
1





 z

z − 1




1−β
2

σ3

(2.145a)
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for Re z ∈ (0, 1) and Im z ∈ (0,±δ), and

Ũ(z) = S(z)Eσ3e−nφσ3




1
∓HẼ

Ee∓2iπ(nz−β/2)

0 1





 z

z − 1




1−β
2

σ3

(2.145b)

for Re z ∈ (1,∞) and Im z ∈ (0,±δ), and

Ũ(z) = S(z)Eσ3e−nφσ3


 z

z − 1




1−β
2

σ3

(2.145c)

for Re z /∈ [0,∞) or Im z /∈ [−δ, δ].

For z ∈ Ω4∪Ω∞, we apply (2.81), (2.114) and (2.121) to (2.145), and obtain

e−Lσ3/2ŨeLσ3/2 = (e−Lσ3/2nβσ3/2Kn−βσ3/2eLσ3/2)(e−Lσ3/2MeLσ3/2)

×e−nφσ3




1 ∗

0 1




(
z

z − 1

) 1−β
2

σ3

; (2.146)

here and below, we denote by ∗ some irrelevant quantity which does not effect

our final result. From (2.101) and Proposition 2.20, we have

e−Lσ3/2nβσ3/2Kn−βσ3/2eLσ3/2 = I + O(
1

n
), n →∞. (2.147)

Therefore, applying (2.100) and (2.103) to (2.146) yields

Ũ11 = e−nφ
z

1−β
2 (

√
z−a+

√
z−b

2
)β

(z − a)1/4(z − b)1/4

[
1 + O(

1

n
)

]
.

Hence the asymptotic formula (2.133) follows from (2.40) and (2.144).

For z ∈ Ω1
±, we apply (2.81), (2.114) and (2.121) to (2.145). The result is

e−Lσ3/2ŨeLσ3/2 = (e−Lσ3/2nβσ3/2Kn−βσ3/2eLσ3/2)(e−Lσ3/2MeLσ3/2)e−nφσ3

×




E/Ẽ 0

∓eL/H Ẽ/E




(
z

z − 1

) 1−β
2

σ3

. (2.148)

Recall from (2.22) and (2.55) that H(z) = [z/(z − 1)]1−βW (z) and

W (z) =
2niπΓ(nz + β/2)c−β/2

Γ(nz + 1− β/2)
.
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As n →∞, we observe by Stirling’s formula that the function H(z)−1 is uniformly

bounded for Re z ≥ 0 and z 6= 1. From (2.101), it follows that |eL/H(z)| = O(nβ).

Therefore, applying (2.100), (2.103) and (2.147) to (2.148) gives

Ũ11 =
z

1−β
2 (

√
b−z+

√
a−z

2
)β

(b− z)1/4(a− z)1/4

{
(E/Ẽ)e−nφ∓iπ(1−β)/2

[
1 + O(

1

n
)

]

+O(nβen Re φ)

}
. (2.149)

Since

(E/Ẽ)e−nφ∓iπ(1−β)/2 = −2(−1)ne−nφ̃ sin(nπz − βπ/2)

by (2.39) and (2.58), the asymptotic formula (2.134) follows from (2.144) and

(2.149).

For z ∈ Ω0, the proof of (2.135) and (2.136) is similar to that of (2.133)

and (2.134). The only difference comes from the definition of the parametrix

Tpar(z) in (2.114) and (2.115). We thus replace M by MDσ3 in (2.146) and

(2.148); consequently, the asymptotic formulas (2.135) and (2.136) are simply

the formulas (2.133) and (2.134) multiplied by the function D(z).

For z ∈ Ωa, we first consider the case arg F̃ (z) ∈ (∓2π/3,∓π). In view of

(2.120), this region is approximately the same as the region arg(z−a) ∈ (0,±π/3).

Hence, we obtain from (2.81) and Remark 2.18 that

T (z) = S(z)




Ẽ ∓H̃Ẽ/e2nφ̃

0 1/Ẽ


 .

Applying this and (2.121) to (2.145) gives

H̃−σ3/2ŨH̃σ3/2 = (H̃−σ3/2nβσ3/2Kn−βσ3/2H̃σ3/2)(H̃−σ3/2TparH̃
σ3/2e−nφ̃σ3)

×enφ̃σ3H̃−σ3/2




1/Ẽ
± H̃Ẽ

e2nφ̃

0 Ẽ


 e−nφσ3




E 0

∓ 1

HẼ
1/E


 H̃σ3/2

×
(

z

z − 1

) 1−β
2

σ3

. (2.150)
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Coupling (2.110) and (2.117) yields

H̃−σ3/2TparH̃
σ3/2e−nφ̃σ3

=
√

πm̃F̃−σ3/4



−iω2 Ai′(ωF̃ ) −iω Ai′(ω2F̃ )

−ω Ai(ωF̃ ) −ω2 Ai(ω2F̃ )




=
√

πm̃F̃−σ3/4




Ai′(F̃ ) −Bi′(F̃ )

−i Ai(F̃ ) i Bi(F̃ )







i/2 i/2

−1/2 1/2


 (2.151)

for arg F̃ (z) ∈ (−2π/3,−π), and

H̃−σ3/2TparH̃
σ3/2e−nφ̃σ3

=
√

πm̃F̃−σ3/4




iω Ai′(ω2F̃ ) −iω2 Ai′(ωF̃ )

ω2 Ai(ω2F̃ ) −ω Ai(ωF̃ )




=
√

πm̃F̃−σ3/4




Ai′(F̃ ) −Bi′(F̃ )

−i Ai(F̃ ) i Bi(F̃ )






−i/2 i/2

−1/2 −1/2


 (2.152)

for arg F̃ (z) ∈ (2π/3, π). Here, we have made use of the identities

2ω Ai(ωz) = −Ai(z) + i Bi(z), 2ω2 Ai(ω2z) = −Ai(z)− i Bi(z).

(2.153)

A combination of (2.39), (2.58) and (2.59) implies

enφ̃σ3H̃−σ3/2




1/Ẽ
± H̃Ẽ

e2nφ̃

0 Ẽ


 e−nφσ3




E 0

∓ 1

ẼH
1/E


 H̃σ3/2

(
z

z − 1

) 1−β
2

σ3

= (−1)n



∓ie∓iπ(nz−β/2) ie±iπ(nz−β/2)Ẽ/E

−ie±iπ(nz−β/2) ±ie±iπ(nz−β/2)Ẽ/E




(
z

1− z

) 1−β
2

σ3

= (−1)n

(∓i −1
−i ±1

) 


cos(nπz − βπ/2) ∗

sin(nπz − βπ/2) ∗




(
z

1− z

) 1−β
2

σ3

, (2.154)
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where the ∗ stands for some irrelevant quantities. Applying (2.151)-(2.154) to

(2.150) gives

H̃−σ3/2ŨH̃σ3/2 = (H̃−σ3/2nβσ3/2Kn−βσ3/2H̃σ3/2)(
√

πm̃F̃−σ3/4)(−1)n

×




cos(nπz − βπ/2) Ai′(F̃ )− sin(nπz − βπ/2) Bi′(F̃ ) ∗

−i cos(nπz − βπ/2) Ai(F̃ ) + i sin(nπz − βπ/2) Bi(F̃ ) ∗




×
(

z

1− z

) 1−β
2

σ3

. (2.155)

From (2.96) and Proposition 2.20, we have

H̃−σ3/2nβσ3/2Kn−βσ3/2H̃σ3/2 = I + O(1/n), n →∞. (2.156)

Coupling (2.155) and (2.156) yields

Ũ11(z) = (−1)n
√

π

(
z

1− z

) 1−β
2

×
{

m̃11F̃
−1/4r11

[
1 + O(

1

n
)

]
+ m̃12F̃

1/4r21

[
1 + O(

1

n
)

]}
,

where

r11 := cos(nπz − βπ/2) Ai′(F̃ )− sin(nπz − βπ/2) Bi′(F̃ ),

and

r21 := −i cos(nπz − βπ/2) Ai(F̃ ) + i sin(nπz − βπ/2) Bi(F̃ ).

Thus, formula (2.137) follows from (2.104) and (2.144).

Now, we consider the case arg F̃ (z) ∈ (0,∓2π/3). In view of Remark 2.18,

we obtain from (2.81) that T (z) = S(z)Ẽ(z)σ3 . Applying this and (2.121) to

(2.145) gives

H̃−σ3/2ŨH̃σ3/2 = (H̃−σ3/2nβσ3/2Kn−βσ3/2H̃σ3/2)(H̃−σ3/2TparH̃
σ3/2e−nφ̃σ3)

×enφ̃σ3H̃−σ3/2e−nφσ3




E/Ẽ 0

∓1/H Ẽ/E


 H̃σ3/2

×
(

z

z − 1

) 1−β
2

σ3

. (2.157)
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A combination of (2.110), (2.117) and (2.153) yields

H̃−σ3/2TparH̃
σ3/2e−nφ̃σ3 =

√
πm̃F̃−σ3/4




Ai′(F̃ ) −Bi′(F̃ )

−i Ai(F̃ ) i Bi(F̃ )






±i/2 i

−1/2 0


 .

(2.158)

From (2.39), (2.58) and (2.59) we have

enφ̃σ3H̃−σ3/2e−nφσ3




E/Ẽ 0

∓1/H Ẽ/E


 H̃σ3/2

(
z

z − 1

) 1−β
2

σ3

= (−1)n



−2 sin(nπz − βπ/2) 0

−ie±iπ(nz−β/2) ±ie±iπ(nz−β/2)Ẽ/E




(
z

1− z

) 1−β
2

σ3

= (−1)n

(
0 −2
−i±1

) 


cos(nπz − βπ/2) ∗

sin(nπz − βπ/2) 0




(
z

1− z

) 1−β
2

σ3

, (2.159)

where the ∗ again stands for some irrelevant quantity. Applying (2.158) and

(2.159) to (2.157), we again obtain (2.155). A combination of (2.104), (2.144),

(2.155) and (2.156) yields (2.137).

For z ∈ Ωb, we only consider the case arg F (z) ∈ (±2π/3,±π) here. The

case arg F (z) ∈ (0,±2π/3) is much simpler and we omit the details. On account

of Remark 2.18, we obtain from (2.81) that

T (z) = S(z)




E 0

e2nφ/(±HE) 1/E


 .

Applying this and (2.121) to (2.145), we have

H−σ3/2ŨHσ3/2 = (H−σ3/2nβσ3/2Kn−βσ3/2Hσ3/2)(H−σ3/2TparH
σ3/2e−nφσ3)

×enφσ3H−σ3/2




1/E 0

e2nφ

∓HE
E


 e−nφσ3




E
∓HẼ

e∓2iπ(nz−β/2)

0 1/E


 Hσ3/2

×
(

z

z − 1

) 1−β
2

σ3
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A simple calculation gives

H−σ3/2ŨHσ3/2 = (H−σ3/2nβσ3/2Kn−βσ3/2Hσ3/2)(H−σ3/2TparH
σ3/2e−nφσ3)

×



1 ∗

∓1 ∗




(
z

z − 1

) 1−β
2

σ3

, (2.160)

where the ∗ stands for some irrelevant quantity. Coupling (2.110) and (2.116)

yields

H−σ3/2TparH
σ3/2e−nφσ3

=
√

πmF σ3/4




−ω Ai(ωF ) ω2 Ai(ω2F )

−iω2 Ai′(ωF ) iω Ai′(ω2F )




=
√

πmF σ3/4




Ai(F ) Bi(F )

i Ai′(F ) i Bi′(F )







1/2 −1/2

−i/2 −i/2


 (2.161)

for arg F (z) ∈ (2π/3, π), and

H−σ3/2TparH
σ3/2e−nφσ3

=
√

πmF σ3/4



−ω2 Ai(ω2F ) −ω Ai(ωF )

−iω Ai′(ω2F ) −iω2 Ai′(ωF )




=
√

πmF σ3/4




Ai(F ) Bi(F )

i Ai′(F ) i Bi′(F )







1/2 1/2

i/2 −i/2


 (2.162)

for arg F (z) ∈ (−2π/3,−π). Here, we have made use of (2.153). Moreover, from

(2.96) and Proposition 2.20, we obtain

H−σ3/2nβσ3/2Kn−βσ3/2Hσ3/2 = I + O(1/n), n →∞. (2.163)

A combination of (2.160)-(2.163) gives

Ũ11(z) =
√

π

(
z

z − 1

) 1−β
2

×
{

m11F
1/4 Ai(F )

[
1 + O(

1

n
)

]
+ im12F

−1/4 Ai′(F )

[
1 + O(

1

n
)

]}
.

Thus, formula (2.138) follows from (2.106) and (2.144).
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For z ∈ Ω2
±, similar to the proof of (2.137) in the case when arg F̃ (z) belongs

to (∓2π/3,∓π), the equality (2.150) follows from (2.81), (2.121) and (2.145). Also

a combination of (2.39), (2.58) and (2.59) gives (2.154). Set z = − b−a
2

cos ũ+ b+a
2

,

and we have
√

b− z ± i
√

z − a =
√

b− ae±iũ/2. Since H̃(z) = (1 − z)β−1e−V (z)

by (2.94), and |G̃(z)| + |V (z) + L| = O(1/n) by (2.95), (2.100) and (2.101), it

follows from (2.103) and (2.114) that

H̃−σ3/2TparH̃
σ3/2e−nφ̃σ3 =

(1− z)
1−β

2
σ3( b−a

4
)β/2

(b− z)1/4(z − a)1/4

×






e∓iβũ/2±iπ/4 ie±iβũ/2±iπ/4

−ie±iβũ/2±iπ/4 e∓iβũ/2±iπ/4


 + O(

1

n
)




×e−nφ̃σ3 . (2.164)

Since



e∓iũ/2±iπ/4 ie±iũ/2±iπ/4

−ie±iũ/2±iπ/4 e∓iũ/2±iπ/4


 e−nφ̃σ3

=




2 cos(π/4 + βũ/2∓ inφ̃) −2 sin(π/4 + βũ/2∓ inφ̃)

O(en|Re φ̃|) O(en|Re φ̃|)






±i/2 i/2

−1/2 ±1/2


 ,

it follows from (2.150), (2.154) and (2.164) that

H̃−σ3/2ŨH̃σ3/2 =

(
H̃−σ3/2nβσ3/2Kn−βσ3/2H̃σ3/2

)
(1− z)

1−β
2

σ3( b−a
4

)β/2

(b− z)1/4(z − a)1/4

×



r̃11 ∗

O(en|Re φ̃|+nπ| Im z|) ∗




(
z

1− z

) 1−β
2

σ3

, (2.165)

where the ∗ stands for some irrelevant quantities, and

r̃11 = cos(nπz − βπ/2 + π/4 + βũ/2∓ inφ̃)

[
1 + O(

1

n
)

]
+ O(n−1en|Re φ̃|+nπ| Im z|).

For z ∈ Ω2
±, we have from (2.94) and (2.95) that

|n−βH̃(z)(1− z)1−β|+ |(1− z)β−1H̃(z)−1nβ| = O(1)
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as n → ∞. In view of K(z) = I + O(1/n) by Proposition 2.20, we obtain from

(2.165)

Ũ11(z) =
2(−1)nz

1−β
2 ( b−a

4
)β/2r̃11

(b− z)1/4(z − a)1/4
.

Coupling this with (2.144) yields (2.139).

For z ∈ Ω3
±, similar to the proof of (2.138) in the case arg F (z) ∈ (±2π/3,±π),

the equality (2.160) follows from (2.81), (2.121) and (2.145). Set z = b−a
2

cos u +

b+a
2

, and we have
√

z − a±i
√

b− z =
√

b− ae±iu/2. Since H(z) = (z−1)β−1e−V (z)

by (2.94), and |G̃(z)|+ |V (z)+L| = O(1/n) by (2.95), (2.100) and (2.101), it can

be shown from (2.103) and (2.114) that

H−σ3/2TparH
σ3/2e−nφσ3 =

(z − 1)
1−β

2
σ3( b−a

4
)β/2

(b− z)1/4(z − a)1/4

×






e±iβu/2∓iπ/4 −ie∓iβu/2∓iπ/4

ie∓iβu/2∓iπ/4 e±iβu/2∓iπ/4


 + O(

1

n
)




×e−nφσ3 . (2.166)

Since



e±iβu/2∓iπ/4 −ie∓iβu/2∓iπ/4

ie∓iβu/2∓iπ/4 e±iβu/2∓iπ/4


 e−nφσ3

=




2 cos(π/4− βu/2∓ inφ) −ie∓iβu∓iπ/4+nφ

O(en|Re φ|) O(en|Re φ|)







1 0

±1 1


 ,

applying (2.166) to (2.160) gives

H−σ3/2ŨHσ3/2 =

(
H−σ3/2nβσ3/2Kn−βσ3/2Hσ3/2

)
(z − 1)

1−β
2

σ3( b−a
4

)β/2

(b− z)1/4(z − a)1/4

×



r11 ∗

O(en|Re φ|) ∗




(
z

z − 1

) 1−β
2

σ3

, (2.167)

where the ∗ stands for some irrelevant quantities, and

r11 = cos(π/4− βu/2∓ inφ)

[
1 + O(

1

n
)

]
+ O(n−1en|Re φ|).
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For z ∈ Ω3
±, we have from (2.94) and (2.95) that

|n−βH(z)(z − 1)1−β|+ |(z − 1)β−1H(z)−1nβ| = O(1)

as n → ∞. In view of K(z) = I + O(1/n) by Proposition 2.20, we obtain from

(2.167)

Ũ11(z) =
2z

1−β
2 ( b−a

4
)β/2r11

(b− z)1/4(z − a)1/4
.

Coupling this with (2.144) yields (2.140). Moreover, since z = b−a
2

cos u + b+a
2

=

− b−a
2

cos ũ + b+a
2

, we have ũ + u = π. In view of (2.39), the two asymptotic

formulas (2.139) and (2.140) are exactly the same.



Chapter 3

Asymptotics of Some q-Orthogonal

Polynomials

3.1 Discrete analogues of Laplace’s approxima-

tion

In order to give applications to q-orthogonal polynomials, we need consider

the sum

In(z|q) =
n∑

k=0

fn(k)qgn(k)zk, (3.1)

where q ∈ (0, 1), fn and gn are real-valued functions defined on N, and z is a

complex variable. As we shall see, the large – n behavior of In(z|q) involves the

q-Theta function (1.9)

Θq(z) :=
∞∑

k=−∞
qk2

zk.

Theorem 3.1. Assume that the following conditions hold:

(i) there is a number l ∈ (0, 1) such that lim
n→∞

fn(bnlc) = 1 and lim
n→∞

gn(bnlc) =

0;

(ii) there exists a constant M > 0 such that |fn(k)| ≤ M for 0 ≤ k ≤ n;

(iii) for any 0 < δ < l, there exist Aδ > 0 and N(δ) ∈ N such that gn(k) ≥ n2Aδ

for all k ∈ [0, n(l − δ)] ∪ [n(l + δ), n] and n > N(δ);

(iv) for any small ε > 0, there exist δ(ε) > 0 and N(ε) ∈ N such that |fn(k) −
1| < ε and |gn(k)−bn(k−bnlc)−c0(k−bnlc)2| < ε(k−bnlc)2 for n(l−δ(ε)) ≤
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k ≤ n(l + δ(ε)) and n > N(ε), where supn |bn| ≤ L.

Then, we have

In(z|q) = zbnlc[Θq̃(wn) + o(1)] as n →∞, (3.2)

for all z ∈ TR := {z ∈ C : R−1 ≤ |z| ≤ R}, where q̃ = qc0 and wn = qbnz.

Remark 3.2. Condition (i) in Theorem 3.1 can always be satisfied, if we con-

sider, instead of In(z|q), the sum

Ĩn(z|q) =
1

fn(bnlc)q
−gn(bnlc)In(z|q) =

n∑

k=0

fn(k)

fn(bnlc)q
gn(k)−gn(bnlc).

Condition (iv) in the theorem is the discrete analogue of the conditions that fn is

continuous and gn is twice continuously differentiable at k = bnlc with g′n(bnlc) =

bn and g′′n(bnlc) = 2c0.

Before proving Theorem 3.1, let us first establish the following stronger re-

sult.

Theorem 3.3. Assume that the conditions (i), (ii) and (iii) in Theorem 3.1 hold.

If condition (iv) in that theorem is strengthened to

(iv′) for any small δ > 0, there exist a function ηn(δ) with lim
n→∞

ηn(δ) = 0 and

a positive integer N(δ) such that |fn(k)− 1| ≤ ηn(δ) and |gn(k)− bn(k −
bnlc)−c0(k−bnlc)2| ≤ ηn(δ)(k−bnlc)2 for all k in n(l−δ) ≤ k ≤ n(l+δ)

and all n > N(δ),

then the error rn := z−bnlcIn(z|q)−Θq̃(wn) in the approximation (3.2) satisfies

|rn| ≤ C(ηn(δ) + qn2Aδ(1−δ) + qc0n2δ2(1−δ)) (3.3)

for sufficiently large n, where C is a constant depending on q, M, R, L, and c0.

Furthermore, the estimate is uniform for z in the annulus TR given in Theorem

3.1.
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Proof. Clearly,

rn =

n−bnlc∑

k=−bnlc
fn(k + bnlc)qgn(k+bnlc)zk −

∞∑

k=−∞
qk2c0+kbnzk.

We write the first sum as

−bnδc−1∑

k=−bnlc
+

bnδc∑

k=−bnδc
+

n−bnlc∑

k=bnδc+1

,

and the second sum as

−bnδc−1∑

k=−∞
+

bnδc∑

k=−bnδc
+

∞∑

k=bnδc+1

.

Thus,

rn = I1 + I2 + I3 + I4 + I5 + I6,

where

I1 =

n−bnlc∑

k=bnδc+1

fn(k + bnlc)qgn(k+bnlc)zk,

I2 =−
∞∑

k=bnδc+1

qk2c0+kbnzk,

I3 =

−bnδc−1∑

k=−bnlc
fn(k + bnlc)qgn(k+bnlc)zk,

I4 =−
−bnδc−1∑

k=−∞
qk2c0+kbnzk,

I5 =

bnδc∑

k=−bnδc
fn(k + bnlc)[qgn(k+bnlc) − qk2c0+kbn ]zk,

and

I6 = −
bnδc∑

k=−bnδc
[fn(k + bnlc)− 1]qk2c0+kbnzk.

For sufficiently large n, we have

|I1| ≤
n−bnlc∑

k=bnδc+1

Mqn2AδRk ≤ nMqn2AδRn ≤ qn2Aδ(1−δ),
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and

|I2| ≤
∞∑

m=0

qm2c0+(bnδc+1)2c0−(m+bnδc+1)LRm+bnδc+1

≤ q(bnδc+1)2c0−(bnδc+1)LRbnδc+1Θqc0 (q−LR)

≤ qc0n2δ2(1−δ),

since |bn| ≤ L. Similarly, we obtain

|I3| ≤
−bnδc−1∑

k=−bnlc
Mqn2AδR−k ≤ nMqn2AδRn ≤ qn2Aδ(1−δ),

and

|I4| ≤
0∑

m=−∞
qm2c0+(bnδc+1)2c0+(m−bnδc−1)LR−m+bnδc+1

≤ q(bnδc+1)2c0−(bnδc+1)LRbnδc+1Θqc0 (q−LR)

≤ qc0n2δ2(1−δ)

for large enough n.

We next estimate I5 and I6. It is evident that

I5 =

bnδc∑

k=−bnδc
fn(k + bnlc)[qgn(k+bnlc)−k2c0−kbn − 1]qk2c0+kbnzk.

By the mean-value theorem, we have

|I5| ≤ M | ln q|ηn(δ)

bnδc∑

k=−bnδc
k2q−ηn(δ)k2+k2c0+kbn|z|k,

where we have made use of condition (iv′). Since e|k| ≥ 1
2
k2 and ηn(δ) → 0 as

n →∞, the last inequality gives

|I5| ≤ 4M | ln q|ηn(δ)Θqc0/2(eq−LR)

for sufficiently large n. In the same manner, it follows that

|I6| ≤ sup
|k|≤bnδc

|fn(k + bnlc)− 1|
bnδc∑

k=−bnδc
qk2c0+kbn|z|k

≤ 2ηn(δ)Θqc0 (q−LR).



Chapter 3. Asymptotics of Some q-Orthogonal Polynomials 75

The desired result (3.2) is obtained by a combination of the estimates for I1, · · · , I6.

Proof of Theorem 3.1. Here we need to show that rn → 0 as n → ∞. Let

0 < ε < c0/2, and choose δ = δ(ε) as in condition (iv). We estimate I1, I2, I3

and I4 as before, and they all tend to zero as n → ∞. As for I5 and I6, we also

proceed as in Theorem 3.3, and obtain

|I5| ≤ εM | ln q|
bnδc∑

k=−bnδc
k2e−εk2

qk2c0+kbn|z|k

≤ 4εM | ln q|Θqc0/2(eq−LR)

and

|I6| ≤ 2εΘqc0 (q−LR).

Thus, limn→∞ |rn| ≤ Cε, where C is independent of ε. Since ε is arbitrary, the

desired result (3.2) follows.

3.2 The q-Airy function and the q-Airy polyno-

mial

Recall from (1.4) that for q ∈ (0, 1),

(a; q)0 := 1, (a; q)n :=
n∏

k=1

(1− aqk−1), n = 1, 2, · · · ,∞.

We shall also make use of the identity

(q; q)n =
(q; q)∞

(qn+1; q)∞
. (3.4)

In this section, we investigate asymptotic behavior of the q-Airy function (1.8)

Aq(z) :=
∞∑

k=0

qk2

(q; q)k

(−z)k

as z →∞, and the q-Airy polynomial (1.10)

Aq,n(z) :=
n∑

k=0

qk2

(q; q)k

(−z)k
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as n →∞. As we shall see, our formulas involve the q-Theta function (1.9)

Θq(z) :=
∞∑

k=−∞
qk2

zk.

For convenience, we introduce the half q-Theta function:

Θ+
q (z) :=

∞∑

k=0

qk2

zk. (3.5)

Clearly,

Θq(z) + 1 = Θ+
q (z) + Θ+

q (1/z). (3.6)

Proposition 3.4. Let z := q−ntu with u 6= 0 and t being a fixed real number.

When t ≥ 2, we have

Aq,n(z) =
(−z)nqn2

(q; q)∞

[
Θ+

q (−q−2n/z) + O(qn(1−δ))

]
(3.7)

uniformly for |u| ≥ 1/R, where δ > 0 is any small number and R > 0 is any large

real number. When 0 < t < 2, we have

Aq,n(z) =
(−z)mqm2

(q; q)∞

[
Θq(−q2mz) + O(qm(1−δ))

]
, (3.8)

where m := bnt/2c and δ > 0 is any small number; this formula holds uniformly

for 1
R
≤ |u| ≤ R, where R > 0 is any large real number. When t ≤ 0, we have

Aq,n(z) = Aq(z) + O(qn2(1−δ)) (3.9)

uniformly for |u| ≤ R, where δ > 0 is any small number. Furthermore, as z →∞,

we have

Aq(z) =
(−z)mqm2

(q; q)∞

[
Θq(−q2mz) + O(qm(1−δ))

]
, (3.10)

where m := b ln |z|
−2 ln q

c and δ > 0 is any small number.

Proof. From the definition of q-Airy polynomial (1.10) we have

Aq,n(z) =
n∑

k=0

q(n−k)2

(q; q)n−k

(−z)n−k

=
(−z)nqn2

(q; q)∞

n∑

k=0

qk2

(qn−k+1; q)∞(−q−2n/z)k.
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If t ≥ 2, we write

Aq,n(z) =
(−z)nqn2

(q; q)∞

[
Θ+

q (−q−2n/z) + rn(z)

]
.

Then we have

rn(z) =
n∑

k=0

qk2

(qn−k+1; q)∞(−q−2n/z)k −
∞∑

k=0

qk2

(−q−2n/z)k

= I1 + I2 + I3,

where

I1 :=−
bnδc∑

k=0

qk2

(1− (qn−k+1; q)∞)(−q−2n/z)k,

I2 :=
n∑

k=bnδc+1

qk2

(qn−k+1; q)∞(−q−2n/z)k,

I3 :=−
∞∑

k=bnδc+1

qk2

(−q−2n/z)k.

On account of

1− ab < (1− a) + (1− b)

for any a, b ∈ (0, 1) and by induction, it is verifiable that

1− (qn−k+1; q)∞ ≤
∞∑

j=n−k+1

qj =
qn−k+1

1− q
≤ qn(1−δ)

1− q

for any 0 ≤ k ≤ bnδc. Since

|q−2n/z| = qn(t−2)/|u| ≤ R

for t ≥ 2, we have

|I1| ≤ qn(1−δ)

1− q

∞∑

k=0

qk2

Rk = O(qn(1−δ)).
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Furthermore, it is readily seen that

max{|I2|, |I3|}≤
∞∑

k=bnδc+1

qk2

Rk

=
∞∑

k=0

q(k+bnδc+1)2Rk+bnδc+1

≤ qn2δ2

Rnδ+1Θ+
q (q2nδR)

= O(qn2δ2(1−δ)).

From the above estimates we obtain

Aq,n(z) =
(−z)nqn2

(q; q)∞

[
Θ+

q (−q−2n/z) + O(qn(1−δ))

]

for any small δ > 0. This proves (3.7).

Now, we consider the case 0 < t < 2. Set m := bnt/2c; then we can rewrite

the q-Airy polynomial (1.10) as

Aq,n(z) =
n∑

k=0

q(k−m)2−m2

(q; q)k

(−q2mz)k

=
(−z)mqm2

(q; q)∞

n−m∑

k=−m

qk2

(qk+m+1; q)∞(−q2mz)k. (3.11)

To estimate the difference between the last sum and the q-Theta function, we let

rn(z) :=
(q; q)∞

(−z)mqm2 Aq,n(z)−Θq(−q2mz)

=
n−m∑

k=−m

qk2

(qk+m+1; q)∞(−q2mz)k −
∞∑

k=−∞
qk2

(−q2mz)k

= I1 + I2 + I3, (3.12)

where

I1 :=

bnδc∑

k=−bnδc
qk2

((qk+m+1; q)∞ − 1)(−q2mz)k,

I2 :=
n−m∑

k=bnδc+1

qk2

(qk+m+1; q)∞(−q2mz)k −
∞∑

k=bnδc+1

qk2

(−q2mz)k,

I3 :=

−bnδc−1∑

k=−m

qk2

(qk+m+1; q)∞(−q2mz)k −
−bnδc−1∑

k=−∞
qk2

(−q2mz)k.
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Firstly, since 1/R ≤ |u| ≤ R and −2 ≤ 2m− nt ≤ 0, we have

q2/R ≤ |q2mz| = q2m−nt|u| ≤ R/q2.

On account of

1− ab < (1− a) + (1− b)

for any a, b ∈ (0, 1) and by induction, we obtain

1− (qk+m+1; q)∞ ≤
∞∑

j=k+m+1

qj =
qk+m+1

1− q
≤ qm−nδ

1− q

for −bnδc ≤ k ≤ bnδc. Thus, it follows that

|I1| ≤ 2qm−nδ

1− q

∞∑

k=0

qk2

(R/q2)k = O(qm−nδ). (3.13)

Secondly, it can be shown that

max{|I2|, |I3|}≤ 2
∞∑

k=bnδc+1

qk2

(R/q2)k

= 2
∞∑

k=0

q(k+bnδc+1)2(R/q2)k+bnδc+1

= 2q(bnδc+1)2(R/q2)bnδc+1Θ+
q (q2bnδcR)

= O(qn2δ2(1−δ)). (3.14)

Finally, applying (3.13) and (3.14) to (3.12) gives

rn(z) = O(qm−nδ).

Therefore,

Aq,n(z) =
(−z)mqm2

(q; q)∞

[
Θq(−q2mz) + O(qm−nδ)

]

for any small δ > 0. Replacing δ by tδ
2
, formula (3.8) then follows since m :=

bnt/2c.
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When t ≤ 0, we have q−nt ≤ 1 and hence |z| = |q−ntu| ≤ R. From (1.8) and

(1.10) we obtain

|Aq,n(z)− Aq(z)|=
∣∣∣∣∣

∞∑

k=n+1

qk2

(q; q)k

(−z)k

∣∣∣∣∣

≤
∞∑

k=n+1

qk2

(q; q)∞
Rk

≤
∞∑

k=n

qk2

(q; q)∞
Rk.

For convenience, we have added a positive term in the last sum. Since the last

sum can be expressed in terms of the half q-Theta function defined in (3.5), we

have

|Aq,n(z)− Aq(z)| ≤
∞∑

l=0

q(l+n)2

(q; q)∞
Rl+n

=
qn2

Rn

(q; q)∞
Θ+

q (q2nR)

= O(qn2(1−δ))

for any small δ > 0. This ends the proof of (3.9).

The proof of (3.10) is similar to that of (3.8). Recall that m := b ln |z|
−2 ln q

c.
When z tends to infinity, so does m. Furthermore, we have 1 ≤ |q2mz| ≤ q−2.

This suggests to change the variable in the q-Airy function from z into q2mz. On

account of (3.4),

Aq(z) =
∞∑

k=0

qk2

(q; q)k

(−z)k

=
∞∑

k=−m

q(k+m)2

(q; q)k+m

(−z)k+m

=
(−z)mqm2

(q; q)∞

∞∑

k=−m

qk2

(qk+m+1; q)∞(−q2mz)k.
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To prove (3.10) we only need to estimate the remainder

r(z) :=
(q; q)∞

(−z)mqm2 Aq(z)−Θq(−q2mz)

=
∞∑

k=−m

qk2

(qk+m+1; q)∞(−q2mz)k −
∞∑

k=−∞
qk2

(−q2mz)k

= I1 + I2 + I3, (3.15)

where

I1 :=

bmδc∑

k=−bmδc
qk2

((qk+m+1; q)∞ − 1)(−q2mz)k,

I2 :=
∞∑

k=bmδc+1

qk2

(qk+m+1; q)∞(−q2mz)k −
∞∑

k=bmδc+1

qk2

(−q2mz)k,

I3 :=

−bmδc−1∑

k=−m

qk2

(qk+m+1; q)∞(−q2mz)k −
−bmδc−1∑

k=−∞
qk2

(−q2mz)k.

Again since q2 < 1 ≤ |q2mz| ≤ q−2, similar to the proof of (3.8) one can show

that for any fixed small δ > 0,

|I1| ≤ 2
qm−mδ

1− q

∞∑

k=0

qk2

q−2k = O(qm(1−δ)), (3.16)

and

max{|I2|, |I3|}≤ 2
∞∑

k=bmδc+1

qk2

q−2k

= 2qbmδc2−1Θ+
q (q2bmδc)

= O(qm2δ2(1−δ)). (3.17)

A combination of (3.15), (3.16) and (3.17) gives (3.10). This ends our proof.

3.3 Uniform asymptotic formulas for some q-

orthogonal polynomials

In this section, we derive several uniform asymptotic formulas for the q−1-

Hermite polynomials (1.5), the Stieltjes-Wigert polynomials (1.6), and the q-
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Laguerre polynomials (1.7). We use the same scale as in [15]. Thus, for the

q−1-Hermite polynomials, we set

z = sinh ξ := (q−ntu− qntu−1)/2

with u 6= 0 and t ≥ 0. For the Stieltjes-Wigert polynomials and the q-Laguerre

polynomials, we set

z := q−ntu

with u 6= 0 and t ≥ 1. After rescaling, we have

hn(sinh ξ|q) = unq−n2t

n∑

k=0

(qn−k+1; q)k

(q; q)k

qk2

(−u−2qn(2t−1))k, (3.18)

Sn(z; q) =
(−u)nqn2(1−t)

(q; q)n

n∑

k=0

(qn−k+1; q)k

(q; q)k

qk2

(−u−1qn(t−2))k, (3.19)

Lα
n(z; q) =

(−uqα)nqn2(1−t)

(q; q)n

×
n∑

k=0

(qα+1+n−k; q)k(q
n−k+1; q)k

(q; q)k

qk2

(−u−1qn(t−2)−α)k. (3.20)

Theorem 3.5. Let z = sinh ξ := (q−ntu− qntu−1)/2 with u ∈ C and |u| ≥ 1/R,

where R > 0 is any fixed large number. Given any small δ > 0, we have

hn(sinh ξ|q) = unq−n2t
[
Aq,n(u−2qn(2t−1)) + rn(t, u)

]
(3.21)

for t > 1/2− δ, where the remainder satisfies

|rn(t, u)| ≤ qn(1−3δ)

1− q
Aq,n(−|u|−2qn(2t−1))

+
q3n2δ2−2nδR2(b3nδc+1)

(q; q)∞
Θ+

q (q4nδR2). (3.22)

On the other hand, for 0 ≤ t < 1/2, we have

hn(sinh ξ|q) =
(−1)mun−2mq−n2t−m[n(1−2t)−m]

(q; q)∞

×
[
Θq(−u−2q2m−n(1−2t)) + O(qn(l−δ))

]
, (3.23)
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where l := 1/2 − t, m := bnlc and δ > 0 is any small number. The O-term in

(3.23) is uniform with respect to u ∈ TR := {z ∈ C : R−1 ≤ |z| ≤ R} with R > 0

being any large real number.

Proof. From (1.10), (3.18) and (3.21) it is easily seen that

rn(t, u) =
n∑

k=0

(qn−k+1; q)k − 1

(q; q)k

qk2

(−u−2qn(2t−1))k = I1 + I2, (3.24)

where

I1 :=

bnδ1c∑

k=0

(qn−k+1; q)k − 1

(q; q)k

qk2

(−u−2qn(2t−1))k,

I2 :=
n∑

k=bnδ1c+1

(qn−k+1; q)k − 1

(q; q)k

qk2

(−u−2qn(2t−1))k.

Here δ1 ∈ (0, 1) is a small number to be determined later. For any 0 ≤ k ≤ bnδ1c,

0 ≤ 1− (qn−k+1; q)k <
qn−k+1

1− q
≤ qn(1−δ1)

1− q
.

Thus,

|I1| ≤
n∑

k=0

qn(1−δ1)

1− q

qk2

(q; q)k

(|u|−2qn(2t−1))k

=
qn(1−δ1)

1− q
Aq,n(−|u|−2qn(2t−1)). (3.25)

Furthermore, since

0 ≤ 1− (qn−k+1; q)k ≤ 1

for any k ∈ [0, n] and

|u|−2qn(2t−1) ≤ q−2nδR2

for t > 1/2− δ, we obtain

|I2| ≤
∞∑

k=bnδ1c+1

qk2

(q; q)∞
(q−2nδR2)k

=
q(bnδ1c+1)2−2nδ(bnδ1c+1)R2(bnδ1c+1)

(q; q)∞
Θ+

q (q2(bnδ1c+1)−2nδR2)

≤ qn2δ2
1−2nδ(nδ1+1)R2(bnδ1c+1)

(q; q)∞
Θ+

q (q2nδ1−2nδR2). (3.26)
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Choose δ1 := 3δ. Then (3.22) follows from (3.24), (3.25) and (3.26).

When 0 ≤ t < 1/2, we apply Theorem 3.3 to (3.18) with

l = 1/2− t, m = bnlc, gn(k) = k2 − 2nlk + m(2nl −m),

fn(k) = (qk+1; q)∞(qn−k+1; q)k, z = −u2, c0 = 1, M = 1,

bn = 2(m− nl), L = 2, Aδ = δ2(1− δ), ηn(δ) = 2qn(l−δ)/(1− q).

To verify condition (ii) in Theorem 3.1 (which is also assumed in Theorem 3.3),

we choose N(δ) = b2/δ2c. Then it is readily seen that for k ∈ [0, n(l− δ)]∪ [n(l+

δ)− 1, n] and n > N(δ), we have

gn(k) = (k − nl)2 − (m− nl)2

> (nδ − 1)2 − 1

>n2δ2(1− δ)

= n2Aδ. (3.27)

To show that condition (iv′) in Theorem 3.3 also holds, we first note that

1− ab < (1− a) + (1− b)

for 0 < a, b < 1, and hence

|fn(k)− 1|= 1− (qk+1; q)∞(qn−k+1; q)∞

< 1− (qk+1; q)∞ + 1− (qn−k+1; q)k.

For any positive integers m and k, we have by induction

1− (qm; q)k <qm + qm+1 + · · ·+ qm+k−1

=
qm − qm+k

1− q

<
qm

1− q
. (3.28)

Letting k →∞ yields

1− (qm; q)∞ ≤ qm

1− q
.
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Thus,

|fn(k)− 1| ≤ qk+1

1− q
+

qn−k+1

1− q
≤ 2qn(l−δ)

1− q
= ηn(δ) (3.29)

for k ∈ [n(l − δ), n(l + δ)], where we have used l = 1/2 − t ≤ 1/2. Next, we

observe that

gn(k) = k2 − 2nlk + m(2nl −m)

= 2(k −m)(m− nl) + (k −m)2.

With c0 = 1, m = bnlc and bn = 2(m− nl), the last equation becomes

gn(k) = (k − bnlc)bn + c0(k − bnlc)2, (3.30)

thus establishing condition (iv′). Formula (3.23) now follows from (3.2) and

(3.3).

Theorem 3.6. Let z := q−ntu with t ≥ 1, u ∈ C and |u| ≥ 1/R, where R > 0 is

any fixed large number. Given any small δ > 0, we have

Sn(z; q) =
(−u)nqn2(1−t)

(q; q)n

[
Aq,n(u−1qn(t−2)) + rn(t, u)

]
(3.31)

for t > 2(1− δ), where the remainder satisfies

|rn(t, u)| ≤ qn(1−3δ)

1− q
Aq,n(−|u|−1qn(t−2))

+
q3n2δ2−2nδRb3nδc+1

(q; q)∞
Θ+

q (q4nδR). (3.32)

When 1 ≤ t < 2, we have

Sn(z; q) =
(−u)n−mqn2(1−t)−m[n(2−t)−m]

(q; q)n(q; q)∞

×
[
Θq(−u−1q2m−n(2−t)) + O(qn(l−δ))

]
, (3.33)

where l := 1 − t/2, m := bnlc and δ > 0 is any small number. This asymptotic

formula holds uniformly for u ∈ TR := {z ∈ C : R−1 ≤ |z| ≤ R}, where R > 0 is

any large real number.
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Proof. On account of (1.10) and (3.19), we obtain from (3.31) that

rn(z) :=
(q; q)n

(−u)nqn2(1−t)
Sn(z; q)− Aq,n(u−1qn(t−2))

= −
n∑

k=0

1− (qn−k+1; q)k

(q; q)k

qk2

(−u−1qn(t−2))k

= −I1 − I2, (3.34)

where

I1 :=

bnδ1c∑

k=0

1− (qn−k+1; q)k

(q; q)k

qk2

(−u−1qn(t−2))k,

I2 :=
n∑

k=bnδ1c+1

1− (qn−k+1; q)k

(q; q)k

qk2

(−u−1qn(t−2))k.

Here δ1 ∈ (0, 1) is a small number to be determined later. In view of the inequality

1− ab < (1− a) + (1− b)

for any a, b ∈ (0, 1) and by induction, we can show that for any 0 ≤ k ≤ nδ1,

1− (qn−k+1; q)k <
k∑

i=1

qn−k+i <
∞∑
i=0

qn−k+i =
qn−k

1− q
≤ qn(1−δ1)

1− q
.

Thus, from the definition of q-Airy polynomial (1.10) we obtain

|I1| ≤
bnδ1c∑

k=0

qn(1−δ1)

1− q

qk2

(q; q)k

∣∣u−1qn(t−2)
∣∣k

≤ qn(1−δ1)

1− q
Aq,n(−|u|−1qn(t−2)). (3.35)

Furthermore, since 0 < 1− (qn−k+1; q)k < 1 for any nδ1 ≤ k ≤ n, it follows that

|I2| ≤
n∑

k=bnδ1c+1

qk2

(q; q)∞

∣∣u−1qn(t−2)
∣∣k

=

n−bnδ1c−1∑

k=0

q(k+bnδ1c+1)2

(q; q)∞

∣∣u−1qn(t−2)
∣∣k+bnδ1c+1

≤
∞∑

k=0

q(k+nδ1)2

(q; q)∞
|u−1qn(t−2)|k+bnδ1c+1

=
qn2δ2

1

∣∣u−1qn(t−2)
∣∣bnδ1c+1

(q; q)∞
Θ+

q (q2nδ1 |u−1qn(t−2)|).
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By virtue of t > 2(1− δ) and |u| ≥ 1/R, we have |u−1qn(t−2)| ≤ q−2nδR, and thus

|I2| ≤ qn2δ2
1q−2nδ(bnδ1c+1)Rbnδ1c+1

(q; q)∞
Θ+

q (q2n(δ1−δ)R)

≤ qn2δ2
1−2nδ(nδ1+1)Rbnδ1c+1

(q; q)∞
Θ+

q (q2n(δ1−δ)R). (3.36)

Set δ1 := 3δ. A combination of (3.34), (3.35) and (3.36) gives (3.32) immediately.

For 1 ≤ t < 2, we apply Theorem 3.3 to (3.31) with

l = 1− t/2, m = bnlc, gn(k) = k2 − 2nlk + m(2nl −m),

fn(k) = (qn−k+1; q)k(q
k+1; q)∞, z = −u−1, c0 = 1, M = 1,

bn = 2(m− nl), L = 2, Aδ = δ2(1− δ), ηn(δ) = 2qn(l−δ)/(1− q).

The arguments for verifying the conditions in Theorems 3.1 and 3.3 are the same

as those used in the proof of Theorem 3.5.

Theorem 3.7. Assume that α is real and α > −1. Let z := q−ntu with u ∈ C
and |u| ≥ 1/R, where R > 0 is any fixed large number. Given any small δ > 0,

we have

Lα
n(z; q) =

(−uqα)nqn2(1−t)

(q; q)n

[
Aq,n(u−1qn(t−2)−α) + rn(t, u)

]
(3.37)

for t > 2(1− δ), where the remainder satisfies

|rn(t, u)| ≤ 2qn(1−2δ)

1− q
Aq,n(−|u|−1qn(t−2)−α)

+
q3n2δ2−2nδ(q−αR)b3nδc+1

(q; q)∞
Θ+

q (q4nδ−αR). (3.38)

On the other hand, when 1 ≤ t < 2, we have

Lα
n(z; q) =

(−uqα)n−mqn2(1−t)−m[n(2−t)−m]

(q; q)n(q; q)∞

×
[
Θq(−u−1q2m−n(2−t)−α) + O(qn(l−δ))

]
, (3.39)

where l := 1 − t/2, m := bnlc and δ > 0 is any small number. The asymptotic

formula holds uniformly for u ∈ TR := {z ∈ C : R−1 ≤ |z| ≤ R}, where R > 0 is

any large real number.
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Proof. It follows from (1.10) and (3.20) that the remainder in (3.37) can be

written as

rn(z) =
n∑

k=0

(qα+1+n−k; q)k(q
n−k+1; q)k − 1

(q; q)k

qk2

(−u−1qn(t−2)−α)k

= I1 + I2, (3.40)

where

I1 :=

bnδ1c∑

k=0

(qα+1+n−k; q)k(q
n−k+1; q)k − 1

(q; q)k

qk2

(−u−1qn(t−2)−α)k,

I2 :=
n∑

k=bnδ1c+1

(qα+1+n−k; q)k(q
n−k+1; q)k − 1

(q; q)k

qk2

(−u−1qn(t−2)−α)k.

Here δ1 ∈ (0, 1) is a small number to be determined later. Since

1− ab < (1− a) + (1− b)

for any a, b ∈ (0, 1), we have for any 0 ≤ k ≤ bnδ1c,

1− (qα+1+n−k; q)k(q
n−k+1; q)k < 1− (qα+1+n−k; q)k + 1− (qn−k+1; q)k.

In view of (3.28), it follows that

1− (qα+1+n−k; q)k(q
n−k+1; q)k <

qα+1+n−k + qn−k+1

1− q
<

2qn(1−δ1)

1− q
,

where we have used the assumption α > −1. Therefore,

|I1| ≤
n∑

k=0

2qn(1−δ1)

1− q

qk2

(q; q)k

(|u|−1qn(t−2)−α)k

=
2qn(1−δ1)

1− q
Aq,n(−|u|−1qn(t−2)−α). (3.41)

Furthermore, since

0 ≤ 1− (qα+1+n−k; q)k(q
n−k+1; q)k ≤ 1

for any k ∈ [0, n], and

|u|−1qn(t−2)−α ≤ q−2nδ−αR
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for t > 2(1− δ), we obtain

|I2| ≤
∞∑

k=bnδ1c+1

qk2

(q; q)∞
(q−2nδ−αR)k

=
q(bnδ1c+1)2−2nδ(bnδ1c+1)(q−αR)bnδ1c+1

(q; q)∞
Θ+

q (q2(bnδ1c+1)−2nδ−αR)

≤ qn2δ2
1−2nδ(nδ1+1)(q−αR)bnδ1c+1

(q; q)∞
Θ+

q (q2nδ1−2nδ−αR). (3.42)

Set δ1 := 3δ, then (3.38) follows from (3.40), (3.41) and (3.42).

When 1 ≤ t < 2, we apply Theorem 3.3 to (3.20) with

l = 1− t/2, m = bnlc, gn(k) = k2 − 2nlk + m(2nl −m),

fn(k) = (qα+1+n−k; q)k(q
n−k+1; q)k(q

k+1; q)∞, z = −u−1q−α, c0 = 1, M = 1,

bn = 2(m− nl), L = 2, Aδ = δ2(1− δ), ηn(δ) = 3qn(l−δ)/(1− q).

The verification of condition (iv′) in Theorem 3.3 proceeds along the same lines

as that given in Theorem 3.5. In particular, since

|fn(k)− 1| = 1− (qα+1+n−k; q)k(q
n−k+1; q)k(q

k+1; q)∞

and

1− abc < (1− a) + (1− b) + (1− c)

for 0 < a, b, c < 1, we have

|fn(k)− 1| ≤ 1− (qα+1+n−k; q)k + 1− (qn−k+1; q)k + 1− (qk+1; q)∞.

Thus, by (3.28)

|fn(k)− 1| ≤ qα+1+n−k + qn−k+1 + qk+1

1− q
≤ 3qn(l−δ)

1− q
= ηn(δ)

for k ∈ [n(l − δ), n(l + δ)].
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Appendix

4.1 Explicit formulas of some integrals

In this section we calculate some integrals which are frequently used in this

thesis.

Proposition 4.1. Let a and b be two constants such that 0 < a < 1 < b and

ab = 1. For any x ∈ [a, b], we have

I1(x) :=

∫ 1

ax

ds√
(bs− x)(x− as)

= arccos
(b + a)x− 2

(b− a)x
, (4.1)

I2(x) :=

∫ x

a

arccos
(b + a)s− 2

(b− a)s
ds

= x arccos
(b + a)x− 2

(b− a)x
− arccos

2x− (b + a)

b− a
+ π(1− a), (4.2)

I3(x) :=

∫ 1

ax

arccos
2x− (b + a)s

(b− a)s
ds

= arccos
2x− (b + a)

b− a
− x arccos

(b + a)x− 2

(b− a)x
. (4.3)

Especially when x = b, we have

I2(b) =

∫ b

a

arccos
(b + a)s− 2

(b− a)s
ds = π(1− a). (4.4)

For any z ∈ C \ [a, b), we have

I4(z) :=
1

π

∫ b

a

1

z − s
arccos

(b + a)s− 2

(b− a)s
ds

= − log
z(b + a)− 2 + 2

√
(z − a)(z − b)

(z − a)(1 + a)(1 + b)
. (4.5)

Especially when z = b, we have

I4(b) =
1

π

∫ b

a

1

b− s
arccos

(b + a)s− 2

(b− a)s
ds = 2 log(1 + a). (4.6)
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For any z ∈ C \ [0, b), we have

I5(z) :=

∫ a

0

√
(z − a)(z − b)√
(a− s)(b− s)

ds

s− z

= − log
z(b + a)− 2 + 2

√
(z − a)(z − b)

z(b− a)
. (4.7)

Finally, we have

I6 :=

∫ b

a

log(b− s) arccos
(b + a)s− 2

(b− a)s
ds

= π[2b log(1 + a) + (1− a) log(b− a)− 2 log 2− 1 + a]. (4.8)

Proof. By a change of variable s = xt we have

I1(x) =

∫ 1/x

a

ds√
(bs− 1)(1− as)

.

Set y := 1/x. On account of ab = 1, the equality (4.1) is the same as

∫ y

a

ds√
(s− a)(b− s)

= arccos
(b + a)− 2y

b− a
,

which is obvious since the functions on both side have the same derivative on y

and the same value at y = a. This proves (4.1).

The equality (4.2) can be proved in the same manner. We observe that the

functions on the both side of (4.2) have the same derivative on x. Moreover, they

all vanish at the point x = a. This proves (4.2).

To prove (4.3), we make a change of variable s = 1/t. Then we obtain

I3(x) = x

∫ 1/x

a

arccos
2− (b + a)t

(b− a)t
dt = −x

∫ 1/x

a

[
arccos

(b + a)t− 2

(b− a)t
− π

]
dt.

On account of (4.2) we have

I3(x) =−x

[
1

x
arccos

(b + a)− 2x

b− a
− arccos

2− (b + a)x

(b− a)x
+ π − πa− π(1/x− a)

]

= arccos
2x− (b + a)

b− a
− x arccos

(b + a)x− 2

(b− a)x
.

This gives (4.3).
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An integration by parts gives

I4(z) :=
1

π

∫ b

a

1

z − s
arccos

s(b + a)− 2

s(b− a)
ds

=
− log(z − s)

π
arccos

s(b + a)− 2

s(b− a)

∣∣∣∣
b

a

−
∫ b

a

log(z − s)ds

πs
√

(s− a)(b− s)

= log(z − a) +

∫ z−a

z−b

log sds

π(s− z)
√

[s− (z − b)] · [(z − a)− s]

= log(z − a) + log
[z + 1 +

√
(z − a)(z − b)]2

[
√

z − a +
√

z − b]2z2
, (4.9)

where we have used the equality (cf. [23, Lemma 2, (2.46)])
∫ β

α

log sds

π(s− z)
√

(s− α)(β − s)

=
1√

(z − α)(z − β)
log

[z +
√

αβ +
√

(z − α)(z − β)]2

(
√

α +
√

β)2z2
(4.10)

with α = z− b and β = z− a. To show that (4.9) is the same as (4.5), we obtain

from the relation ab = 1 that

z(b + a)− 2 + 2
√

(z − a)(z − b)

=
[
z + 1−

√
(z − a)(z − b)

] [
z +

√
(z − a)(z − b)− 1

]

=
(1 + a)(1 + b)z2[

√
z − a +

√
z − b]2

[z + 1 +
√

(z − a)(z − b)]2
. (4.11)

Applying (4.11) to (4.9) gives (4.5) immediately.

A change of variable x = b+a
2
− b−a

2
t gives

∫ a

0

1√
(a− x)(b− x)

dx

x− z
=

−2

b− a

∫ b+a
b−a

1

1√
t2 − 1

dt

t + w
, (4.12)

where w := 2z−(b+a)
b−a

. Now, we make another change of variable t = 1
2
(s + 1

s
) with

s ≥ 1. The right-hand side of (4.12) becomes

−2

b− a

∫ λ

1

2ds

s2 + 1 + 2ws
=

−2

b− a
· 1√

w2 − 1
· log

(λ− s+)(1− s−)

(λ− s−)(1− s+)
, (4.13)

where λ > 1 is a solution to the equation

b + a

b− a
=

1

2
(λ +

1

λ
),
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and s± := −w ±√w2 − 1 are the roots of the equation s2 + 1 + 2ws = 0. Recall

w := 2z−(b+a)
b−a

, it is easily seen that

w + 1

w − 1
=

z − a

z − b
,

λ− 1

λ + 1
=

√
a

b
. (4.14)

Moreover, we have
√

w2 − 1 =
2

b− a

√
(z − a)(z − b).

Thus, it follows from (4.12) and (4.13) that

I5(z) :=

∫ a

0

√
(z − a)(z − b)√
(a− x)(b− x)

dx

x− z
= − log

(λ− s+)(1− s−)

(λ− s−)(1− s+)
. (4.15)

Since s± := −w ±√w2 − 1, we have

(λ− s+)(1− s−)

(λ− s−)(1− s+)
=

λ− λs− − s+ + 1

λ− λs+ − s− + 1
=

(λ + 1)(w + 1) + (λ− 1)
√

w2 − 1

(λ + 1)(w + 1)− (λ− 1)
√

w2 − 1
.

On account of (4.14) the fact ab = 1, the right-hand side of the last equation

becomes

√
b
√

z − a +
√

a
√

z − b√
b
√

z − a−√a
√

z − b
=

(b + a)z − 2 + 2
√

(z − a)(z − b)

(b− a)z
.

Coupling this with (4.15) gives (4.7).

We now prove (4.8). Firstly, from the equality (4.1), the relation ab = 1 and

Fubini’s theorem we obtain

I6 =

∫ b

a

∫ 1

ax

log(b− x)dsdx√
(bs− x)(x− as)

=

∫ 1

a2

∫ bs

a

log(b− x)dxds√
(bs− x)(x− as)

.

An integration by parts gives

∫ bs

a

log(b− x)dx√
(bs− x)(x− as)

= log(b− a) arccos
2a− (b + a)s

(b− a)s

+

∫ bs

a

1

x− b
arccos

2x− (b + a)s

(b− a)s
dx.
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Hence, we can write I6 = I61 + I62, where

I61 :=

∫ 1

a2

log(b− a) arccos
2a− (b + a)s

(b− a)s
ds,

I62 :=

∫ 1

a2

∫ bs

a

1

x− b
arccos

2x− (b + a)s

(b− a)s
dxds.

By a change of variable s = at, we obtain from (4.4) and the relation ab = 1 that

I61 = a log(b− a)

∫ b

a

arccos
2− (b + a)t

(b− a)t
dt

= a log(b− a)

∫ b

a

[
π − arccos

(b + a)t− 2

(b− a)t

]
dt

= [a log(b− a)] · [π(b− a)− π(1− a)]

= π(1− a) log(b− a). (4.16)

Now, we are left to calculate I62. Fubini’s theorem together with (4.3) gives

I62 =

∫ b

a

∫ 1

ax

1

x− b
arccos

2x− (b + a)s

(b− a)s
dsdx

=

∫ b

a

1

x− b
arccos

2x− (b + a)

b− a
dx−

∫ b

a

x

x− b
arccos

(b + a)x− 2

(b− a)x
dx.

(4.17)

On the one hand, a change of variable x = b−a
2

t + b+a
2

yields

∫ b

a

1

x− b
arccos

2x− (b + a)

b− a
dx =

∫ 1

−1

arccos t

t− 1
dt = −2π log 2, (4.18)

where we have used an integration by parts and applied the equality (cf. [24,

Lemma IV.1.15] or [25, (3.13)])

∫ β

α

log s√
(s− α)(β − s)

ds = 2π log

√
α +

√
β

2
. (4.19)

On the other hand, from (4.4) and (4.6) we have

∫ b

a

x

x− b
arccos

(b + a)x− 2

(b− a)x
dx

=

∫ b

a

arccos
(b + a)x− 2

(b− a)x
dx + b

∫ b

a

1

x− b
arccos

(b + a)x− 2

(b− a)x
dx

= π(1− a)− 2πb log(1 + a). (4.20)
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Thus, we obtain from (4.17), (4.18) and (4.20) that

I62 = −2π log 2− π(1− a) + 2πb log(1 + a). (4.21)

Recall that I6 = I61 + I62. Hence, coupling (4.16) and (4.21) gives (4.8) immedi-

ately.

Corollary 4.2. Let ρ(x) be as in (2.32), we have

∫ b

0

ρ(x)dx = 1. (4.22)

Let g(z) be the g – function defined in (2.33), we have

g′(z) = − log
z(b + a)− 2 + 2

√
(z − a)(z − b)

z(b− a)
+
− log c

2
. (4.23)

Let l := 2g(b)− v(b) be the Lagrange multiplier defined in (2.38), we have

l = 2 log
b− a

4
− 2. (4.24)

Proof. From (2.32) we have

∫ b

0

ρ(x)dx =

∫ a

0

dx +
1

π

∫ b

a

arccos
x(b + a)− 2

x(b− a)
dx.

Applying (4.4) to this gives

∫ b

0

ρ(x)dx = a + 1− a = 1,

thus proving (4.22).

From (2.32) and (2.33) we obtain

g′(z) =

∫ b

0

1

z − x
ρ(x)dx

=

∫ a

0

1

z − x
dx +

1

π

∫ b

a

1

z − x
arccos

x(b + a)− 2

x(b− a)
dx.

On account of (4.5) and the equality

∫ a

0

1

z − x
dx = log

z

z − a
,
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we have

g′(z) = log
z

z − a
− log

z(b + a)− 2 + 2
√

(z − a)(z − b)

(z − a)(1 + a)(1 + b)

=− log
z(b + a)− 2 + 2

√
(z − a)(z − b)

z(1 + a)(1 + b)

=− log
z(b + a)− 2 + 2

√
(z − a)(z − b)

z(b− a)
− log

b− a

(1 + a)(1 + b)
.

Applying (2.31) to the last equation yields (4.23).

Applying (2.32) to (2.33) gives

g(b) =

∫ a

0

log(b− x)dx +
1

π

∫ b

a

log(b− x) arccos
x(b + a)− 2

x(b− a)
dx.

From (4.8) and the equality

∫ a

0

log(b− x)dx = (a− b) log(b− a)− a + b log b,

we have

g(b) = [(a− b) log(b− a)− a + b log b]

+[2b log(1 + a) + (1− a) log(b− a)− 2 log 2− 1 + a]

= log
b− a

4
− 1 + b log

b(1 + a)2

b− a
.

Since v(b) = −b log c by (2.21), we obtain from (2.31) that

g(b)− v(b)/2 = log
b− a

4
− 1.

This proves (4.24).

4.2 The equilibrium measure of the Meixner

polynomials

As mentioned in Remark 2.7, we could solve the equilibrium measure in a

standard procedure which contains three steps.
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Firstly, we find the Mhaskar-Rakhmanov-Saff numbers a and b by solving

the equations (cf. [3, (759)]):

∫ b

a

v′(x)√
(x− a)(b− x)

dx−
∫ a

0

2π√
(a− x)(b− x)

dx = 0,

∫ b

a

xv′(x)√
(x− a)(b− x)

dx−
∫ a

0

2πx√
(a− x)(b− x)

dx = 2π,

where v(z) := −z log c is defined in (2.21). A simple calculation gives

−π log c− 2π arccosh
b + a

b− a
= 0, (4.25)

(− log c) · (b + a

2
π)− 2π[

b + a

2
arccosh

b + a

b− a
−
√

ab] = 2π, (4.26)

where we have used the equalities (by a change of variable x = b+a
2
− b−a

2
t):

∫ b

a

1√
(x− a)(b− x)

dx =

∫ 1

−1

1√
1− t2

dt = π,

∫ a

0

1√
(a− x)(b− x)

dx =

∫ b+a
b−a

1

1√
t2 − 1

dt = arccosh
b + a

b− a
,

∫ b

a

x√
(x− a)(b− x)

dx =

∫ 1

−1

b+a
2
− b−a

2
t√

1− t2
dt =

b + a

2
π,

∫ a

0

x√
(a− x)(b− x)

dx =

∫ b+a
b−a

1

b+a
2
− b−a

2
t√

t2 − 1
dt =

b + a

2
arccosh

b + a

b− a
−
√

ab.

From (4.25) we have

arccosh
b + a

b− a
=
− log c

2
.

Applying this to (4.26) yields ab = 1, and thus

a =
1−√c

1 +
√

c
, b =

1 +
√

c

1−√c
.

This agrees with (2.31).

In the second step, it can be shown that the function g′(z) has following

explicit integral representation (cf. [3, (758)]):

g′(z) =

∫ a

0

√
(z − a)(z − b)√
(a− x)(b− x)

dx

x− z
−

∫ b

a

√
(z − a)(z − b)√
(x− a)(b− x)

v′(x)dx

2π(x− z)
. (4.27)
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To calculate g′(z), we shall use the integral equality
∫ b

a

1√
(x− a)(b− x)

dx

x− z
=

−π√
(z − a)(z − b)

, (4.28)

Set α = z−b and β = z−a in (4.19), it follows from a change of variable s = z−x

that ∫ b

a

log(z − x)dx√
(x− a)(b− x)

= 2π log

√
z − a +

√
z − b

2
.

Differentiate both side of the last equation with respect to z, then (4.28) follows.

Form (2.31) and (4.28) we have
∫ b

a

√
(z − a)(z − b)√
(x− a)(b− x)

v′(x)dx

2π(x− z)
=

log c

2
. (4.29)

Applying this and (4.7) to (4.27) gives

g′(z) = − log
z(b + a)− 2 + 2

√
(z − a)(z − b)

z(b− a)
+
− log c

2
.

This is coincident with (2.34).

Finally, the equilibrium measure ρ(x)dx can be obtained from the equation

(cf. [3, (711)]):

ρ(x) =
g′−(x)− g′+(x)

2πi
. (4.30)

Since ab = 1, a direct calculation shows that

g′±(x) = − log
− x(b + a) + 2 + 2

√
(a− x)(b− x)

x(b− a)
∓ iπ +

− log c

2

for 0 < x < a, and

g′±(x) =− log
x(b + a) + 2± 2i

√
(x− a)(b− x)

x(b− a)
+
− log c

2

=∓i arccos
x(b + a)− 2

x(b− a)
+
− log c

2

for a < x < b. Therefore, we obtain from (4.30) that ρ(x) = 1 for 0 < x < a, and

ρ(x) =
1

π
arccos

x(b + a)− 2

x(b− a)

for a < x < b. This agrees with formula (2.32).
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4.3 The function D(z)

We intend to show that as n → ∞, the function D(z) defined in (2.109)

converges uniformly to the constant “1” for z bounded away from the origin.

Recall from (2.109) that

D(z) = exp

{
1

2πi

∫ ∞

0

[
log(1− e−2nπs−iπβ)

s + iz
− log(1− e−2nπs+iπβ)

s− iz

]
ds

}
.

Given any small ε > 0, we will show that the integral in the brackets is uniformly

bounded by O(1/n) for |z| ≥ ε. Without loss of generality, we only consider the

integral ∫ ∞

0

log(1− e−2nπs−iπβ)

s + iz
ds =

∫ ε/2

0

+

∫ ∞

ε/2

=: I1 + I2.

In view of the inequalities

| log(1− reiθ)|=
∣∣∣∣log |1− reiθ|+ i arctan

r sin θ

1− r cos θ

∣∣∣∣

≤− log(1− r) +
r| sin θ|

1− r cos θ

for any 0 < r < 1 and θ ∈ R, we obtain for any |z| ≥ ε,

I1≤
∫ ε/2

0

| log(1− e−2nπs−iπβ)|
|s + iz| ds

≤ 1

ε/2

∫ ε/2

0

[
− log(1− e−2nπs) +

e−2nπs| sin πβ|
1− e−2nπs cos πβ

]
ds.

Since

∫ ε/2

0

[− log(1− e−2nπs)]ds ≤ −ε/2 · log(1− e−nπε) = O(e−nπε),

and

∫ ε/2

0

[
e−2nπs| sin πβ|

1− e−2nπs cos πβ

]
ds =





1− e−nπε

2nπ
: cos πβ = 0,

| sin β|
2nπ cos β

log
1− e−nπε cos β

1− cos β
: cos πβ 6= 0,
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we have as n →∞,

|I1| = O(1/n).

To estimate the integral I2, we deform the interval [ε/2,∞) to a suitable

contour Γ such that |ζ + iz| ≥ ε/2 and Re ζ ≥ ε/2 for ζ ∈ Γ. We also require

the length of Γ \ [ε/2,∞) is less than or equal to πε/2. If Re(−iz) ≤ ε/2 or

| Im(−iz)| ≥ ε/2, we choose Γ to be the same as the interval [ε/2,∞). Otherwise,

when Re(−iz) > ε/2 and | Im(−iz)| < ε/2, set

Γ = [ε/2, Re(−iz)− δ] ∪ γ ∪ [Re(−iz) + δ,∞],

where δ =
√

(ε/2)2 − (Im(−iz))2 and γ is the curve with two end points Re(−iz)±
δ such that the distance between (−iz) and any point on γ is ε/2. Therefore, γ

is the part of the circle

U(−iz, ε/2) := {w ∈ C : |w + iz| = ε/2}

in the upper (or lower) half plane with respect to −iz is in the lower (or upper)

half plane. By Cauchy’s theorem we have

I2 =

∫

Γ

log(1− e−2nπζ−iπβ)

ζ + iz
dζ.

By virtue of the inequality

| log(1− reiθ)| ≤ − log(1− r) +
r| sin θ|

1− r cos θ
≤ r

1− r
+

r

1− r
=

2r

1− r

for any 0 < r < 1 and θ ∈ R, we obtain

|I2| ≤
∫

Γ

| log(1− e−2nπζ−iπβ)|
|ζ + iz| |dζ|

≤ 1

ε/2

∫

Γ

2e−2nπ Re ζ

1− e−2nπ Re ζ
|dζ|

≤ 4/ε

1− e−nπε

∫

Γ

e−2nπ Re ζ |dζ|

≤ 4/ε

1− e−nπε

[∫

γ

e−2nπ Re ζ |dζ|+
∫ ∞

ε/2

e−2nπ Re ζ |dζ|
]

≤ 4/ε

1− e−nπε

[
ε

2
e−nπε +

e−nπε

2nπ

]

= O(e−nπε).
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Coupling the estimates for I1 and I2 implies for |z| ≥ ε,

∫ ∞

0

log(1− e−2nπs−iπβ)

s + iz
ds = O(1/n).

Similarly, we can prove

∫ ∞

0

log(1− e−2nπs+iπβ)

s− iz
ds = O(1/n).

Hence, applying the last two estimates to (2.109) yields

D(z) = 1 + O(1/n),

which holds uniformly for z bounded away from zero.

4.4 The parameter β of the Meixner polynomi-

als

In this section we intend to show that the assumption 1 ≤ β < 2 in Theorem

2.21 can be replaced by β > 0. First, we prove that formula (2.133) in Theorem

2.21 is still true when β is replaced by

β− := β − 1 (4.31)

or

β+ := β + 1. (4.32)

In view of Gauss’s contiguous relations for hypergeometric functions [1, (15.2.17)

and (15.2.20)], we obtain from (1.1) and (2.1) that

πn(nz − β−/2) =
nz + β−/2

n + β−
πn(nz1 − β/2)

−nz − β−/2

n + β−
πn(nz2 − β/2), (4.33)

and

πn(nz − β+/2) =
1

1− c
πn(nz2 − β/2)− c

1− c
πn(nz1 − β/2), (4.34)
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where

z1 := z + 1/(2n), z2 := z − 1/(2n). (4.35)

If z belongs to the region Ω4 ∪ Ω∞, so do z1 and z2. Therefore, applying (2.133)

to the two polynomials on the right-hand side of (4.33) gives

πn(nz − β−/2) = znneng(z1) z
(1−β)/2
1 (

√
z1−a+

√
z1−b

2
)β

(z1 − a)1/4(z1 − b)1/4

[
1 + O(

1

n
)

]

−znneng(z2) z
(1−β)/2
2 (

√
z2−a+

√
z2−b

2
)β

(z2 − a)1/4(z2 − b)1/4

[
1 + O(

1

n
)

]
.

On account of (4.31) and (4.35), we obtain

πn(nz − β−/2) = nneng(z) z
(1−β−)/2(

√
z−a+

√
z−b

2
)β−

(z − a)1/4(z − b)1/4

√
z(
√

z − a +
√

z − b)

2

×[eng(z1)−ng(z) − eng(z2)−ng(z)] [1 + O(1/n)] . (4.36)

Also, we have from (4.35)

ng(z1)− ng(z) = g′(z)/2 + O(1/n), ng(z2)− ng(z) = −g′(z)/2 + O(1/n).

Thus, it follows from (2.34) that

eng(z1)−ng(z) = λ[1 + O(1/n)], eng(z2)−ng(z) = λ−1[1 + O(1/n)], (4.37)

where

λ :=

[
z(b− a)/

√
c

z(b + a)− 2 + 2
√

(z − a)(z − b)

]
. (4.38)

In view of (4.11), we obtain

λ =
z + 1 +

√
(z − a)(z − b)√

z(
√

z − a +
√

z − b)

[
(b− a)/

√
c

(1 + a)(1 + b)

]1/2

.

Since (b− a)/
√

c = (1 + a)(1 + b) by (2.31), it is easily seen that

λ =
z + 1 +

√
(z − a)(z − b)√

z(
√

z − a +
√

z − b)
,
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and thus

λ− λ−1 =
2√

z(
√

z − a +
√

z − b)
.

Applying this and (4.37) to (4.36) yields

πn(nz − β−/2) = nneng(z) z
(1−β−)/2(

√
z−a+

√
z−b

2
)β−

(z − a)1/4(z − b)1/4

[
1 + O(

1

n
)

]
. (4.39)

On the other hand, by applying (2.133) to the two polynomials on the right-hand

side of (4.34), we obtain

πn(nz − β+/2) =
1

1− c
nneng(z2) z

(1−β)/2
2 (

√
z2−a+

√
z2−b

2
)β

(z2 − a)1/4(z2 − b)1/4

[
1 + O(

1

n
)

]

− c

1− c
nneng(z1) z

(1−β)/2
1 (

√
z1−a+

√
z1−b

2
)β

(z1 − a)1/4(z1 − b)1/4

[
1 + O(

1

n
)

]
.

On account of (4.32), (4.35) and (4.37), we have

πn(nz − β+/2) = nneng(z) z
(1−β+)/2(

√
z−a+

√
z−b

2
)β+

(z − a)1/4(z − b)1/4

2
√

z/(1− c)√
z − a +

√
z − b

×[λ−1 − cλ] [1 + O(1/n)] . (4.40)

Since (b + a)−√c(b− a) = 2 by (2.31), we have from (4.38)

λ−1 − cλ =
1− cλ2

λ
=

2(z − 1 +
√

(z − a)(z − b))

[z(b + a)− 2 + 2
√

(z − a)(z − b)]1/2[z(b− a)/
√

c]1/2
.

In view of (4.11), we obtain

λ−1 − cλ =
2(z − 1 +

√
(z − a)(z − b))(z + 1 +

√
(z − a)(z − b))

z(
√

z − a +
√

z − b)[(1 + a)(1 + b)]1/2[z(b− a)/
√

c]1/2
.

Since

(z − 1 +
√

(z − a)(z − b))(z + 1 +
√

(z − a)(z − b)) = z(
√

z − a +
√

z − b)2

and

[(1 + a)(1 + b)]1/2[(b− a)/
√

c]1/2 = 4/(1− c)

by (2.31), we have

λ−1 − cλ =

√
z − a +

√
z − b

2
√

z/(1− c)
.
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Applying this to (4.40) gives

πn(nz − β+/2) = nneng(z) z
(1−β+)/2(

√
z−a+

√
z−b

2
)β+

(z − a)1/4(z − b)1/4

[
1 + O(

1

n
)

]
. (4.41)

In view of (4.39) and (4.41), it can be shown by induction that formula (2.133)

in Theorem 2.21 is valid for all β > 0. Similarly, we could prove that formulas

(2.134)-(2.140) in Theorem 2.21 are also valid for β > 0.

4.5 The asymptotic formulas for the Meixner

polynomials

We first provide some numerical computations by using our results in The-

orem 2.21. Choosing c = 0.5, it is easily seen from (2.31) that a ≈ 0.17157

and b ≈ 5.82843. We also fix β = 1.5. Since the polynomial degree n should be

reasonably large, we set n = 100. The approximate values of πn(nz−β/2) are ob-

tained by using the asymptotic formulas given in Theorem 2.21. We use formula

(2.133) for z = −1 and z = 100, formula (2.135)-(2.136) for z = ±0.001, formula

(2.134) for z = 0.05, formula (2.137) for z = 0.171 and z = 0.172, formula (2.139)

or (2.140) for z = 2, and formula (2.138) for z = 5.828 and z = 5.829. The

true values of πn(nz− β/2) can be obtained from (1.1) and (2.1). The numerical

results are presented in Table 4.1.

Now, we compare our formulas in Theorem 2.21 with those given in [16]

and [17]. We shall introduce two notations. Let

α := z − β/(2n) (4.42)

and

mn(nα; β, c) := (1− 1/c)nπn(nz − β/2). (4.43)

Two different asymptotic formulas for mn(nα; β, c) are given in [16, (6.9) and

(6.27)]; both in terms of parabolic cylinder functions. To study the large and
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True value Approximate value

z = −1 1.99529× 10233 1.99473× 10233

z = −0.001 8.36624× 10187 8.35137× 10187

z = 0.001 3.07930× 10187 3.07272× 10187

z = 0.05 −2.51701× 10180 −2.51507× 10180

z = 0.171 −9.12697× 10174 −9.12530× 10174

z = 0.172 −1.22035× 10175 −1.22003× 10175

z = 2 −4.71541× 10201 −4.70772× 10201

z = 5.828 2.78146× 10259 2.78231× 10259

z = 5.829 2.86933× 10259 2.87018× 10259

z = 100 2.16586× 10399 2.16586× 10399

Table 4.1 The true values and approximate values of πn(nz − β/2) for c = 0.5, β = 1.5 and

n = 100. Note that a ≈ 0.17157 and b ≈ 5.82843.

small zeros of the Meixner polynomials, these two formulas are transformed to

(2.35) and (4.19) in [17]. Here, we intend to show the equivalence between our

equation (2.138) and (2.35) in [17], and also the equivalence between our equation

(2.134) and (4.19) in [17].

In view of [17, (2.34)], we rewrite the formula [17, (2.35)] as

mn(nα; β, c)∼ (−1)n
√

2πnn+1/6en(γ+η2/4−1/2)

×c−1/6(1 +
√

c)2/3−β Ai(n2/3(η − 2)), (4.44)

where γ is a constant and η is a function of α. The constant γ and the function

η could be solved from the following two equations (cf. [16, (3.12)-(3.13)]):

α log
1− w+/c

1− w+

− log(−w+) = − log u− + ηu− − u2
−/2 + γ, (4.45)

α log
1− w−/c

1− w−
− log(−w−) = − log u+ + ηu+ − u2

+/2 + γ. (4.46)
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The saddle points w± and u± are given by (cf. [16, (2.5) and (3.8)])

w± =
1 + c + αc− α±

√
(1 + c + αc− α)2 − 4c

2
,

u± = η/2±
√

η2/4− 1;

see also [17, (2.4)-(2.5)]. Adding (4.45) to (4.46) gives

η2/4 + γ + 1/2 =−α + 1

2
log c. (4.47)

Subtracting (4.45) from (4.46) yields

(η/2)
√

η2/4− 1 + log(η/2−
√

η2/4− 1)

=
α

2
log

(1− w−/c)(1− w+)

(1− w+/c)(1− w−)
+

1

2
log

w+

w−
. (4.48)

From the definition of φ-function in (2.37), we have φ(b) = 0 and

φ′(α) = log
α(b + a)− 2 + 2

√
(α− a)(α− b)

α(b− a)

=
1

2
log

(1− w−/c)(1− w+)

(1− w+/c)(1− w−)
,

where we have used

a =
1−√c

1 +
√

c
and b =

1 +
√

c

1−√c
;

see (2.31). Therefore, we obtain from (4.48)

φ(α) = (η/2)
√

η2/4− 1 + log(η/2−
√

η2/4− 1).

Recall from [17, p.284] that η − 2 = O(n−2/3). We then have

φ(α) ∼ 2

3
(η − 2)3/2.

Applying this to (2.118) yields

F (α) ∼ n2/3(η − 2). (4.49)
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A combination of (4.42)-(4.44), (4.47) and (4.49) gives

πn(nz − β/2)∼
√

2πnn+1/6e−nc−nz/2+n/2+β/4−1/6

×(1− c)−n(1 +
√

c)2/3−β Ai(F (z)). (4.50)

Applying (2.45) to (2.118) implies

F (z)

z − b
∼

(
2n

b
√

b− a

)2/3

= n2/3c−1/6(1− c)(1 +
√

c)−4/3.

Therefore, we have

(
√

z−a+
√

z−b
2

)β + (
√

z−a−√z−b
2

)β

z(β−1)/2(z − a)1/4(z − b)1/4F (z)−1/4
∼
√

2n1/6cβ/4−1/6(1 +
√

c)2/3−β. (4.51)

Moreover, it is easy to see that

(
√

z−a+
√

z−b
2

)β − (
√

z−a−√z−b
2

)β

z(β−1)/2(z − a)1/4(z − b)1/4F 1/4
= O(n−1/6). (4.52)

From (2.21) and (2.38), we obtain

env/2+nl/2 = e−nc−nz/2+n/2(1− c)−n. (4.53)

Hence, we can derive (4.50) again by applying (4.51)-(4.53) to (2.138). This

establishes the equivalence between (2.138) and [17, (2.35)].

Applying [17, (3.4)] and [17, (3.11)-(3.12)] to [17, (4.19)], we have

mn(nα; β, c) =
2nnαn!αnα+1/2

Γ(nα + 1)
exp

{
n(γ + η2/4− α/2)

}

× exp

{
n

[
−α log(−η/2 +

√
η2/4− α)− (η/2)

√
η2/4− α

] }

× −h(u−)

(η2 − 4α)1/4
√−u−

×
{

sin nπα

[
1 + O(

1

n
)

]
+ O(α−1/2e−2ε0n)

}
. (4.54)

Here again, γ is a constant and η is a function of α. and they can be solved from

the two equations (cf. [16, (3.23)-(3.24)]):

α log
1− w+/c

1− w+

− log w+ = −α log u+ + ηu+ − u2
+/2 + γ, (4.55)

α log
1− w−/c

1− w−
− log w− = −α log u− + ηu− − u2

−/2 + γ. (4.56)
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The saddle points w± and u± are given by (cf. [16, (2.5) and (3.22)])

w± =
1 + c + αc− α±

√
(1 + c + αc− α)2 − 4c

2
,

u± = η/2±
√

η2/4− α;

see also [17, (3.3)-(3.4)]. Adding (4.55) to (4.56) yields

η2/4 + γ = −α + 1

2
log c− α/2 +

α

2
log α. (4.57)

Subtracting (4.55) from (4.56) gives

(−η/2)
√

η2/4− α− α log(−η/2 +
√

η2/4− α) + (α/2) log α

=
α

2
log

(w−/c− 1)(1− w+)

(w+/c− 1)(1− w−)
+

1

2
log

w+

w−
. (4.58)

Recall from (2.31) that

a =
1−√c

1 +
√

c
and b =

1 +
√

c

1−√c
.

Therefore, from the definition of φ̃-function in (2.39) we have φ̃(a) = 0 and

φ̃′(α) = log
−α(b + a) + 2 + 2

√
(a− α)(b− α)

α(b− a)

=−1

2
log

(w−/c− 1)(1− w+)

(w+/c− 1)(1− w−)
.

On account of (4.58), we otain

−φ̃(α) = (−η/2)
√

η2/4− α− α log(−η/2 +
√

η2/4− α)

+(α/2) log α. (4.59)

Furthermore, a direct calculation shows that

−h(u−)

(η2 − 4α)1/4
√−u−

= −√α[(a− α)(b− α)]−1/4(1− w−)−β. (4.60)

In view of (4.42) and the equality

−α(b + a) + 2 + 2
√

(a− α)(b− α)

b− a
= c−1/2(1− w−)2

(√
b− α +

√
a− α

2

)2
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we have

exp{−nφ̃(α) + nφ̃(z)}
= exp{(β/2)φ̃′(α) + O(1/n)}

=

[
−α(b + a) + 2 + 2

√
(a− α)(b− α)

α(b− a)

]β/2 [
1 + O(

1

n
)

]

= α−β/2c−β/4(1− w−)β

(√
b− α +

√
a− α

2

)β [
1 + O(

1

n
)

]
. (4.61)

It can be shown by Stirling’s formula that

2nnαn!

Γ(nα + 1)
αnα+1/2e−nα/2 = 2nne−n+nα/2

[
1 + O(

1

n
)

]
. (4.62)

Applying (4.57) and (4.59)-(4.62) to (4.54) gives

mn(nα; β, c) =−2nne−nc−nα/2−β/4−n/2e−nφ̃(z)α
(1−β)/2(

√
b−α+

√
a−α

2
)β

[(a− α)(b− α)]1/4

×
{

sin nπα

[
1 + O(

1

n
)

]
+ O(α−1/2e−2ε0n)

}
, (4.63)

which is exactly the same as (2.134) in view of (4.42), (4.43) and (4.53).

4.6 The asymptotic formulas for some

q-orthogonal polynomials

We first compare our formulas for three classes of q-orthogonal polynomials

in Section 3.3 with those given in [15]. We only take the q−1-Hermite polynomials

for example. Similar arguments go for the Stieltjes-Wigert polynomials and the

q-Laguerre polynomials. Recall that the scale for the q−1-Hermite polynomials is

given by

z = sinh ξ := (q−ntu− qntu−1)/2

with u 6= 0 and t ≥ 0. For t ≥ 1/2 and |u| ≥ 1/R, where R > 0 is any fixed large

number, from (3.21) we have

hn(sinh ξ|q) = unq−n2t
[
Aq(u

−2qn(2t−1))

+Aq,n(u−2qn(2t−1))− Aq(u
−2qn(2t−1)) + rn(t, u)

]
. (4.64)
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Given any small δ > 0, we intend to show

∣∣Aq,n(u−2qn(2t−1))− Aq(u
−2qn(2t−1)) + rn(t, u)

∣∣ = O(qn(1−3δ)).

On the one hand, since t ≥ 1/2 and |u| ≥ 1/R, we have |u−2qn(2t−1)| ≤ R2. From

the definition of the q-Airy function (1.8) and the q-Airy polynomial (1.10) we

obtain

∣∣Aq,n(u−2qn(2t−1))− Aq(u
−2qn(2t−1))

∣∣≤
∞∑

k=n+1

qk2

(q; q)k

∣∣u−2qn(2t−1)
∣∣k

≤
∞∑

k=n

qk2

(q; q)∞
R2k.

In terms of the half q-Theta function (3.5), we have

∞∑

k=n

qk2

(q; q)∞
R2k =

∞∑

l=0

q(n+l)2

(q; q)∞
R2n+2l =

qn2
R2n

(q; q)∞
Θ+

q (q2nR2) = O(qn2(1−δ)),

and thus

∣∣Aq,n(u−2qn(2t−1))− Aq(u
−2qn(2t−1))

∣∣ = O(qn2(1−δ)). (4.65)

On the other hand, since |u|−2qn(2t−1) ≤ R2, we have from (3.22) that

|rn(t, u)| ≤ qn(1−3δ)

1− q
Aq,n(−|u|−2qn(2t−1)) +

q3n2δ2−2nδR2(b3nδc+1)

(q; q)∞
Θ+

q (q4nδR2)

≤ qn(1−3δ)

1− q
Aq,n(−R2) + O(q3n2δ2(1−δ))

= O(qn(1−3δ)). (4.66)

Applying (4.65) and (4.66) to (4.64) yields

hn(sinh ξ|q) = unq−n2t
[
Aq(u

−2qn(2t−1)) + O(qn(1−3δ))
]

for any small δ > 0. This improves the formula in [15, Theorem 2.1], where

their error estimate is O(qn/2). Furthermore, when 0 ≤ t < 1/2, we give a single

formula (3.23), whereas it takes two formulas in [15] to cover this case, one when

t is rational and the other when t is rational. Here, probably it should also be
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pointed out that the reason why the error estimate in [15, Theorem 2.1] is only

O(n−1 log n) when t is irrational is because of the fact that

Θq(q
1/n)−Θq(1) = O(n−1 log n).

In the second part of this section, we intend to show that formula (3.21),

together with the error estimate (3.22), can be reduced to formula (3.23) in the

case when 1/2−δ < t < 1/2 and 1/R ≤ |u| ≤ R, where the constants δ ∈ (0, 1/4)

and R > 0 are fixed. It follows from (3.21) and (3.22) that

hn(sinh ξ|q) = unq−n2t
[
Aq,n(u−2qn(2t−1)) + rn(t, u)

]
, (4.67)

where

|rn(t, u)| ≤ qn(1−3δ)

1− q
Aq,n(−|u|−2qn(2t−1))

+
q3n2δ2−2nδR2(b3nδc+1)

(q; q)∞
Θ+

q (q4nδR2). (4.68)

Set m := bn(1/2 − t)c. Since 1/R ≤ |u| ≤ R and 0 < 1 − 2t < 2δ < 2, the

conditions of (3.8) in Proposition 3.4 are satisfied with t replaced by 1−2t. Thus

we obtain

Aq,n(u−2q−n(1−2t)) =
(−u−2q−n(1−2t))mqm2

(q; q)∞

×
[
Θq(−u−2q2m−n(1−2t)) + O(qm(1−δ))

]
, (4.69)

and

Aq,n(−|u|−2q−n(1−2t)) =
(|u|−2q−n(1−2t))mqm2

(q; q)∞

×
[
Θq(|u|−2q2m−n(1−2t)) + O(qm(1−δ))

]
. (4.70)

Applying (4.69) to (4.67) gives

hn(sinh ξ|q) =
(−1)mun−2mq−n2t−m[n(1−2t)−m]

(q; q)∞

[
Θq(−u−2q2m−n(1−2t))

+O(qm(1−δ)) +
(q; q)∞rn(t, u)

(−u−2q−n(1−2t))mqm2

]
. (4.71)
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Similarly, applying (4.70) to (4.68) yields

∣∣∣∣
(q; q)∞rn(t, u)

(−u−2q−n(1−2t))mqm2

∣∣∣∣≤
qn(1−3δ)

1− q

[
Θq(|u|−2q2m−n(1−2t)) + O(qm(1−δ))

]

+
q3n2δ2−2nδR2(b3nδc+1)

(|u|−2q−n(1−2t))mqm2 Θ+
q (q4nδR2). (4.72)

Since |u| ≤ R and 1/2− δ < t < 1/2 by assumption, we have

m := bn(1/2− t)c ≤ bnδc ≤ nδ,

and thus

q3n2δ2−2nδR2(b3nδc+1)

(|u|−2q−n(1−2t))mqm2 ≤ q3n2δ2−2nδ−m2

R2(b3nδc+1+m) = O(q2n2δ2(1−δ)).

Applying this to (4.72) gives

∣∣∣∣
(q; q)∞rn(t, u)

(−u−2q−n(1−2t))mqm2

∣∣∣∣ = O(qn(1−3δ)) + O(qn(1−3δ)+m(1−δ)) + O(q2n2δ2(1−δ)).

Since δ ∈ (0, 1/4), we obtain

m(1− δ) < m < nδ < n(1− 3δ),

and thus

∣∣∣∣
(q; q)∞rn(t, u)

(−u−2q−n(1−2t))mqm2

∣∣∣∣ = O(qm(1−δ)). (4.73)

Finally, coupling (4.71) and (4.73) yields

Sn(z; q) =
(−u)n−mqn2(1−t)−m[n(1−2t)−m]

(q; q)n(q; q)∞

[
Θq(−u−2q2m−n(1−2t)) + O(qm(1−δ))

]
,

which agrees with (3.23). Similar arguments can be given to the results for the

Stieltjes-Wigert polynomials and the q-Laguerre polynomials in Theorem 3.6 and

Theorem 3.7.

Finally, recall the scale z := q−ntu for the Stieltjes-Wigert polynomials and

the q-Laguerre polynomials. Note that we only consider the case t ≥ 1 in Theorem
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3.6. Actually, when t ≤ 1, similar results can be obtained by the symmetry

relation of the Stieltjes-Wigert polynomials:

Sn(q−ntu; q) = (−u)nqn2(1−t)Sn(q−n(2−t);qu−1).

For the q-Laguerre polynomials, there is no such kind of relation formula. How-

ever, if 0 < t ≤ 1, we can apply Theorem 3.3 to (3.20) with

l = 1− t/2, m = bnlc, gn(k) = k2 − 2nlk + m(2nl −m),

fn(k) = (qα+1+n−k; q)k(q
n−k+1; q)k(q

k+1; q)∞, z = −u−1q−α, c0 = 1, M = 1,

bn = 2(m− nl), L = 2, Aδ = δ2(1− δ), ηn(δ) = 3qn(1−l−δ)/(1− q).

Thus, we obtain

Lα
n(z; q) =

(−uqα)n−mqn2(1−t)−m[n(2−t)−m]

(q; q)n(q; q)∞

×
[
Θq(−u−1q2m−n(2−t)−α) + O(qn(1−l−δ))

]
, (4.74)

where l := 1 − t/2, m := bnlc and δ > 0 is any small number. The asymptotic

formula holds uniformly for u ∈ TR := {z ∈ C : R−1 ≤ |z| ≤ R}, where R > 0 is

any large real number.

Note that when 0 < t ≤ 1, we could also apply Theorem 3.3 to the sum (1.7)

Lα
n(z; q) =

n∑

k=0

(qα+k+1; q)n−k

(q; q)k(q; q)n−k

qk2+αk(−q−ntu)k

with

l̃ = t/2, m̃ = bnl̃c, gn(k) = k2 − 2nl̃k + m̃(2nl̃ − m̃),

fn(k) = (qα+k+1; q)n−k(q
n−k+1; q)k(q

k+1; q)∞, z = −uqα, c0 = 1, M = 1,

bn = 2(m̃− nl̃), L = 2, Aδ = δ2(1− δ), ηn(δ) = 3qn(l̃−δ)/(1− q).

Thus, we obtain

Lα
n(z; q) =

(−uqα)m̃q−m̃[nt−m̃]

(q; q)n(q; q)∞

[
Θq(−uq2m̃−nt+α) + O(qn(l̃−δ))

]
, (4.75)
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where l̃ := t/2, m̃ := bnl̃c and δ > 0 is any small number. The asymptotic

formula holds uniformly for u ∈ TR := {z ∈ C : R−1 ≤ |z| ≤ R}, where R > 0 is

any large real number. By (1.9) we have

Θq(z) = Θq(1/z)

for any z ∈ C. Therefore, it follows from m + m̃ = n and l + l̃ = 1 that the

asymptotic formulas (4.74) and (4.75) are exactly the same.
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