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ABSTRACT 

Improving the operating efficiency of heating, ventilating and air-conditioning 

(HVAC) systems is important since a small improvement can lead to substantial 

energy savings, especially for large-scale complex HVAC systems. Real-time 

optimization (RTO) is an efficient tool to improve the operating efficiency. Almost all 

traditional RTO methods utilize the time-driven optimization (TDO) mechanism, in 

which optimization actions are triggered by time in a periodic manner. However, with 

the increasing complexity of HVAC systems, the traditional TDO mechanism 

encounters challenges. Since the state variables in complex HVAC systems (e.g. 

weather and occupancy conditions) are highly stochastic, the TDO mechanism can 

easily lead to unfavorable optimization actions, e.g. delayed or unnecessary actions. 

This is because the TDO with a fixed optimization frequency cannot capture the 

stochastic changes of the state variables promptly. Increasing the optimization 

frequency is a simple way to improve the performance of TDO, but it will increase the 

online computational load. As a result, the TDO can hardly achieve a good balance 

between the optimization performance (e.g. energy efficiency) and the online 

computational load, which restricts its practical applications.   
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The limitations associated with the TDO mechanism call for a reformulation of 

real-time optimization strategies, which motivate us to develop a new optimization 

mechanism. The mechanism of event-driven optimization (EDO) is therefore 

proposed and investigated in this study. The key idea of the event-driven optimization 

is to use “event” rather than “time” to trigger optimization actions. Because it can 

realize the concept of “taking optimization actions only when necessary”, the EDO 

mechanism has potential capability for applications in complex HVAC systems to 

reduce the computational resource utilization while ensure the system performance. 

To investigate the potential capability systematically, this thesis develops a 

comprehensive EDO framework and a design procedure for complex HVAC systems.  

 

Firstly, the EDO framework is established, which contains the EDO strategy, optimal 

control diagram, and fundamental terms associated with the event. An event is 

formally defined as a set of state transitions. The core of the EDO framework is the 

{event, policy, action} structure, which works based on the principle that when event 

occurs, an action is taken based on the policy (which links events with actions). To 

facilitate the implementations of the EDO, event attributes, types and mathematical 

representations are also synthesized.  
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Secondly, to guarantee and improve the optimization performance of the EDO, a 

design approach is developed according to the EDO framework of {event, policy, 

action}. Because state transitions (i.e. events) are numerous in a complex HVAC 

system, a methodology is developed to identify and establish the event space, which 

includes three steps to address the problems of identifying critical state transitions, 

event definition, and event space optimization. Both direct and indirect methods are 

developed for event space establishment. The direct method is constructed based on 

the system COP (coefficient of performance) deviation. Two indirect methods are 

developed based on prior-knowledge and data mining, and are thus termed the 

knowledge-based and data-based methods.  

 

The effectiveness and performances of these methods are demonstrated through the 

cases studies performed on the simulation platform. Results suggested that when the 

system dynamics are stochastic and difficult to predict, the EDO strategy is able to 

adapt to the changing environment because it has a quicker response to environmental 

changes. Results also show that the EDO strategy can effectively reduce the 

computational load while not sacrifice the energy performance because unnecessary 

optimization actions can be avoided. 

Keywords: real-time optimization, HVAC, event-driven optimization, complex system   
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CHAPTER 1. INTRODUCTION 

 

1.1 Background 

The buildings sector accounts for 20.1% of the total (delivered) energy consumed 

worldwide (U.S. Department of Energy 2016), where heating, ventilating and air 

conditioning (HVAC) systems contribute the major proportion (around 50%) in 

developed countries (Pérez-Lombard, Ortiz & Pout 2008). With the growing global 

population, enhancement of building services and comfort levels, together with the 

rise in time spent indoors, building energy consumption is expected to continuously 

increase in the near future (Pérez-Lombard, Ortiz & Pout 2008). Improving the energy 

efficiency of HVAC systems is thus important, and real-time optimization (RTO) is a 

powerful tool to improve the operating efficiency.  

 

RTO is a model-based, closed-loop process control strategy, which aims to make the 

‘‘best’’ decisions to optimize, or to improve, the operating performance of a system 

based on the information obtained by observing and analyzing the system’s behavior 

(Darby et al. 2011). RTO is also known as optimal control (Evans 2005) or 

supervisory control (Wang, Ma 2008), but the difference is that RTO focuses on 

small-time scale (e.g. hour) (Darby et al. 2011); while the other two are more general 
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and do not have such constraint. Most of the current RTO methods use the periodic 

optimization strategy, which adopts the so-called “time-driven optimization” (TDO) 

mechanism. In the TDO mechanism, control actions are triggered by “time” in a 

periodic way. For instance, Kusiak, Li and Tang (2010) demonstrated that 7.66% of 

the total energy could be saved by hourly updating of the supply air pressure and 

temperature.  

 

In a relatively simple and small-scale system, the TDO mechanism works well as 

demonstrated by plenty of studies (Kusiak, Li & Tang 2010). However, modern 

engineering systems become increasingly complex as the technology continually 

develops, such as the transportation, energy and building systems, so does the HVAC 

system (Cassandras, Lafortune 2009). One major problem is that state transitions in 

complex systems, such as changes in occupancy and weather conditions, are 

numerous, highly stochastic and difficult to predict. The traditional TDO is no longer 

efficient when reacting to stochastic (aperiodic) changes, which can be explained 

through a simple illustration in Figure 1. 1. 
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Figure 1. 1 Illustration of TDO method (Opt. = Optimization) 

 

For example, “one optimization per hour” is used as the optimization frequency in the 

TDO strategy, i.e. system control settings will be updated every one hour. When a big 

change occurs at the middle (e.g. 30 minutes after the current optimization action), 

this TDO mechanism cannot respond to this change timely. In other words, the 

optimization action will be delayed by 30 minutes, which is detrimental to the system 

performance. Certainly, a higher optimization frequency could be used to reduce the 

delay of the optimization action. However, the computational load will increase 

correspondingly. Meanwhile, unnecessary optimization actions may be conducted 

when system is operating stably, which is a wastage of resources like the 

computational load and communication bus load (Sandee, Heemels & Van Den Bosch 

2007).  
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Computational complexity will be encountered in complex HVAC systems due to the 

complexity of optimization problems, which is explained as follows. Firstly, complex 

HVAC systems always contain a large number of components or subsystems (A˚ström, 

Kumar 2014, Windham, Treado 2016). Secondly, multiple constraints are imposed on 

the operation of the systems, such as operation protections of different components 

(Cai 2015, Windham, Treado 2016). Moreover, coupling effects between equipment 

and interactions with other building systems (like lighting systems) also cannot be 

neglected for the optimal control (Guan et al. 2016, A˚ström, Kumar 2014, Windham, 

Treado 2016). These emergent features associated with the system complexity make 

the analysis and solution of the optimization problem difficult. The direct 

consequence is that the computation time becomes longer. Thus, the optimization 

action would be further delayed, which would be adverse to the optimization 

performance (e.g. energy efficiency).  

 

In summary, the conventional TDO strategy is a periodic optimization scheme and 

may lead to delayed or unnecessary optimization actions when reacting to stochastic 

changes, which would deteriorate the optimization performance and waste resources 

(such as energy, computation and communication). In addition, TDO is not efficient in 

balancing the optimization performance and computational load, which may become a 
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major obstacle in real implementations (Wang, Ma 2008). Considering these 

limitations and difficulties associated with TDO, the development of a more suitable 

and efficient RTO strategy is of critical importance, which is the main problem this 

thesis tries to tackle.   

 

1.2 Aims and objectives  

The overall aim of this study is to develop a new optimization framework, i.e. the 

event-driven optimization (EDO), for complex HVAC systems with a better balance 

between the optimization performance and computational load. The specific 

objectives are listed as below: 

 

(1) Fundamentals: to investigate the operational characteristics of complex HVAC 

systems and reveal the basic operational patterns and mechanisms. Important factors 

affecting the operation efficiency of HVAC systems will be identified, including 

variables coming from outdoor weather, indoor climate, system and equipment, which 

would serve as a foundation of this research.  

 

(2) EDO framework: to establish the EDO framework based on the investigation of 

basic operational patterns of complex HVAC systems. To facilitate this new 
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optimization strategy, essential components (such as event identification) and terms 

(such as policy, event attributes, event types and mathematical event representations) 

will be defined.   

 

(3) EDO design: to a design approach for the established EDO strategy so that the 

desirable system performance can be achieved. Events will be selected from important 

state variables affecting the optimization objectives. Guidelines and algorithms will 

be developed to define, identify and optimize the event.  

 

(4) Validation: to validate the feasibility and evaluate the reliability. Comprehensive 

studies will be conducted to validate the feasibility and evaluate the optimization 

performance and reliability of the proposed EDO in various operation scenarios.  

 

1.3 Organization of the thesis 

The whole thesis is divided into 8 chapters. The main content of each chapter is 

presented as follows. 
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Chapter 1 presents the background of this research, where the real-time optimization 

in HVAC is discussed. Challenges are briefly pointed out, and the research objectives 

are presented accordingly.  

 

Chapter 2 reviews the literature in HVAC optimal control area, in which the 

traditional TDO strategy is discussed. The event-driven strategy, including its basic 

idea, applications and current practices of design are presented. The research gaps are 

identified and the key issues of applying event-driven strategy in HVAC are revealed.  

 

Chapter 3 introduces the EDO framework and the simulation platform used in the 

thesis. The EDO framework contains the scheme, the strategy, and the optimal control 

diagram of the EDO. The fundamental terms of events are introduced, including the 

formal definition, event attributes, event types, mathematical representations and 

event identification. To evaluate the optimization performance, the co-simulation 

platform, the formulation of the optimization problem and performance indices are 

also presented.  

 

Chapter 4 develops a design approach for the EDO. A five-step design procedure is 

introduced for building the {event, policy, action} structure. Since “event” determines 
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the optimization performance of EDO, the general decision making flow chart, the 

overall methodology and the basic event selection criteria of the event space 

establishment are introduced. Both direct and indirect methods are suggested to 

identify important state transitions, which are discussed and demonstrated by the case 

studies in Chapter 5, 6 and 7.  

 

Chapter 5 presents the knowledge-based method for the event space establishment. 

Then, an algorithm for event threshold selection is proposed for continues state 

variables. Using the knowledge-based method, five critical events are identified. For 

each event, seven different thresholds are tested based on three typical load and 

weather profiles. The optimization performances of events are analyzed in a 

comprehensive way regarding the energy saving, computation saving and 

performance score. Finally, suitable events are selected to form the policy, and the 

performance is validated.    

 

Chapter 6 presents the data-based method for the event space establishment. This 

chapter firstly introduces the algorithm used to identify state transitions, the 

optimization reward estimator and the random forest algorithm for variable 

importance evaluation. Then, a simple method to compute the suitable event threshold 
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based on the Euclidean distance between decision variable vectors is proposed. After 

that, the case study to demonstrate and validate the effectiveness of the proposed 

data-based method is presented. Finally, the results and findings are summarized.    

 

Chapter 7 presents the direct method for event space establishment. The 

SCOP-deviation-based method is used to directly emulate the optimization objective, 

where the transient and accumulated SCOP deviations are defined. Then, the 

COP·mins is proposed for the calculations of the SCOP deviations. To find the 

reference SCOP, the artificial neural network is utilized. At last, the case study is 

presented in to illustrate the performance of the SCOP-deviation-based method.  

 

Chapter 8 summarizes the work conducted in this thesis, lists out the main 

contributions and points out the limitations and possible future work. 
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CHAPTER 2. LITERATURE REVIEW 

 

Since this thesis targets on the optimal control problems in complex HVAC systems, 

Section 2.1 discusses the general background in HVAC optimal control field, reviews 

the traditional TDO strategy and points out the challenges. Then, Section 2.2 

introduces the basic idea and applications of the event-driven strategy since it could 

be a good alternative to the time-driven strategy. Section 2.3 discusses the current 

practices on the design of the event-driven strategy. Section 2.4 presets the prior 

knowledge in HVAC optimal control and data mining techniques, which can be used 

to find important state transitions affecting the optimization performance. Section 2.5 

presents the discussions based on the literature review. Finally, the chapter summary 

is given in Section 2.6.  

 

2.1 HVAC Optimal Control and Challenges  

As the RTO is a powerful tool for the improvement of HVAC operating efficiency, a 

number of work and research have been done since 1980’s. Some good review works 

in HVAC optimal control fields are listed as follows for reference. In (Wang, Ma 

2008), the developments of HVAC optimal control were extensively reviewed, which 

contains a clear classification of optimal control methods and lots of optimization 

algorithms; ASHRAE handbook surveyed the publications since 1980s (ASHRAE 
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2015), focusing more on engineering practices; recent work discussing more 

advanced techniques can be found in (Ahmad et al. 2016, Aste, Manfren & Marenzi 

2016, Okochi, Yao 2016, Suganthi, Iniyan & Samuel 2015, Shaikh et al. 2014, 

Windham, Treado 2016).  

 

2.1.1 Development procedure and fundamental questions of HVAC optimal control 

In the past few decades, the basic procedure for developing HVAC optimal control 

algorithms has been established, which is shown in Figure 2. 1.  

 

• Step 1: Specify optimization objective(s) 

The first step is to specify the optimization objective. Common control objectives are 

energy consumption, cost, thermal comfort and IAQ (Ahmad et al. 2016). In the 

majority of the cases, a cost function is formulated as the minimization of energy 

consumption or operating cost when satisfying thermal comfort and IAQ constraints.  

 

• Step 2: Identify decision variables 

In principle, any variables affecting the optimal control objectives can be used as the 

decision variables. For the traditional electric HVAC systems, common decision 

variables are: air pressure or temperature, chilled water supply temperature and flow 
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rate, cooling water supply temperature and flow rate, operating number of chillers, 

chilled-water and cooling-water pumps, cooling towers, fans and other equipment 

(Braun et al. 1989). These variables often have strong coupling effects (i.e. mutual 

influences), and rational optimal control of these decision variables can significantly 

reduce the operating cost (Braun et al. 1989).  

 

 

Figure 2. 1 Basic procedure for developing HVAC optimal control algorithm 

 

• Step 3: Define cost function 

The cost function represents the objective that is going to optimize. For the 

model-based optimal control methods (Wang, Ma 2008), the numerical models used 

for establishing cost function (also building performance evaluation) can be 
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subdivided into three categories based on the models used, namely white-box, 

grey-box and black-box models (Aste, Manfren & Marenzi 2016, Afram, 

Janabi-Sharifi 2014).  

 

• Step 4: Define constraints 

The optimization problem is subject to equality or inequality constraints which need 

to be defined before solving the problem. An example of the equality constraint is that 

the sum of the capacities of operating chillers must equal to the load. An inequality 

constraint could be the bound of a decision variable.  

 

• Step 5: Choose (or develop) solution algorithm 

After establishing the cost function, a solution algorithm is needed to find the optimal 

values for decision variables. Till now, a number of optimization algorithms has been 

developed and verified, including classic linear/quadratic programming, 

gradient-based iterative methods (Braun, Diderrich 1990, Cumali 1994), evolutionary 

algorithms (Nassif, Kajl & Sabourin 2005), branch and bound (Fisk 2013), simulated 

annealing (Chang et al. 2006), particle swarm optimization, mixed integer 

programming and the generally used genetic algorithm (Wang, Ma 2008, Shaikh et al. 

2014). As each algorithm is superior to all the others in certain aspects, suitable 
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algorithms should be chosen, and appropriate adjustments should be made to suit the 

special requirements of the problem.  

 

The HVAC system often utilizes a two-level control hierarchy for optimal control 

(Braun 2014), which consists of a supervisory level and a local-control level. At the 

supervisory level, there are three basic questions (summarized in Figure 2. 2) that 

must be answered when solving an HVAC optimal control problem. These 

fundamental questions are similar to the general “plant decision hierarchy” presented 

in (Darby et al. 2011). 

 

 

Figure 2. 2 Three basic questions in HVAC optimal control problems 

 



15 
 

The first question concerns the timing of the optimization triggering, that is, when to 

optimize the system. The second concerns the selection of the optimization action, 

that is, which decision variable(s) to be optimized. The optimization action should 

specify the subsystem, the equipment and the decision variable that need to be 

optimized. The third is the traditional parameter optimization problem, that is, what 

settings to be used.  

 

Most of the literature on HVAC optimal control focuses on defining the cost functions 

and developing the solution algorithms; hence, the five-step procedure presented 

above (see Figure 2. 1) is only sufficient to answer the third question (i.e. “what 

settings to be used?”). The traditional strategies to handle the first and second 

questions are relatively simple and encounters several challenges (also briefly 

summarized in Section 1.1), especially as the complexity of HVAC systems increases. 

Details concerning these challenges will be given in the subsequent sections.  

 

2.1.2 Traditional time-driven strategy 

In the RTO problem of HVAC systems, “when to trigger the optimization” is the first 

basic question to be answered. The traditional TDO strategy adopts the periodic 

scheme to optimize the system operation with fixed frequencies. This scheme is 
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widely used due to its simplicity and effectiveness. Note that the optimization 

frequency considered in the HVAC RTO problem is typically at an hourly base (Darby 

et al. 2011), whereas the general optimal control problem can use a much lower 

frequency, such as monthly resetting (Fong, Hanby & Chow 2006, 2009).   

 

Several examples of RTO in HVAC are presented as follows. Zaheer-uddin and Zheng 

(2000) divided the 24-hour operation into three stages (night set-back, start-up and 

normal modes) to schedule the system operation. Actions were only performed when 

the operation stage changes. Mossolly, Ghali and Ghaddar (2009) conducted an 

hourly optimization for fresh air volume and supply air temperatures. In a four-month 

simulation of the system operation, they found that the energy consumption was 

reduced by 30.4%. Similarly, by hourly resetting of the supply air pressure and 

temperature, Kusiak, Li and Tang (2010) demonstrated that 7.66% of the total energy 

could be saved. They also showed that the total energy savings of four different 

optimization frequencies decreased monotonically as the optimization frequency 

decreased, i.e. 1 hour, 2 hours (saving 5.95%), 5 hours (saving 3.12%) and 50 hours 

(saving 0.83%) per optimization. Ma and Wang (2011) developed an online adaptive 

model to provide reliable and accurate estimates under dynamic operational 

conditions. Their results showed that about 0.73 to 2.55% of daily energy could be 
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saved (compared with the base strategy) by periodically updating the three 

temperature set-points. More recently, Huang, Zuo and Sohn (2017) developed an 

operational support system to optimize the condenser water set point in an existing 

chiller plant using three frequencies, i.e. hourly, daily and weekly. Up to 9.67% of 

energy consumption was saved (on an annual basis) for chillers and cooling towers.  

 

These studies reaffirm that a suitable optimization frequency is important for the 

performance of TDO, which is a viewpoint made nearly thirty years ago (Braun et al. 

1989). However, it is difficult to select a suitable optimization frequency for practical 

applications due to the lack of studies. Instead, the rule of thumb is always used in 

practice. The choice of the optimization frequency is often based on the worst-case 

scenario (meaning a high optimization frequency is used) in order to guarantee 

acceptable performance. However, this can easily lead to a high computational load 

and inefficient manipulations. Firstly, when the system is running stably, the 

computation wastage would happen as unnecessary optimizations were performed 

(Liu et al. 2014, Sandee, Heemels & Van Den Bosch 2007). Secondly, the high 

computational load will be adverse to the system operation, which can be explained in 

two aspects. On the one hand, the computation required by one control updating is 

costly due to the large problem scale, the nonlinearity, the number of decision 
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variables and coupling effects. Dozens of minutes are required to complete one search 

for the optimal settings, which would deteriorate the energy performance due to the 

delay of response. On the other hand, the overall computational load is huge because 

of a high optimization frequency (e.g. one optimization per 30 minutes). Given that 

the RTO is usually realized by the Building Automation System (BAS), occupying too 

much computation resource is detrimental to the efficiencies of other building systems 

(like electrical, fire, security and lighting systems).  

 

Lowering down the optimization frequency allows the computational load to be 

reduced, but the optimization performance cannot be guaranteed due to the possibility 

of delayed actions (Huang, Zuo 2014). Therefore, a compromise between the 

computational load and energy performance must be considered. However, this is 

always challenging in practical applications since we lack quantitative studies on the 

relationship between the optimization frequency and energy or computational 

performance (Huang, Zuo 2014). In fact, it is inherently difficult to obtain this 

quantitative relationship since many optimal control actions are not time-driven.   

 

A recent investigation of legacy chiller plants (Huang, Zuo & Sohn 2017) found that 

the optimization frequency had no significant impact on the energy saving when the 
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wet bulb temperature (daily and weekly) did not vary significantly. In other words, the 

optimization frequency could be safely reduced in suitable occasions, which both 

ensures the system performance and saves the computation. In summary, the 

conventional TDO method is difficult to achieve a good balance between energy and 

computational performances due to the inefficient manipulations (i.e. delayed or 

unnecessary actions). From the literature, it is also evident that a better optimal 

control strategy can be formulated by incorporating the changes of the operational 

condition into the optimal control strategy. Therefore, it is of great interest to develop 

a new optimization strategy that is driven by operational condition changes for the 

more efficient operation of HVAC systems.  

   

2.2 Event-driven Strategy: Introduction and Applications 

Fortunately, with the advance in control theory, the idea of event-driven strategy may 

be promising to solve the aforementioned difficulties associated with the time-driven 

strategy. Thus, the so-called event-driven strategy will be introduced in this section. In 

the automatic control area, the significance of the event-driven (also known as 

“event-based” or “event-triggered”) strategy was noted in the 1980s as it could be a 

more efficient alternative to the time-driven strategy in many applications (Cassandras 

2014). Some early attempts of implementations can be tracked back to the 1990s 
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(Hendricks et al. 1994, Arzén 1999, Heemels et al. 1999, Bernhardsson, Aström 1999). 

Basically, the research of the event-driven strategy is principally driven by three 

communities (i.e. control, computing and communication communities) (Arzén 1999). 

This section mainly discusses the research and development in the control area as it is 

the most relevant research area to the topic of this thesis.  

 

2.2.1 Introduction of event-driven strategy 

As we known, the majority of the research and practical work in control considers 

time-driven sampling (or periodic sampling), mainly due to the well-established 

system theory and time-driven control systems (Arzén 1999). However, there are 

cases where it is interesting to consider the control systems based on the event-driven 

sampling (so-called event-driven control) in which actions are event-driven rather 

than time-driven. In fact, many processes in modern complex systems are driven by 

instantaneous “events” (Cassandras, Lafortune 2009), such as automated 

manufacturing systems, intelligent transportation systems, and advanced BASs. 

Substantial activities in these systems are managed by man-made control rules that 

have the event-driven properties (Arzén 1999). For instance, when the current full 

capacity is not enough, it is desirable to turn on an additional equipment in the plant. 
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Clearly, this activity is not suitable to be characterized by time-driven behaviors, and 

it will be inherently inefficient to use the time-driven strategy to solve the problem.  

 

The event-driven control has received much attention in recent years, and the 

potential reasons are listed here. 

 

• As stated by Arzén (1999), the event-driven control is closer in nature to the way 

a human behaves. Many systems are stochastic, meaning that the control (or 

optimization) actions should react to random events rather than being updated 

periodically. Indeed, when humans perform manual control, their behaviors are 

event-driven rather than time-driven. For example, in a stock market, a broker 

buys or sells stocks only at the “right time” (something just happened); in 

building energy control, actions are taken only when the networked sensors 

detect some “meaningful” changes in the environment, such as the temperature 

or humidity passing a certain level. 

 

• Another reason is the resource utilization. Nowadays, many systems are subject 

to constraints of resources (e.g. computation, communication and energy). For 

instance, in a real-time operating system equipped with an embedded controller, 
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the available CPU (central processing unit) time is shared among tasks, such that 

it appears as if each task is running independently. Occupying the CPU resources 

to perform control calculations when nothing significant has happened is clearly 

a waste of computation resources (this is also true for communication resources). 

This is especially crucial for battery-powered devices, such as wireless sensors 

(El Gamal et al. 2002, Stark et al. 2002). 

 

• Additionally, the unnecessary changes or updates in systems can cause 

disturbances (Asad, Yuen & Huang 2017) which, in turn, would affect the system 

performance. This will inevitably cause frequent changes of the actuator state, 

leading to unnecessary energy consumption and actuator attrition (Liu et al. 

2014). 

 

The aim of the event-driven strategy is to create a better balance between the 

performance of the controlled processes and other aspects of the system (such as 

computational load, energy consumption, communication and disturbance, etc.). The 

key idea of event-driven (or event-based) control is that the control action (or signal 

transmission) only takes place when the tracking error exceeds a bound or the 

performance index deviates away sufficiently enough from the desired set point 
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(Aström 2008). An attractive feature of this idea is that it enables the control actions 

to follow the stochastic behaviors of system operations, and thus increasing the 

flexibility of control, communication and optimization (Cassandras 2014). For 

instance, events can be defined such that no action will be taken when no disturbances 

are posed on the system or the operation performance is desired, which can avoid 

unnecessary control actions. Similarly, events can also be defined such that action will 

be taken promptly when critical changes occur, which can reduce the possible action 

delay. It is in this way that the event-driven strategy could reduce the resource 

utilizations (such as energy consumption, communication and computational loads) 

while still respecting the control performance. Indeed, it has been demonstrated that in 

some applications, the control performance can be even better with a much lower 

sampling rate comparing with the time-driven strategy (Astrom, Bernhardsson 2002). 

 

2.2.2 Applications of event-driven strategy 

Due to its potential advantages, the applications of the event-driven strategy have 

been investigated in various aspects of the automatic control area, such as classical 

feedback control systems (Arzén 1999, Lunze, Lehmann 2010, Anta, Tabuada 2010), 

distributed systems (Zhong, Cassandras 2010), multi-agent systems (Xu et al. 2017, 

Li et al. 2013), and wireless network (Araújo et al. 2014).  
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For example, Heemels, Sandee and Van Den Bosch (2008) developed an event-driven 

proportional-integral-derivative (PID) controller for a motor. The control values were 

updated only when a specific error measure exceeds the pre-defined threshold. Results 

show that 69-76% of computational reduction was achieved, without compromising 

the control performance. In a motor control problem (Sandee 2006), around 42% of 

computation time was reduced by adopting the event-driven controller, while still 

respecting the control performance. In (Henningsson, Johannesson & Cervin 2008), 

using the proposed sporadic event-based control, better performance was achieved in 

first-order linear stochastic systems compared with the periodic control regarding both 

reduced process state variance and reduced control action frequency (40% reduction). 

   

Particularly, for building energy systems, Wu, Jia and Guan (2014) used a 

finite-horizon discrete-time Markov decision process (MDP) model to control the fan 

coil unit based on the temperature of the room and the thermal comfort of occupants. 

Given the difficulty of solving traditional MDP models with the large state space, they 

proposed an event-based optimization (EBO) approach and applied derivative-based 

local search to approximately solve the problem. Results showed that the proposed 

method could converge to a local optimum policy. In (Sun et al. 2013a), the Markov 



25 
 

chain of occupant number was developed to optimize the daily HVAC energy cost 

while satisfying HVAC capacity, comfort and system dynamics. An event-based 

approach was developed under the Lagrangian relaxation framework so that the 

decisions were only calculated and executed on an “as needed” basis. The simulation 

result showed that, the event-based approach is more efficient than time-based 

stochastic dynamic programming in saving computational load and energy costs, and 

responded more quickly to changes of occupancy, comfort range, etc. Wu, Jia & Guan 

(2015) formulated the multi-room HVAC optimal control as an EBO problem, in 

which decisions were made only when pre-defined events occurred. Results showed 

that the local-event-based EBO approach performed better than the traditional control 

methods in terms of energy consumption and thermal comfort. Sun et al. (2015) 

developed an event-based approach within the Lagrangian relaxation framework to 

optimize the operation of fan-coil units and fresh-air units in rooms. Seven types of 

events were defined based the augmented state. Results showed that the event-based 

approach had a similar energy cost compared with the time-based approaches, while 

the response is much faster and saving significant computational time. 

 

It is noted that these studies demonstrated the successful application of the 

event-driven strategy in control and HVAC problems, showing its potential 

advantages and broad applicability. However, these studies only investigated the 
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air-side systems containing several fan coil units and rooms. The air-side system is 

only a sub-system of a complete HVAC system. Thus, the feasibility of applying the 

EDO in a comprehensive HVAC system should be assessed by evaluating the 

corresponding energy performance, robustness and computational load requirements.  

 

2.3 Design of Event-driven Strategy 

The design of an event-driven strategy refers to the specification of the 

event-triggering condition, also known as the event-triggering mechanism (Heemels, 

Sandee & Van Den Bosch 2008). The design of the event-triggering condition is 

critical because it determines when the control settings are updated (Heemels, Sandee 

& Van Den Bosch 2008). Compared with the time-driven strategy, designing the 

event-driven strategy often requires more sophisticated techniques (You, Xie 2013). 

The current practices are summarized as follows.  

 

As a typical example, an event-driven PID controller was designed for a DC-motor in 

(Heemels, Sandee & Van Den Bosch 2008). The control values were updated only 

when the tracking error exceeded a threshold. Results showed a satisfactory 

performance was achieved by the event-driven PID controller together with a great 

computation reduction, comparing with the time-driven PID controller. However, the 
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thresholds were selected as 0.0005 rad/s and 0.007 rad/s arbitrarily. No explanations 

were given. Li and Shi (2014) studied the event-triggered model predictive control 

(MPC) for continuous-time nonlinear systems. The event is triggered as long as the 

error between the system state and its optimal prediction exceeds a triggering level, 

which was defined as a function of several parameters. In (Zhang, Feng 2014), an 

observer-based event-driven controller was developed for continuous-time linear 

systems. The event was triggered when error singles exceeded the threshold. The 

numerical example showed that the performance of the event-driven controller is 

nearly same with the continuous controller. However, the threshold was specified by 

authors without further explanation. In (Wu, Jia & Guan 2016), the multi-room HVAC 

optimal control was formulated as an EBO problem, in which decisions (i.e. ON/OFF 

of the fan coil units) are made only when pre-defined events occur. As the number of 

global events grows exponentially with the system scale, the local-event-based 

approach was adopted to simplify the problem. In two numerical examples, the results 

showed that the local-event-based EBO approach could obtain a near-optimal solution 

or a better performance, comparing with the threshold-based control, hysteresis 

control and predictive control methods. It was found that the definitions of the events 

determined the performance of the EBO approach. However, the event was only 

defined on the room temperature.  
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It is worth noting that the designs of the event-driven strategies in the above studies 

are relatively simple. Besides, the event selections are based on domain experience 

only. Many of the case systems uses simplified systems in which only a single event 

was considered. Additionally, the event thresholds were specified in simple ways, 

sometimes arbitrarily. The selections of the event and event threshold do not involve 

any optimization processes. Therefore, a systematic design approach for event-driven 

optimization is required.    

 

2.4 Identify Critical Events in HVAC Systems 

To identify the important state transitions corresponding to the optimization 

performance, prior knowledge on optimal control or data mining techniques are useful 

resources, which are summarized in the next two sections.  

 

2.4.1 Identify critical events using prior-knowledge 

In HVAC applications, the knowledge-based techniques for optimal control have been 

developed under different names, like model-free supervisory control method (Wang, 

Ma 2008), heuristic-based control method (Cai 2015) or near-optimal control 

(ASHRAE 2015). The knowledge-based optimal control method does not involve 
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numerical models (either white-box, black-box or grey-box models). Instead, 

expertise, engineering analyses or learning techniques are utilized to derive the 

optimal control rules.  

 

For instance, the expert system (Hordeski 2001) can mimic the human 

decision-making process for a given working condition, where the decision rules are 

derived from the knowledge base formulated by the domain experts. Regarding the 

heuristic-based control method, a near-optimal control method for cooling towers was 

developed by (Braun, Diderrich 1990), in which and a simple linear control law was 

formulated since they found that the balancing point for the cooling tower airflow has 

a linear relationship with part-load-ratio (PLR). In a variable-air-volume (VAV) 

system, to optimize the static pressure, a heuristic strategy has been proposed (Wang, 

Burnett 1998), which tries to minimize the resistance inside the duct system for 

reducing the supply fan energy consumption. The heuristic strategy controls the static 

pressure set point so that at least one damper is nearly 100% opening at all the time. 

Besides, in Chapter 42 of the ASHRAE handbook-HVAC applications (ASHRAE 

2015), dozens of near-optimal control strategies are presented, including strategies for 

condenser water flow distribution, pump sequencing, chilled-water reset, chiller 

sequencing, cooling tower airflow reset and tower fan sequencing. Applications of 
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knowledge-based optimal control strategies can also be found in other building energy 

systems, such as ice storage (Drees, Braun 1996), shading system (van Moeseke, 

Bruyère & De Herde 2007), direct-expansion air-conditioning systems (Cai, Braun 

2015).  

 

The prior knowledge of optimal control rules in HVAC systems can be possibly 

utilized for finding critical state transitions, and events can be abstracted accordingly. 

While many knowledge-based optimal control rules already exist for specific types of 

components (Davidsson, Boman 2005), the investigation of an entire HVAC system 

has rarely been discussed. Thus, this thesis will explore the feasibility of applying the 

knowledge-based method for the EDO in an entire HVAC system.  

 

2.4.2 Identify critical events using data mining of operational data 

The building operational data, including temperature, humidity, flow rate, pressure, 

valve/damper opening and equipment operating status, contains valuable information 

about the actual building operational performance and patterns. In modern BASs, 

operational data are collected at a very short time interval (e.g. minutes or seconds). It 

enables a large amount of building operational data to be available for analyses.  

Data mining is a powerful technique that can explore and discover meaning 
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knowledge and patterns inside the data set. For building-related data, many successful 

application have been done using the data mining techniques, such as finding patterns, 

associations, or relationships (Miller, Nagy & Schlueter 2015), building prediction 

models (Tang, Kusiak & Wei 2014, Yu et al. 2010), diagnostics (Xiao, Fan 2014) and 

tuning controllers (Hussain et al. 2014). 

 

For example, both infrequent and frequent diurnal patterns were found using the 

DayFilter proposed by Miller, Nagy and Schlueter (2015). The infrequent operational 

pattern was found to be consistent with the cooling system faults. The frequent 

operational patterns can benefit the efficient scheduling of occupancy, lighting and 

plug load. In (Fan et al. 2015), daily power consumption patterns, sub-system 

operational patterns and temporal associations between sub-systems were identified 

using the proposed data mining method. However, the authors did not explore the use 

of the discovered knowledge in for optimal control. Li et al. (2017) used data mining 

techniques to analyze the energy consumptions of variable refrigerant flow systems. 

Three distinct power consumption patterns, undercharge fault, low and higher part 

load ratio conditions, were identified by clustering analysis. Besides, energy 

consumption rules were extracted by association rule mining. It was found that the 
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energy saving potentials could be estimated by making comparisons between energy 

patterns and rules in a top-down way.  

 

It is observed that most previous attempts have been limited to identification of 

critical factors for energy performance, system faults or operational patterns. For 

building optimal control, a gap remains between the knowledge base and the 

real-world applications of the this knowledge. Therefore, this thesis will develop a 

method to utilize the knowledge acquired from data mining for HVAC optimal 

control.  

 

2.5 Discussions 

Based on the extensive literature reviews given above, findings are summarized as 

follows.  

 

(1) HVAC optimal control 

HVAC systems are major energy consumers in buildings, and RTO is a powerful tool 

for improving the energy efficiency of HVAC systems. However, with the increasing 

complexity of HVAC systems, the traditional TDO strategy of RTO is no longer 

efficient in handling the optimal control problems. Firstly, the TDO can easily 



33 
 

postpone the optimization or perform unnecessary optimizations, which is adverse to 

energy or computational efficiency of system operations. Secondly, it is difficult to 

select a suitable optimization frequency in practices since the relationship between the 

optimization frequency and actual optimization performance is unclear (due to the 

lack of studies).  

 

(2) Event-driven strategy 

The event-driven strategy has the potential capability to reduce the resource 

utilization (e.g. communication, computation and energy consumption) while still 

ensuring the performance of control or optimization. It has been successfully applied 

in different areas, including classical feedback control systems, distributed systems, 

multi-agent systems, wireless network and HVAC systems as well, which shows its 

broad potential applicability. However, in HVAC systems, only air-side systems have 

been investigated, and only simple events have been considered. There are no 

comprehensive studies of the entire HVAC systems. Furthermore, there is no 

systematic framework to facilitate the application of EDO in HVAC systems. 

Therefore, an EDO framework will be developed herein. 

   

(3) Design of event-driven strategy 
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Compared with time-driven strategies, the design of event-driven strategies is much 

more sophisticated. Current practices only study some relatively simple systems; 

while it is definitely fine as the main purpose is to demonstrate the event-driven 

strategy. Moreover, most of these studies has considered only a single event based on 

the domain experience, which may not be sufficient when a complex system is 

considered. In addition, the event threshold is often specified arbitrarily, based either 

on expertise or inference using the system model. However, when no expertise or 

explicit system model is available, as is likely in real systems, there is no effective 

solution. There is no optimization process for the selections of events or event 

thresholds. Thus, a method should be developed for the design of event-driven 

strategy. 

 

(4) Find critical events 

In HVAC, prior-knowledge or operational data can be used to identify the critical state 

transitions relating to the optimization performance. For knowledge-based methods, a 

large number of optimal control rules have been developed. However, these rules are 

mostly specific to certain equipment or sub-systems. The effectiveness of these 

optimal control rules at the entire-system level remains to be validated. As for the 

data-based method, the continually increasing collection of BAS data has enabled data 
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mining techniques to be successfully used to find patterns, associations, or 

relationships, build prediction models, perform diagnostics and tune controllers. 

However, there is no systematic way to utilize data mining for HVAC optimal control. 

The EDO provides a good platform for such applications. Thus, it is worthwhile to 

develop a way to facilitate the use of data mining in the EDO.  

 

2.6 Summary 

This chapter synthesizes the literature on HVAC optimal control, event-driven 

strategy in control and optimization, design of the event-driven strategy and two 

possible ways to identify important events in HVAC systems. The literature provides 

the necessary information for the presentation of the thesis and lays the foundation for 

the development of the methods. 

 

Firstly, the traditional TDO of HVAC optimal control is reviewed. As the operation of 

HVAC systems usually confronts many stochastic state transitions, such as weather 

condition changes, load variations and occupancy changes, “time” may not an 

efficient driver for the HVAC optimal control. Specifically, the current TDO strategy 

in handling the optimization triggering is still inefficient since it may lead to 

unfavorable optimization actions (e.g. delayed or unnecessary actions). Besides, the 
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selection of the optimization frequency in TDO is always difficult in practices due to 

the lack of studies. The limitations associated with the TDO call for the reformulation 

of the optimal control strategy, which leads us to the event-driven strategy. Then, the 

basic idea and applications of event-driven strategy are introduced. A large number of 

previous attempts have demonstrated the potential superiorities of the event-driven 

strategy by successful applications in different problems. Thirdly, the current practices 

of the design of event-driven strategy are discussed. Designing the EDO is more 

complicated because there are several asynchronous event-triggering conditions to be 

specified. It is found that the current practices of the event-driven strategy design are 

simple, based on domain knowledge and have no optimization process. Finally, the 

use of prior knowledge and data mining techniques to identify important state 

transitions for optimal control in HVAC systems is presented.   
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CHAPTER 3. EVENT-DRIVEN OPTIMIZATION FRAMEWORK 

AND SIMULATION PLATFORM 

 

In this chapter, the EDO framework is established, and the simulation platform used 

to evaluate the EDO is introduced. First, the basic difference between the EDO 

mechanism and the TDO mechanism is presented in Section 3.1. The basic EDO 

strategy is also illustrated by the {event, policy, action} structure. Next, the optimal 

control diagram of EDO is illustrated in Section 3.2. Then, Section 3.3 presents the 

fundamental terms associated with the “event”, including event attributes, event types, 

mathematical representations and event identification. Section 3.4 introduces the 

co-simulation platform for optimization performance evaluation. Finally, the 

formulation of the optimization problem and performance indices are presented in 

Section 3.5 and 3.6 respectively.  

 

3.1 Event-driven Optimization Scheme and Strategy 

The difference between the EDO and the TDO is illustrated in Figure 3. 1, where five 

decision epochs (DEs) are assumed to be allocated for a certain period and “t” is the 

time interval between two adjacent DEs. Each DE consumes the same amount of 

computational resources to complete a search for the control optimization. Compared 
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with the TDO, which is a deterministic allocation scheme (the DE location is fixed), 

the EDO has the adaptability to the changing environment as the DE location can be 

altered accordingly. Therefore, the EDO can be regarded as a smarter allocation 

scheme. In the case study part, we will demonstrate that this EDO could achieve an 

equivalent performance with the same or even less amount of the computing budget. 

 

 

Figure 3. 1 Comparison between the TDO and the EDO schemes (DE=decision 

epoch) 

 

 

Figure 3. 2 The {event, policy, action} structure 

 

The underlying optimal control strategy is realized by a so-called {event, policy, 

action} structure (as shown in Figure 3. 2). This {event, policy, action} structure is the 
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core of the proposed EDO scheme, and the basic event-driven strategy is listed as 

follows:  

 

• if no event occurs, no action will be taken;  

• if certain events occur, actions will be taken accordingly based on the policy for 

achieving certain objectives (e.g. energy efficiency).  

 

Thus, the event determines when to trigger the control optimization. After the 

optimization is triggered, the policy determines which action to be taken based on the 

observed event, which is a mapping from the event space (the set of events) to the 

action space (the set of actions). As the optimization triggering and action selection all 

depend on the event, it is called the “event-driven optimization”. 

 

3.2 Optimal Control Diagram 

Figure 3. 3 shows the detailed control diagram of the EDO. When real-time 

operational data is fed to the control system, events will be identified from a 

pre-defined event space. When certain events occurred, actions will be taken from the 

pre-defined action space based on the policy. Therefore, the proposed EDO takes a 

continuous feedback and implements the optimal control in an event-driven manner. 
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The optimization algorithms that are developed for time-driven optimization methods 

can also be used to optimize decision variables in this EDO framework. 

 

 

Figure 3. 3 The optimal control diagram of EDO 

 

Please note that there are two different methods to update the policy: on-line version 

and off-line version. “Off-line” means that the policy is pre-defined and fixed for the 

next period (e.g. 24 hours) of operation until necessary changes are made; while the 

on-line version changes the policy according to the real-time condition during the 

period of operation. The on-line policy updating can be achieved by employing 
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suitable optimization algorithms (e.g. event-based optimization (Jia 2014, Xia, Jia & 

Cao 2014, Cao et al. 2013)) to search the optimal policy based on the available data.  

 

3.3 Event and Event Identification 

3.3.1 What is an event? 

An event describes a set of state transitions that physically happen in a system 

(Cassandras, Lafortune 2009, Xia, Jia & Cao 2014). In daily operation of a complex 

air-conditioning system, events may come from environment (such as weather 

changes and solar radiation changes), system itself (such as equipment on/off, 

equipment faults and operation mode changes) and occupants (such as occupancy 

changes and occupants’ adjustment of thermal comfort related variables). For example, 

a chiller being switched on can be considered as an “event”; and the cooling load 

increased by 10% can be considered as an event as well. Hence, “event” can be 

defined from a discrete state (e.g. the operating status of chillers) or continuous state 

(e.g. the cooling load), which will be discussed in the Section 3.2.2.  

 

3.3.2 Event attributes and types 

Basic event attributes and types are presented here to lay the foundation for event 

definitions. As shown in Figure 3. 4, a typical event can be represented abstractly by 
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three basic attributes, namely timestamp, descriptive state variable and threshold, each 

of which has two forms. The timestamp can be a time instant which could represent a 

transient state transition or a time duration that reflects a continuous state change. For 

example, a transient state transition could be the indoor temperature increased a 

certain level (e.g. 25 ºC); a continuous state change could be the relative humidity of 

indoor air increased by 20% in the past 30 minutes, which represents an accumulated 

effect. The descriptive state variables can be continuous or discrete, which is 

determined by the nature of state transitions. For instance, temperature, flow rate and 

pressure are typical continuous variables in a HVAC system; while the number of 

devices in operating is a discrete state variable. 

 

  

Figure 3. 4 Typical event attributes 

 

Another important attribute is the threshold, which determines the form and quantity 

of a state transition. Basically, the threshold quantitatively describes “certain 

properties” that the transition depicts, which is a user-defined parameter. It can be an 

Event attribute

Timestamp ThresholdDescriptive state 
variable

instant interval continuous discrete absolute value delta value 
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“absolute” or “delta” value (Heemels, Johansson & Tabuada 2015, Hinze, Sachs & 

Buchmann 2009). The “absolute” mean the descriptive state variable passes a certain 

level or predefined value, such as the temperature exceeding a set point; while the 

“delta” refers to the variations of the difference between the current value and its 

reference or previous value, such as the PLR varying more than 10% compared with 

the last control updating. Based on different types of timestamp, descriptive state 

variable and threshold, events can be roughly divided into eight basic event types as 

shown in Table 3. 1. Different types of events would have slightly different 

mathematical representations, which are discussed in Section 3.3.3.  

 

Table 3. 1 Basic event types 

      Attribute          

Event type 
Timestamp 

Descriptive state 

variable 
Threshold 

Event type 1 instant continuous absolute 

Event type 2 instant continuous delta 

Event type 3 instant discrete absolute 

Event type 4 instant discrete delta 

Event type 5 interval continuous absolute 

Event type 6 interval continuous delta 

Event type 7 interval discrete absolute 

Event type 8 interval discrete delta 
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3.3.3 Mathematical representation 

Formally, an event is a set of state transitions that happen instantly or continuously in 

a period of time. The terminology and basic notions that are used in this thesis mainly 

follow the work in (Cassandras, Lafortune 2009). Let 𝑋𝜏𝑘 be the system state at time 

𝜏𝑘, which is a vector containing a set of state variables that can be used to reflect the 

system behaviors. When 𝑋𝜏𝑘  contains 𝑛  state variables, it is denoted as 𝑋𝜏𝑘 =

{𝑥𝜏𝑘
1 , 𝑥𝜏𝑘

2 , … , 𝑥𝜏𝑘
𝑛 }𝑇, where 𝑥𝑛 is the component of 𝑋 and is called “state variable”, 

like temperature, humidity or water flow. For 𝑥𝑛, the transition of this state variable 

is represented as {< 𝑥𝜏𝑖
𝑛 , 𝑥𝜏𝑗

𝑛 >}, which means the transition of 𝑥𝑛 from time 𝜏𝑖 to 

𝜏𝑗. Please note that 𝜏𝑖 is the last decision time and 𝜏𝑗 is the current decision time. 

The decision time interval is normally larger than the sampling time interval. 

 

Suppose 𝑋 = {𝑇,  𝑅𝑅,  𝑃𝑃𝑃}𝑇  and define 𝑒1: = {< 𝑋𝜏𝑖 ,𝑋𝜏𝑗 > |  𝑇𝜏𝑖 ≤ 25℃,𝑇𝜏𝑗 >

25℃}, then 𝑒1 is an event describing the temperature increase and passing a certain 

level (i.e. 25℃), which belongs to the “Event type 1”; define 𝑒2: = {< 𝑋𝜏𝑖 ,𝑋𝜏𝑗 >

|  |𝑃𝑃𝑃𝜏𝑗 − 𝑃𝑃𝑃𝜏𝑖| ≥ 𝜎𝑃𝑃𝑃 𝐶ℎ𝑎𝑎𝑎𝑎} , 𝑒2  represents a delta type of instant state 

transition that is “Event type 2”. However, this type of events only specifies one state 
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variable transition, and a more complex case is that multiple state variables vary at the 

same time. For simplicity, this study considers one state variable for event definitions. 

 

All the defined events constitute an event space: 𝐸𝑠𝑠𝑠𝑠𝑠 = {𝑒1, 𝑒2, … , 𝑒𝑚}, where 𝑚 

is the size of the event space. As not all of “state transition” should be used as “events” 

to trigger optimization, only those “state transitions” which could cause a significant 

influence on concerned objectives (such as energy efficiency) will be defined as 

events. The design issues concerning the event space will be discussed in Chapter 4.  

 

3.3.4 Event identification 

When events are properly defined, an important process in real implementation is  

“event identification” which is a matching process (as shown in Figure 3. 5) between 

the events defined and the state transitions observed during the system operation (also 

termed as the observable event by (Cao 2007)). After an identification process, a 

value (“0” or “1”) is attached to the event to indicate whether or not this event occurs, 

where “1” means the event occurs and “0” means no event is identified. More 

specifically, an event represents an abstracted description of the state transitions, 

while an observable event contains observed values of state variables and timestamp 

(represents the time of occurrence). It should be mentioned that the observable events 
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are mutually exclusive since at least the timestamps are different (although they could 

belong to the same “event”).  

 

 

Figure 3. 5 Event identification process 

 

3.4 Simulation Platform 

3.4.1 Co-simulation platform between TRNSYS and MATLAB 

The simulation platform was constructed by using the co-simulation between 

TRNSYS and MATLAB (see Figure 3. 6). The virtual HVAC system was established 

in TRNSYS, which was used to produce the online operation data. The optimization 

strategy and algorithm were coded and realized in a separate MATLAB module. 

During every optimization process, the operational data was sent to the “optimizer” at 

first; then, the “optimizer” optimized the decision variables through minimizing the 

designed objective (such as total power requirement) based on the current operational 

condition. Certain performance predictors will be used to evaluate the values of the 

cost function of different feasible settings. Finally, identified optimal settings of the 
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decision variables were sent to the virtual HVAC system to supervise its operation, 

and the process will continue.  

 

 

Figure 3. 6 Structure of co-simulation between TRNSYS and MATLAB 

 

3.4.2 System description 

The air conditioning system under study is an all-electric system which does not 

contain significant thermal storage. The system is established according to a supertall 

office building in Hong Kong. Circulation loops of cooling water, chilled water 

primary side and secondary side are simulated in details, while the air distribution 

system is simplified by one zone (Figure 3. 7) to simplify the optimization problem. 

The central system utilizes a typical two-level control hierarchy (Braun 2014) to 
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realize the expected functions. Since this is a large-scale system containing multiple 

chillers, pumps, cooling towers, fans, AHUs and heat exchangers, apart from the 

optimization function used at the supervisory level, several fundamental control laws 

are embedded into the system to ensure basic functionalities. The supervisory level 

handles optimization problems with respect to certain cost functions. The local control 

loops deal with basic functions like set-point tracking (usually using PI control) and 

equipment sequencing control, and details will be presented in Section 3.4.3. Please 

also be noted that this is a very classical air conditioning system currently used in 

many commercial buildings, and thus quite representative. We will use it as a case 

system to demonstrate our EDO strategy and the design approach in the upcoming 

sections.  

 

 

Figure 3. 7 Schematic of the HVAC system 
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Figure 3. 8 TRNSYS model (screenshot) 

 

Based on this physical system, the TRNSYS model was built based on validated 

models (Ma 2008, Wang 1998). Six water-cooled centrifugal chillers were employed 

in the chiller plant, each of which has the capacity of 7230 kW. The rated water flow 

rates of the pumps for chilled water and cooling water circulation are 345 l/s and 410 

l/s. Eleven cooling towers were used and the rated water flow is 250 l/s. Details of 

main equipment are shown in Table 3. 2, and the model codes are shown in the 

Appendix A. The screenshot of the established TRNSYS model is shown in Figure 3. 

8. 
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Table 3. 2 Details of main components 

Equipment Number 
𝑀𝑤,𝑒𝑒  
(L/s) 

𝑀𝑤,𝑐𝑐  
(L/s) 

Capacity 
(kW) 

Rated 
power (kW) 

Water-cooled 
Chiller 

6 345.0 410.0 7230 1346 

  𝑀𝑤 (L/s) 
𝑀𝑎  
(m3/s) 

𝑄𝑟𝑟𝑟  
(kW) 

 

Cooling 
tower - type 
A 

6 250.0 157.2 5234 152 

Cooling 
tower - type 
B 

5 194.0 127.0 4061 120 

  𝑀𝑤 (L/s) Head (m) 
Efficiency 
(%) 

 

Condenser 
water pump 

6 410.0 41.6 83.6 202 

Primary 
chilled-water 
pump 

6 345 31.6 84.5 126 

Secondary 
chilled-water 
pump 

6 345 30.3 84.2 122 

 

3.4.3 Fundamental local-loop controls 

To guarantee a proper system operation, several fundamental controls are necessary 

(Sun et al. 2013b) and are briefly explained as follows.  

  

Sequencing control of chillers: this is to stage on or off chillers based on a given load 

condition. Here, a total-cooling-load-based sequencing control method is adopted. 
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This method estimates the cooling load Qch by Eqn. (3. 1) and compares Qch with 

predefined thresholds Qz
on/off to decide to switch on or off chillers. Normally, a dead 

band should be adopted to avoid frequent switch triggering when the load fluctuates 

within a narrow interval (Sun, Wang & Xiao 2013). The switch-on/off thresholds are 

calculated by Eqns. (3. 2) and (3. 3); a chiller and its corresponding pump(s) will be 

staged on when the instantaneous cooling load is greater than the threshold value for a 

certain time period; a chiller and its corresponding pump(s) will be staged off when 

the instantaneous cooling load is lower than the threshold value for a certain time 

period (Liao et al. 2014).  

 

( )sup,, chwrtnchwwpch TTmcQ −=  (3. 1) 

( )banddeadQzQ rated
on
z _1+××=  (3. 2) 

( ) ( )banddeadQzQ rated
off
z _11 −××−=  (3. 3) 

 

where 𝑐𝑝 is the water specify heat; 𝑚𝑤 is the mass flow rate of water; Tchw,rtn and 

Tchw,sup are the chilled water return temperature and chilled water supply temperature; 

𝑄𝑧𝑜𝑜 is the switch-on threshold; 𝑄𝑧
𝑜𝑜𝑜 is the switch-off threshold; z is the number of 

chillers in operation; Qrated is the nominal cooling capacity of one chiller (here, each 
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chiller has the same rated cooling capacity); and dead_band is the dead band which is 

a user-defined value between 0 and 1.  

 

Sequencing control of cooling towers: this is to determine the on or off switch of 

towers according to the heat amount that needs to be rejected. In practice, the 

operating cooling towers number Nct is always coupled with the operating chillers as 

shown in Eqn. (3. 4), where k is a coefficient that normally depends on the chiller 

plant configuration.  

 

chct kNN =  (3. 4) 

 

Controls of critical temperatures: Four critical temperatures are always under 

feedback control, including supply cooling water temperature, supply chilled water 

from chillers, supply chilled water from the heat exchangers and supply air 

temperature. The supply air temperature is maintained through modulating the water 

flow rate inside the AHUs. The supply cooling water temperature is controlled by 

changing the cooling tower fan frequency; the supply chilled water temperature from 

the chiller(s) is maintained by changing the refrigerant flow rate; the supply chilled 
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water temperature from the heat exchanger(s) is controlled through modulating the 

water pump speed.  

 

In these local control loops, several PI/PID controllers were used to track the 

set-points. A PID controller continuously computes an error signal e(t) as the 

difference between a desired value and a measured value variable, and applies a 

correction based on proportional, integral, and derivative terms; a PI controller uses 

the same principle but only has proportional and integral terms. The PI controller with 

the parameters P = -0.95 and I = 35s was used to control the fan speed of cooling 

towers so as to track the CWS temperature set-points. For the SCHW temperature 

from heat exchangers, the PID controller with the parameters P = -0.9, I = 10s and D 

= 5s was adopted to control the pump speed. An additional PI controller with the 

parameters P = -0.3 and I = 2s was employed to track SA temperature. Controller 

parameters were kept constant under different optimization mechanisms and the 

trial-and-error method was used in controller tuning.  

 

3.5 Optimization Problem Formulation 

The optimization problem is formulated in this section, which specifies the objective 

function, operational constrains and solution algorithm. This problem formulation was 

used in all the case studies of this thesis.   
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3.5.1 Problem formulation 

Optimal control in HVAC area basically includes static and dynamic optimizations, 

which depends on the problem type and are significantly different (Wang, Ma 2008). 

Static optimization solves the optimization problem at a given time instant, while 

dynamic optimization considers the future system state and addresses the problem 

over a time period (ASHRAE 2015). Regarding our case building, we consider the 

static optimization (without the prediction for system future states) and this 

simplification is also adopted by ASHRAE handbook (ASHRAE 2015) when the 

system does not contain significant thermal storage. As a result, cost optimization will 

be equivalent to minimization of power at each time instance.  

 

( )UTTTTfPPPPP saschwprmschwscwtotfantotpumptotcttotchtotsys ,,,, sec,,,,,,, =+++=  (3. 5) 

( )
saschwprmschwscw TTTT

totsyssaschwprmschwscw PTTTT
,,,

,
**

sec,
*

,
*

sec,,

minarg,,, =  (3. 6) 

 

Therefore, the static form of the cost function (Eqn. (3. 5)) is represented as the sum 

of the total power requirement of chillers, cooling towers, pumps and fans, which can 

be written as a function of controlled and uncontrolled variables. The controlled 

variables are four temperature set-points of "𝑠𝑠𝑠", "𝑠𝑠ℎ𝑤" at primary and secondary 

sides, and "𝑠𝑠", which are continuous. The uncontrolled variables are written as "𝑈" 
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which is a vector containing parameters like outdoor dry-bulb temperature. In 

summary, this is a model-based static optimal control problem for the typical 

all-electric HVAC system without significant thermal storage.  

 

Different set-point combinations can satisfy a given cooling output requirement, while 

only one set of combination could lead to the minimal energy consumption. 

Trade-offs are made by solving Eqn.(3. 6), which outputs the optimal settings. Besides, 

the controlled variables may have lower and upper limits in real operations, which 

will be treated as operational constraints (shown in Eqn. (3. 7)-(3. 10)). The 

temperature set-point change of each updating is also limited (Eqn. (3. 11)) to avoid 

potential instability issues (Asad, Yuen & Huang 2016, Asad, Yuen & Huang 2017, 

Sun et al. 2013b). Meanwhile, the minimal sampling time interval (Eqn. (3. 12)) for 

resetting is applied since the ASHRAE handbook (ASHRAE 2015) recommends that 

it should be greater than the settling time for the control loops. The values of these 

constraints are presented in Section 4.4.2.  

                              

upperscwscwlowerscw TTT ,, ≤≤  (3. 7) 

upperprmschwprmschwlowerprmschw TTT ,,,,, ≤≤  (3. 8) 

upperschwschwlowerschw TTT sec,,sec,sec,, ≤≤  (3. 9) 
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uppersasalowersa TTT ,, ≤≤  (3. 10) 

changestepkk TTT ∆≤−+1  (3. 11) 

min1 STii ≥−+ ττ  (3. 12) 

 

3.5.2 Operational constrains and solution algorithm 

Table 3. 3 shows the values of operational constraints (presented in Eqn. (3. 7(3. 10)) 

which are based on the previous study (Wang et al. 2016). All the three cases have the 

same setting except the set-point for the supply cooling water temperature. 

 

For the search ranges of supply cooling water temperature, further explanations are 

given as follow. The lower bound is calculated by applying a constant approach (i.e. 

2°C). “Approach” in cooling tower operation means the temperature difference 

between condenser water supply and the ambient wet-bulb temperature. Normally, 

2.8°C is the minimal approach that cooling tower manufacturers will guarantee 

(Cooling Technology Institute 2016). Here, we use approach of 2°C to set the lower 

bound. Since 4°C is used as the approach in common cooling tower design (ASHRAE 

2015), we use a higher approach of 9°C to set the upper bound in order to include all 

the possible temperature. Please refer to Table 3. 4 for the detailed calculation.   
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Table 3. 3 Operational constraints of the case system 

Name 
Value 
Spring  
scenario 

Summer 
scenario 

Autumn 
scenario 

],[ ,, upperscwlowerscw TT  [20, 28] ˚C [28, 35] ˚C [24, 30] ˚C 
],[ ,,,, upperprmschwlowerprmschw TT  [5, 8] ˚C 

],[ sec,,sec,, upperschwlowerschw TT  [6.5, 11.5] ˚C 
],[ ,, uppersalowersa TT  [12, 18] ˚C 

changestepT∆  0.5 ˚C 
minST  5 minutes 

 

Table 3. 4 Search ranges for the set-point of cooling water supply temperature 

Case 𝑻𝒘𝒘,𝒎𝒎𝒎𝒎(°C) 𝑻𝒘𝒘,𝒎𝒎𝒎𝒎 + 𝟐(°C) 𝑻𝒘𝒘,𝒎𝒎𝒎𝒎 + 𝟗(°C) Search range 

Spring 18.40 20.40 27.40 [20, 28] 

Summer 26.36 28.36 35.36 [28, 35] 

Autumn 21.33 23.33 30.33 [24, 30] 

(Search range uses integers for the sake of convenience.) 

 

The solution algorithm is not the main focus of this thesis, and an exhaustive search is 

used because of its simplicity and suitability. Here, the search space is already 

optimized according to the real operation. We restrict the set-point change every time 

and use a coarse step change (i.e. 0.1 °C) for searching, which reduces the search 

space to the size of 104. If we refine the step change to 0.01 °C, the search space will 

be extremely large (go to 5004 ), which would make the search process to be 



58 
 

time-consuming. Since “0.1 °C” is accurate enough in commercial HVAC systems 

and was also adopted by several previous studies (Wang et al. 2016, Ma, Wang 2009), 

it is used in this thesis.   

 

3.6 Performance Indices 

In order to evaluate the performance of different optimal control strategies, 

performance indices were defined based on the objective. As the main goal of using 

EDO is to achieve a better balance between energy and computational performances, 

the energy saving and computation saving percentages (ES% and CS%) are 

considered as the performance indices which are shown in Eqn. (3. 13) and (3. 14).  

 

BCBC ECECECES )(%100% −×=  (3. 13) 

BCBC CCCCCCCS )(%100% −×=  (3. 14) 

 

To select a suitable optimal control strategy, the user needs to consider both energy 

and computational performances, and make a trade-off. Basically, this is a 

multi-criterion decision-making problem, and many existing methods can be used 

(Fülöp 2005). Here, a simple multi-attribute rating technique (SMART) is used to 

compute the “performance score” since it can complete the searching through one 
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comparison based on a linear additive model (Huang, Huang & Wang 2015). As 

shown in Eqn. (3. 15), performance score is defined as a weighted sum of scores of 

energy consumption and computation consumption. 

 

CCEC scorebscoreaPS ×+×=  (3. 15) 

BCeiEC ESESscore %%=  (3. 16) 

eiCC CSscore %=  (3. 17) 

 

Where, 𝑎 and 𝑏 are the weighting factors, 𝑒𝑒 is the event 𝑖, 𝐵𝐵 is the benchmark 

case for evaluations. The user can choose the weighting factors based on their 

preferences, experience or requirements. In this thesis, "𝑎 = 1" and "𝑏 = 0.5" were 

used as weighting factors in Eqn. (3. 15) simply because our priority was given to the 

energy performance while computation efficiency was considered as less important.   

 

3.7 Summary 

To facilitate the event-driven strategy for RTO in HVAC systems, this chapter 

established an EDO framework which contains the control diagram and fundamental 

terms of events.  Events are formally defined and event attributes are synthesized for 

HVAC systems. In order to evaluate the optimization performance of the EDO 



60 
 

strategy, a co-simulation platform between TRNSYS and MATLAB is constructed. 

The virtual HVAC system is built based on a supertall commercial building in Hong 

Kong. The optimization problem is also formulated accordingly. Besides, 

performance indices are defined for evaluating the performances of optimal control 

strategies. In the following studies, the optimal control strategies will be tested and 

evaluated based on this simulation platform according to those defined performance 

indices.   
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CHAPTER 4. METHODOLOGY OF EVENT SPACE 
ESTABLISHMENT 

 

Section 4.1 briefly discusses the general procedure for designing the EDO strategy 

(presented in Section 3.1). The main tasks are to design the event space, policy and 

action space to form the {event, policy, action} structure. Special attention is paid to 

the event space since “event” determines the optimization performance of the EDO. 

Section 4.2 discusses the event space establishment, where the general 

decision-making process, overall methodology and the basic event selection criterion 

are introduced.  

 

4.1 EDO Design Procedure 

The general design procedure for EDO is illustrated in Figure 4. 1 and briefly 

described as bellows. 

 

Step 1: Specify optimization objectives. Typical optimization objectives in HVAC 

systems are minimization of the operational cost, maximization of the energy 

efficiency and thermal comfort. Events and actions should be defined accordingly so 

as to achieve the goal.   
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Step 2: Event space establishment refers to the task of finding suitable events to form 

the event space. Since an event is a set of state transitions, important state variables 

should be identified regarding the optimization objective. As there could be numerous 

possible events in a complex system (such as the HVAC system), effective methods 

should be developed to identify the most important one.  

 

 

Figure 4. 1 EDO design procedure 

 

Step 3: Establish action space. Here the “action” refers to optimization action only. 

Action implies which system(s) and which decision variable(s) to be optimized. For 

instance, optimizing the supply air temperature of an air-handling unit can be used as 

an “action”.    
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Step 4: Formulate EDO policy. EDO policy formulation refers to the establishment of 

the mapping between the events (in the event space, 𝐸𝑠𝑠𝑠𝑠𝑠) and the actions (in the 

action space, 𝐴𝑠𝑠𝑠𝑠𝑠), which is used to supervise the system on what to do when an 

event occurs.  

 

Step 5: Validate the EDO design. This is to test and validate the EDO design, where 

simulations or experiments can be used. Performance indices (Section 3.6) like energy 

saving or computation saving can be used to evaluate the corresponding performance 

using the formulated EDO policy. This step is also necessary for further refinement of 

the established event space, action space, and policies, when several design options 

are available.  

 

It should be noted that the above steps constitute a complete design procedure; while 

this thesis mainly focuses on the establishment of the event space. The reason is that 

events dominate the proposed EDO strategy since “event” determines when to trigger 

the optimization and which action to be taken. To simplify the EDO design problem, 

the default “action” is used, i.e. optimizing all the decision variables when events 

happen, which is also used in traditional TDO schemes. Since there is only one action, 
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the mapping becomes simple, i.e. each event in the 𝐸𝑠𝑠𝑠𝑠𝑠 will trigger the default 

action.  

 

4.2 Event Space Establishment 

The main task of the event space establishment is to find suitable events to form the 

event space. Efforts should be made to appropriately identify the possible state 

transitions and define the events, which could be a gargantuan job in many complex 

systems (such as the HVAC system). Thus, this section develops the general process, 

methodology and criterion for the event space establishment. 

 

4.2.1 General process of event space establishment 

Events may originate from different sources, and there are three main event sources 

(Figure 4. 2) in HVAC systems. To facilitate the task of event space establishment, 

three main event sources are briefly discussed as follows.  

 

 Environment: refers to both the indoor and outdoor environmental changes, such as 

changes in the temperature and humidity of a room or outdoor weather.  

 

 System: refers to changes in both the hardware and software sides of a system, 
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such as equipment faults (hardware) and operation mode switching (software). 

Besides, system operational constraints can also be regarded (and easily formulated) 

as events so as to utilize the EDO framework. For instance, the water level in a 

tank cannot be above or below a certain level, and the time interval between two 

actions cannot be lower than a certain threshold, etc.   

 

 Human: refers to the changes associated with human, such as occupancy changes, 

occupants’ access to controls (e.g. to change a room temperature set-point) and 

building operators’ manipulations. 

 

 

Figure 4. 2 Event sources in HVAC systems 

 

By definition, an event is a set of state transitions (see Section 3.3.1). While state 

transitions are numerous in a system, only those “state transitions” which could cause 

a significant influence on the specific objectives (such as energy efficiency) will be 
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selected and defined as events. Here, “deciding which state transition should be used 

and defined as an event” is basically a decision-making problem. The general flow 

chart of solving this decision-making problem is summarized in Figure 4. 3.  

 

 

Figure 4. 3 General flow chart of event space establishment 

(“opt. = “optimization”) 
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Step 1 is to produce as many alternative options as possible based on the decision 

criteria without evaluating them. A decision criterion is usually derived from the 

optimization objective(s), which could be the maximization (such as efficiency) or 

minimization (such as cost).  

 

Step 2 is to perform the coarse evaluation for the possible alternative options. For 

instance, practical and impractical solutions can be differentiated. 

 

Step 3 is to screen out obviously bad choices since too many options in the list will be 

too confusing. As a result, the options (or events) in the list form a candidate event 

space that is subject to further refinement.  

 

Step 4 is to evaluate the option regarding each key decision criteria.  

 

Step 5 is to make the decision on which event(s) to be selected based on the detailed 

evaluation.  

 

Step 6 is to implement and validate the decision, where experiments or simulation can 

be used. The step 5 and step 6 will be iterated until the performance is satisfactory.  
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4.2.2 Overview of the methodology for event space establishment 

The overall methodology for event space establishment is developed based on Figure 

4. 3, which is divided into three steps (Figure 4. 4). Step 1 is state transition 

identification that is used to identify possible critical state transitions. Step 2 is to 

define the candidate event space. Firstly, based on the identified state transition space, 

event attributes will be extracted and expressed in mathematical forms. Then, event 

thresholds will be specified for continuous state variables. Step 3 is to optimize the 

candidate event space by event performance analysis and event redundancy analysis. 

Details of each step are presented as follows.  

 

• Step 1. State transition identification 

Based on the measurability of the optimization objective or availability of the explicit 

model of the optimization objective, the methods for state transition identification can 

be divided into indirect and direct methods. For direct method, the direct emulation 

(Miskowicz, Lunze 2015) of the optimization objective (assume the SCOP (Yao et al. 

2004) is the optimization objective) is adopted using the SCOP-deviation-based 

method, which is discussed in Chapter 7. For indirect methods, knowledge-based and 

data-based methods are developed to find important state transitions when the model 
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of the optimization objective is not available or the optimization objective cannot be 

measured directly. The methods are demonstrated by case studies in Chapter 5 and 6 

respectively.  

 

For the direct method, since the direct method emulates the optimization objective, 

the identified state transition is just the state of the optimization objective. 

 

For the indirect method, the diagram (Figure 4. 4) is explained as follows. 

 Generate candidate state transition space: this step aims to generate a 

comprehensive state transition space that contains the influencing factors of the 

optimization objective. No evaluation about the optimization performance is 

required at this step. 

 

 Estimate optimization reward: this is to evaluate the optimization reward of 

candidate state transitions coarsely. For the indirect method, the 

knowledge-based and data-based method can be used.  
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Figure 4. 4 Diagram of the methodology for event space establishment 
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 Discard insignificant state transitions: some bad or impractical candidates will be 

excluded because otherwise, it would be time-consuming and inefficient to 

perform detailed evaluations on all the state transitions.   

 

• Step 2. Event definition 

 Event attributes extraction: three event attributes (i.e. timestamp, state variable 

and threshold) will be extracted from the identified state transition space. The 

attribute types will be specified in order to facilitate the event definition.  

 

 Mathematical representations for events: based on the event attributes, the state 

transitions are represented by mathematical expressions that the machine can 

process. 

 

 Event threshold specification: for continuous state variables, the event threshold 

needs to be specified so as to quantify the state transition.  

 

• Step 3. Event space optimization 

 Event performance analysis: this refers to the analysis of event performance in 
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terms of key indices, i.e. energy performance, computational performance and 

performance score (see Section 3.6). Please note the performance is evaluated 

and analyzed on a single-event basis. When necessary, the event threshold can 

also be optimized by selecting the best value based on the optimization 

performance. 

 

 Event redundancy analysis: this is to prevent the event overlap in the same event 

source since it is unnecessary to repeat the optimization action for the similar 

state transitions.   

 

 Event selection: based on the event performance analysis and event redundancy 

analysis, suitable events can be selected from the candidate event space. 

 

The final step is to validate the EDO design which consists of the established event 

space, action space and policy. As discussed in Section 4.1, this step is just the step 5 

in Figure 4. 1. Please note that the performance is evaluated on a multiple-event basis 

because the established event space normally contains multiple events. In fact, we 

cannot expect that a single event can reflect all the critical changes in a complex and 

dynamic operational environment as changes are diverse and numerous. Therefore, 
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(when applicable) multiple events will be used to formulate the EDO policy so as to 

capture the critical operational change as much as possible.  

 

4.2.3 Criteria for state transition identification: optimization reward 

In Step 1 of the diagram of the event space establishment (Figure 4. 4), the most 

crucial step is to select important state transitions. Following criteria are developed 

regarding the evaluation and comparison of different state transition candidates.  

 

• If the optimization reward associated with the state transition is “significant”, then 

we will select it; 

• If the optimization reward associated with the state transition is “small”, then we 

will not select it.  

(Please note: as each state transition will be defined as events and used to trigger the 

action of optimization, a “state transition” can be considered as an “action”, i.e. 

triggering the optimization.) 
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Figure 4. 5 Illustration of optimization reward 

 

An Illustration of the optimization reward is shown in Figure 4. 5 to explain the idea. 

To proceed, suppose (i) the “operation efficiency” (i.e. SCOP) is the optimization 

objective; (ii) there are n decision variables for a decision variable vector 

nvvV ,,1 = ; (iii) there are m state variables mssS ,,1 = ; (iv) at time k, the optimal 

decision variable vector is knkk vvV ,,1 ,,= , and system state is kmkk ssS ,,1 ,,= ;( v) 

time k-1 is the previous optimization time instance.  

 

Typically, we have the following observations in a system operation:  

(1) If the system state remains the same at time k-1 and k (case a of Figure 4. 5), the 

optimal decision variable vector 𝑉𝑘 should be the same with the previous step 𝑉𝑘−1 

and SCOP stays at the same level;  
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(2) When the system state varies (case b of Figure 4. 5), if still using the previous 

settings 𝑉𝑘−1 at time k, the 𝑆𝑆𝑆𝑆𝑘
𝑉𝑘−1 (SCOP at time 𝑘 using 𝑉𝑘−1) would not be 

optimal since 𝑉𝑘−1 is no long optimal for 𝑆𝑘.  

 

By optimizing the decision variable vector from 𝑉𝑘−1 to 𝑉𝑘, the SCOP would be 

improved. The performance gap between 𝑆𝑆𝑆𝑆𝑘
𝑉𝑘  and 𝑆𝑆𝑆𝑆𝑘

𝑉𝑘−1  is called 

optimization reward (shown in Figure 4. 5). This optimization reward will be used as 

the basic criteria to establish the event space.  

 

4.3 Summary 

This chapter develops a design approach for the EDO in order to ensure that the EDO 

can achieve satisfactory optimization performance. A five-step design procedure is 

introduced for building the {event, policy, action} structure. Considering the possible 

events (or state transitions) could be numerous in a system, a general decision making 

flow chart is given to establish the event space. A more specific methodology for 

event space establishment is developed, which contain three steps, namely, state 

transition identification, event definition and event space optimization. Both direct 

and indirect methods are suggested to identify important state transitions, which will 
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be discussed and demonstrated by the case studies in Chapter 5, 6 and 7. At last, the 

idea of the optimization reward is illustrated, which will be used as the basic criterion 

for the event space establishment.  
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CHAPTER 5. KNOWLEDGE-BASED METHOD FOR EVENT 

SPACE ESTABLISHMENT 

 

This chapter presents the knowledge-based method for event space establishment. 

Firstly, the literature is extensively visited in Section 5.1 to find critical events. For 

continues state variables, since different threshold values may lead to different 

optimization performance, an algorithm for event threshold selection is proposed in 

Section 5.2. Section 5.3 introduces the case study setup. The extracted event attributes, 

mathematical representations and results are presented in Section 5.4. Finally, 

findings are summarized in Section 5.5. 

 

5.1 Knowledge-based Method for State Transition Identification 

As the event space establishment contains three steps (shown in Figure 4.4 of Chapter 

4), this section will introduce the specific algorithm for state transition identification 

(i.e. Step 1 in Figure 4.4). In the field of HVAC optimal control, numerous knowledge 

or experiences have been accumulated. These knowledge are used as the data input to 

the algorithm of the knowledge-based method for the state transition identification 

(Figure 5. 1). The identified state transition space will then be used as the input for 

event definition and event space optimization (i.e. Step 2 and 3 in Figure 4.4).  
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In Figure 5. 1, firstly, the engineering handbooks or design guide books are used as 

the knowledge base to enumerate the possible state transitions, such as the ASHRAE 

handbook and CIBSE Guide.  

 

After the candidate state transition space (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑆𝑆𝑠𝑠𝑠𝑠𝑠 ) is formed, the 

optimization reward associated with each state transition is estimated based on 

literature review. The literature, like academic papers, technical reports, patents, 

theses and books, can be used.  

 

Then, a judgment regarding the associated optimization reward is performed. If the 

optimization reward estimation is “significant”, the state transition will be included in 

a list; otherwise, it will be discarded. This process is iterated until the entire candidate 

state transition space is visited. Finally, the algorithm outputs the identified state 

transition space (𝑆𝑆𝑠𝑠𝑠𝑠𝑠).  

 

For instance, the literature states variable “A” is more important than variable “B” in 

terms of optimization. Then, the important state transitions can be identified. Please 

note that this estimation of the optimization reward is qualitative. 
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Figure 5. 1 Algorithm of knowledge-based method for state transition identification 

(ST = state transition.) 

 

5.2 Algorithm for Event Threshold Selection  

The event threshold needs to be specified for events represented by continuous state 

variables. Since different event thresholds may lead to different optimization 

performances, a simple algorithm (Figure 5. 2) is developed and suggested to specify 
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the suitable event threshold based on simulations. Explanations of each step are given 

as follows.  

 

• Step 1: input an event for which threshold is not quantified.  

  

• Step 2, base case: set a base case threshold (𝜎𝐵𝐵). Rational analyses, such as design 

guides and manufactures’ catalogs, can be used to find a suitable base case 

threshold.    

 

• Step 3, design space: the 𝜎𝐵𝐵 is then used as the design space center, and a certain 

perturbation (𝛿) is applied to this center.  

 

• Step 4, performance evaluation: the optimization performance of events will be 

quantified by energy saving, computation saving and performance score (see 

Section 3.6) in this study. 

 

• Step 5, output event threshold: based on the event performance evaluation, a 

suitable threshold can be selected, i.e. the threshold with highest performance score 

in the design space will be selected. Then, the algorithm will go to next event to 

conduct performance evaluation until all the events in 𝐸𝑠𝑠𝑠𝑠𝑠 are visited. 
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Figure 5. 2 Algorithm for event threshold selection 

 

5.3 Case Study: State Transition Identification and Data Preparation  

5.3.1 State transition identification 

Possible state transitions can be found in chapter 42 of ASHRAE handbook-HVAC 

applications, including state variables like PLR, equipment operating status and 

number, temperature, humidity, water flow rate, air flow rate, frequency of VFDs 

(variable-frequency drive), opening percentage of valves or dampers, occupants’ 

thermal and air quality requirements, etc. There are many options in the HVAC 

systems. Since not every state transition is suitable to be used as the event, simple 

evaluations were performed based on the literature review regarding the optimization 
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rewards. Using the knowledge-based method, five critical state transitions acquired 

from the literature are listed in Table 5. 1. 

 

Table 5. 1 List of critical state transitions for HVAC optimal control from literature  

Descriptions of state transitions References 

Part-load-ratio change (ASHRAE 2015, Yu, Chan 2010, Yu, Chan 2008, Ahn, 

Mitchell 2001, Sun, Reddy 2005, Abou-Ziyan, Alajmi 

2014) 

Chiller sequence change (Huang, Zuo & Sohn 2016, Ma 2008) 

Ambient wet-bulb temperature 

change 

(Huang, Zuo & Sohn 2017, Yao et al. 2004, Ahn, 

Mitchell 2001, Sun, Reddy 2005, Lam, Wan & Cheung 

2009) 

Cooling tower approach 

temperature 

(difference between cooling tower 

outlet temperature and entering 

wet-bulb temperature) 

(Chang et al. 2015, ASHRAE 2015) 

The average enthalpy difference 

between the specific saturated (at 

inlet and outlet cooling water 

temperature) and bulk air 

(Chang et al. 2015, ASHRAE 2015) 

 

I. Part-load-ratio change: when the PLR changes by a significant amount since the 

last optimization, an action should be taken to optimize the control settings since 
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previous settings may not be optimal.  

 

II. Chiller sequence change: when a chiller is switched on or off, the load 

distribution among chillers will have a sudden change, and thus an optimization 

is needed.  

 

III. Ambient wet-bulb temperature change, cooling tower approach temperature, and 

average enthalpy difference basically all reflect the efficiency of heat rejection 

process in cooling towers (Chang et al. 2015), thus they can be used as the 

optimization indicators.  

 

5.3.2 Data preparation 

Table 5. 2 Load and weather data (in the year of 2013) 

Case Date Load (kW) Tdb  (˚C ) Twb  (˚C) 

mean max min mean max min mean max min 

Autumn Oct-21 10629 15675 3623 24.8 27.3 22.9 21.5 22.5 19.5 

Summer Aug-27 14971 23416 3586 29.3 32.6 27.0 26.4 28.3 25.4 

Spring Apr-9 6466 10163 3351 19.4 21.1 18.5 18.8 20.2 17.6 

 

The identified candidate state transition space will be used to form the event space. 

The event space will be tested on three typical load profiles measured from the real 
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building to evaluate the optimization performance. Load and weather data are shown 

in Table 5. 2, and their profiles are shown in Figure 5. 3-Figure 5. 5.  

 

 

Figure 5. 3 Autumn load and weather profile (Oct-21) 

 

 

Figure 5. 4 Summer load and weather profile (Aug-27) 
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Figure 5. 5 Spring load and weather profile (Apr-9) 

 

5.4 Case Study: Event Space Optimization and Validation 

5.4.1 Event attributes extraction and mathematical representations 

By abstraction, three basic event attributes of the discovered critical state transitions 

(Table 5. 1) are extracted in Table 5. 3. Timestamps of all the events belong to the 

type of instant. Except the “Chiller On/Off” uses discrete state variable, all the others 

use the continuous state variable and require threshold values to further quantify the 

state transitions. The events "𝑇𝑎𝑎𝑎" and "∆ℎ" use the absolute-type threshold, while 

the others adopt the delta-type threshold.  

 

Based on the types of extracted event attributes, the state transitions listed in Table 5. 

1 are mathematically represented as events (Table 5. 4), and are explained as follows. 
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Table 5. 3 Types of extracted event attributes 

State variable State variable type Timestamp type Threshold type 

PLR continuous instant delta 

Chiller operating status discrete instant delta 

𝑇𝑤𝑤 continuous instant delta 

𝑇𝑎𝑎𝑎 continuous instant absolute 

∆ℎ continuous instant absolute 

 

Table 5. 4 Mathematical representations of events  

Event name  Definition 

PLR Change 𝑒𝑃𝑃𝑃 𝐶ℎ𝑎𝑎𝑎𝑎: = {< 𝑋𝜏𝑖 ,𝑋𝜏𝑗 > | |𝑃𝑃𝑃𝜏𝑖 − 𝑃𝑃𝑃𝜏𝑗| ≥ 𝜎𝑃𝑃𝑃 𝐶ℎ𝑎𝑎𝑎𝑎} 

Ch. On/Off 𝑒𝐶ℎ.  𝑂𝑂/𝑂𝑂𝑂: = {< 𝑋𝜏𝑖 ,𝑋𝜏𝑗 > | |𝑁𝑁𝑁𝜏𝑖
𝐶𝐶 − 𝑁𝑁𝑁𝜏𝑗

𝐶𝐶| > 0} 

Twb Change 𝑒𝑇𝑤𝑤 𝐶ℎ𝑎𝑎𝑎𝑎: = {< 𝑋𝜏𝑖 ,𝑋𝜏𝑗 > |  |𝑇𝜏𝑖
𝑤𝑤 − 𝑇𝜏𝑗

𝑤𝑤| ≥ 𝜎𝑇𝑤𝑤 𝐶ℎ𝑎𝑎𝑎𝑎} 

Tapr 𝑒𝑇apr: = {< 𝑋𝜏𝑖 ,𝑋𝜏𝑗 > | 𝑇𝜏𝑖
apr ≥ 𝜎𝑇apr  ,𝑇𝜏𝑗

apr < 𝜎𝑇apr} 

∆h 𝑒∆ℎ: = {< 𝑋𝜏𝑖 ,𝑋𝜏𝑗 > | ∆ℎ𝜏𝑖 ≥ 𝜎∆ℎ ,∆ℎ𝜏𝑗 < 𝜎∆ℎ } 

(Note: 𝜏𝑗 is the current decision time instant and 𝜏𝑖 is the previous decision time instant.) 

 

• “PLR Change” is the PLR difference between the current and previous time 

instants; when the PLR difference is larger than a threshold, the event will be 

recognized.  

• “Ch. On/Off” stands for the change of chiller operating status; when the chiller(s) 

is/are turned on or off, the event will be recognized.  
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• “Twb Change” is the Twb difference between the current and previous time 

instants; when the Twb difference is larger than a threshold, the event will be 

recognized. 

• “Tapr” will be recognized when the approach temperature is lower than a 

threshold.  

• “∆h” will be recognized when the average enthalpy difference between the 

cooling tower and bulk air is lower than a threshold. 

(Please note that "𝑇𝑎𝑎𝑎" and "∆ℎ" both represent the natural driving force of heat 

rejection process in cooling towers, and a large value is preferable.) 

 

5.4.2 Design space for event threshold selection 

To make the performance comparison and optimize the event threshold, each event 

was assigned with seven candidate thresholds within the corresponding threshold 

design space. The threshold design space was decided according to the normal range 

of the variable or engineering design handbook. It was discretized by a step change of 

10% of “𝜎𝐵𝐵”, and thus the threshold design space is “[70% ∗ 𝜎𝐵𝐵 , 130% ∗ 𝜎𝐵𝐵]”.  

 

For the event “Twb Change”, due to the coarse resolution of wet-bulb temperature 

data, the step change can only be 0.1 °C instead of 10% of “𝜎𝐵𝐵”. This results in a 
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slightly different set-up, but it is still acceptable since it would not affect the general 

pattern of the results. In Table 5. 5, the base case values, design space as well as the 

lower and upper bounds (if available) of four events are presented. Based on the 

“Cooling Technology Institute” - CTI STD-201 (Cooling Technology Institute 2016), 

2.8 ºC was selected as the lower bound of the approach temperature (Tapr).  

 

Table 5. 5 Design space for event threshold selection 

Parameter 
Lower 

bound 

Upper 

bound 

Base 

case 

Design 

space 
Base case calculation 

PLR change (%) / / 10 [7, 13] Recommended by 

(ASHRAE 2015) 

Twb change (ºC) 0.1 2.2 0.4 [0.1,0.7] 0.4 = 0.1 + 0.1 ∗ 3 

Tapr (ºC) 2.8 6.8 4.0 [2.8, 5.2] 4.0 = 2.8 70%⁄  

∆h (kJ/kg) 23* / 33 [24, 42] 33 ≈ 23 70%⁄  

*: see “Appendix C” for the calculation details. 

 

With these threshold values specified, the Step 2 (see Figure 4.4) was completed and 

the candidate event space was established. The candidate event space was input to the 

step 3 (see Figure 4.4), in which the algorithm of event threshold selection (Figure 5. 

2) was executed.  
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5.4.3 Energy and computational performance analyses 

To evaluate the optimization performances of events from Table 5. 4, three typical 

operation scenarios were simulated, namely autumn, summer and spring cases. The 

average energy and computational performances (averaged over seven candidate 

threshold values) of different events are listed in Table 5. 6- 

Op. methods 
EC 
(Kwh) 

ES Op. times CT(s) CS 
Event 
threshold 

No Op.  197663 N/A 0 N/A N/A 

 15 mins 177456 10.22% 96 138.9 0.00% 

 Ch. On/Off 182030 7.91% 3 1.83 98.68%  

PLR Change  177603 10.15% 33.0 55.0 60.38% 7%-13% 
STD   0.60%   7.12%  

Twb Change  182153 7.85% 7.6 11.6 91.62% 0.1-0.7 ºC 
STD  0.85%   10.22%  
Tapr  180031 8.92% 50.3 58.9 57.58% 2.8-5.2 ºC 
STD  1.00%   37.93%  

∆h  178231 9.83% 50.3 68.6 50.64% 24-42kJ/kg 
STD  1.02%   33.58%  

 

Table 5. 8, while the detailed data is presented in Appendix D. Please note that the 

energy saving is computed based on the “No Op.” case (no optimization is performed), 

and the computation saving is calculated based on the case “15 mins” (i.e. one 

optimization per 15 minutes).  

 

Regarding the energy performance, “PLR Change” has the highest saving in autumn 

and summer cases, while “∆h” achieves the highest in spring case. The reason may be 
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due to the high relative humidity (RH) in spring case (i.e. RH is 94.6%), which makes 

the “∆h” more important since the heat rejection process in cooling towers becomes 

critical in terms of the operating efficiency. (The RH in autumn and summer cases are 

75% and 79.8%.)  

 

Figure 5. 6 Threshold values vs. energy savings (summer case) 

(Data is shown in Appendix D.) 

 

In terms of STDs of the energy saving, “PLR Change” has the lowest value, which 

shows good robustness under different event threshold values. In order to investigate 

the relationship between energy savings and event threshold values, the summer case 

is plotted in Figure 5. 6. Except “Twb Change”, all the events do not have a clearly 

linear relationship with the event threshold, which makes it hard to decide the 
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threshold. For “Twb Change”, since the step change is larger (more than 10% of the 

base case), the relationship pattern appears to be linear. Another observation is that a 

higher optimization times (or triggering times) do not necessarily mean a higher 

energy saving. For instance, in the autumn case, “∆h” has a higher optimization times 

than “PLR change”, but the energy saving is lower. Even with the same optimization 

times, as shown by the cases of “∆h” and “Tapr” in summer case, the average energy 

saving can be quite different (the difference is 0.91%). 

 

Table 5. 6 Average energy and computational performances of different events 

(autumn case) 

Op. methods 
EC 
(Kwh) 

ES Op. times CT(s) CS 
Event 
threshold 

No Op. 132416 N/A 0 N/A N/A 
 

15 mins 120429 9.05% 96 109.8 0.00% 
 

Ch. On/Off 125437 5.27%# 4 6.69 93.91%^ 
 

PLR Change  120667 8.92% 26.0  26.6  75.80% 7%-13% 
STD  0.08%   3.19%  

Twb Change  123970 6.38% 7.6*  8.7  92.07% 0.1-0.7 ºC 
STD  1.80%   7.72%  
Tapr  121728 8.07% 9.3  11.9  89.20% 2.8-5.2 ºC 
STD  0.48%   10.16%  

∆h  120912 8.69% 42.6  43.0  60.87% 24-42kJ/kg 
STD  0.39%   42.86%  

(“Op.” = “Optimization”; “CT” = “Computation Time”; “STD” = “Sample Standard 
Deviation”)  

# Energy saving = (132416−125437)
132416

× 100% = 5.27% 

^ Computation saving = (109.8−6.69)
109.8

× 100% = 93.91% 
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* The decimal is because this is the average optimization times  

 

 

Table 5. 7 Average energy and computational performances of different events 

(summer case)  

Op. methods 
EC 
(Kwh) 

ES Op. times CT(s) CS 
Event 
threshold 

No Op.  197663 N/A 0 N/A N/A 

 15 mins 177456 10.22% 96 138.9 0.00% 

 Ch. On/Off 182030 7.91% 3 1.83 98.68%  

PLR Change  177603 10.15% 33.0 55.0 60.38% 7%-13% 
STD   0.60%   7.12%  

Twb Change  182153 7.85% 7.6 11.6 91.62% 0.1-0.7 ºC 
STD  0.85%   10.22%  
Tapr  180031 8.92% 50.3 58.9 57.58% 2.8-5.2 ºC 
STD  1.00%   37.93%  

∆h  178231 9.83% 50.3 68.6 50.64% 24-42kJ/kg 
STD  1.02%   33.58%  

 

Table 5. 8 Average energy and computational performances of different events (spring 

case)  

Op. 
methods EC (Kwh) ES Op. times CT(s) CS Event 

threshold 
No Op.  77279 N/A 0 N/A N/A 

 15 mins 73670 4.67%  96 97.6 0.00% 

 Ch. On/Off 75299 2.56% 2 3.00 96.93%  

PLR Change  74028 4.21% 16.9 17.8 79.96% 7%-13% 
STD  0.35%   8.39%  

Twb Change  74846 3.15% 5.1 6.9 92.62% 0.1-0.7 ºC 
STD  0.87%   10.60%  
Tapr  75737 2.00% 1.4 2.1 97.82% 2.8-5.2 ºC 
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STD  2.02%   3.13%  

∆h  73196 5.28% 69.6 57.6 38.63% 24-42kJ/kg 
STD  0.75%   87.35%  
 

Regarding the computational performance, except the case of “∆h” in the spring day, 

more than 50% of computation was saved, which demonstrates a great potential of 

EDO in reducing the computational load. All computation savings have a monotonic 

variation pattern with the varying threshold. This is because the times of event 

triggering is proportional to the quantity of the variations of continuous parameters. 

This is also a useful property for computation estimation when a reference case is 

available. Specifically, three cases of “∆h” achieved negative computation savings in 

autumn and spring days since too much optimization were triggered (i.e. 155, 102 and 

255 times of optimization, see Appendix D). This can be regarded as the case of 

frequent event triggering, which should be prevented by the careful threshold 

selection. For STDs of the computation saving, “PLR Change” has relatively good 

performance in three cases.  

 

5.4.4 Performance score and event redundancy analyses 

This section presents detailed analyses regarding the performance score. “ Twb 

Change”, “Tapr” and “∆h” are grouped into one event group as they indicate the 

efficiency of heat rejection process in cooling towers (Chang et al. 2015).  
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The performance scores, averages and CVs (coefficient of variation) of different 

events are shown in Table 5. 9. “1.000” was set as the benchmark performance score. 

A higher performance score means the combined energy and computational 

performance is better, while a lower CV indicates a steadier performance in terms of 

the varying thresholds. For each event, the performance was evaluated by averaging 

the performances under three operation scenarios. The event threshold with the 

highest average performance score was underlined for the easy reference, which will 

be used when that event is chosen.  

 

“PLR Change” performed the best since it has the highest averaged performance score 

(1.322) and lowest performance variance (2.3%). In the group of “Twb Change”, 

“Tapr” and “∆h”, “∆h” got the highest averaged performance score (1.268), but the 

CV is also the highest (20.5%), which means it performed the best but not very robust 

under different event threshold values. “ Twb  Change” achieved the moderate 

performance score (1.176) and CV (9.2%), while “Tapr" had the lowest performance 

score (1.138) and CV (4.3%). It should be pointed out that the low-performance 

scores in autumn and spring cases of the event “∆h” (threshold=42 kJ/kg) are partially 

due to the bad choice of the threshold, which can be prevented by careful analyses. 
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Thus, given its high-performance score, “∆h” is selected, and “Twb Change” and 

“Tapr” are discarded to avoid the potential event redundancy. In terms of seasonal 

patterns, it is observed that (except the event “∆h”) the average performance score of 

each event is low in spring case comparing with the other two cases. Moreover, the 

CVs are all very high in spring case. The possible reason is that the weather condition 

in the spring case is extreme, i.e. the outdoor condition is humid (RH is 94.6%).  

 

Table 5. 9 Performance scores of different events in three operation scenarios 

Event name Threshold Autumn Summer Spring Average 
Ch. On/Off  1.052 1.267 1.033 1.117 
PLR Change 7% 1.422  1.261  1.225  1.303  
 8% 1.342  1.259  1.317  1.306  
 9% 1.340  1.379  1.271  1.330  
 10% 1.362  1.327  1.375  1.355  
 11% 1.362  1.307  1.435  1.368 
 12% 1.365  1.248  1.242  1.285  
 13% 1.358  1.281  1.275  1.304  
Average   1.364  1.295  1.306  1.322  
CV   2.0% 3.6% 5.8% 2.3% 
Twb Change       
 0.1 ºC 1.304  1.260  1.325  1.296  
 0.2 ºC 1.342  1.294  1.360  1.332 
 0.3 ºC 1.336  1.242  1.068  1.215  
 0.4 ºC 1.199  1.203  1.052  1.151  
 0.5 ºC 1.040  1.194  1.052  1.095  
 0.6 ºC 0.967  1.194  1.052  1.071  
 0.7 ºC 0.967  1.194  1.052  1.071  
Average   1.165  1.226  1.137  1.176  
CV   14.7% 3.3% 12.4% 9.2% 
Tapr       
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 2.8 ºC 1.269  1.405  0.500  1.058  
 3.2 ºC 1.400  1.408  0.500  1.103  
 3.6 ºC 1.385  1.478  0.500  1.121  
 4 ºC 1.357  1.155  0.982  1.165  
 4.4 ºC 1.340  1.033  1.110  1.161  
 4.8 ºC 1.335  0.865  1.433  1.211 
 5.2 ºC 1.278  0.779  1.391  1.149  
Average   1.338  1.160  0.916  1.138  
CV   3.7% 24.1% 45.7% 4.3% 
∆h 24 kJ/kg 1.362  1.328  1.407  1.366  
 27 kJ/kg 1.362  1.283  1.865  1.503 
 30 kJ/kg 1.392 1.303  1.634  1.443  
 33 kJ/kg 1.383  1.321  1.630  1.445  
 36 kJ/kg 1.278  1.053  1.252  1.194  
 39 kJ/kg 1.187  1.156  1.166  1.170  
 42 kJ/kg 0.882  1.059  0.319  0.753  
Average   1.264  1.215  1.325  1.268  
CV   14.5% 10.1% 38.1% 20.5% 
(“CV” = “Coefficient of Variation”) 

 

5.4.5 Validation: optimization performance of established event space 

This section is to validate the optimization performance of the identified event space.  

Based on the performance analyses of different events presented in the previous 

sections, following event space and EDO policy are established (Figure 5. 7). Please 

note that the default action is adopted, i.e. if any of events in the event space 

happened, the action will be taken to optimize all the decision variables.  
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Figure 5. 7 EDO policy 

 

Table 5. 10 Comparison of EDO using multiple events and single event 

Op. methods ES CS PS 
Autumn case    

15mins 9.05% 0.00% 1.000 

Multiple events 9.09% 71.66% 1.363 
∆h 8.35% 88.05% 1.362 
PLR Change 8.72% 79.71% 1.362 

Summer case    

15mins 10.22% 0.00% 1.000 

Multiple events 10.39% 62.23% 1.327  
∆h 8.63% 87.76% 1.283  
PLR Change 10.02% 65.41% 1.307  

Spring case    

15mins 4.67% 0.00% 1.000 

Multiple events 6.56% 84.76% 1.829  
∆h 6.46% 96.27% 1.865  
PLR Change 4.71% 85.42% 1.435  

 (Please note: “multiple events” contains “Ch. On/Off”, “PLR Change” and “∆h”; threshold 

of “PLR Change” is 11%; threshold of “∆h” is 27 kJ/kg.)  

 

The performances of “multiple events” and single event are compared in Table 5. 10. 

It can be seen that “multiple events” achieves similar or higher performance scores 

than the single event (i.e. “PLR Change” or “∆h”). Compared with TDO benchmark 
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or single event, the energy savings of “multiple events” are higher in all the three 

cases. Another observation is that, comparing with the single event, the computational 

performance of “multiple events” is slightly deteriorated (more events trigger more 

optimizations) while the energy performance is further improved.  

 

5.4.6 Discussions 

In this section, a comprehensive evaluation of the optimization performance is 

presented for the critical events found from literature. The algorithm of event 

threshold selection is proposed. The findings are summarized as follows. 

 

• The potential advantage of EDO for reducing computation is demonstrated by the 

case study. However, the poor-selected threshold would increase the computation 

due to the frequent event triggering, which is illustrated by the autumn and spring 

cases of the event “∆h”.  

 

• Results show that the event “PLR change” has relatively good performance 

among all the five event candidates. It has relatively high energy saving and good 

robustness under different threshold values and operational scenarios. Therefore, 

“PLR change” is suggested as a general event that can be used to trigger the 
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optimization.  

 

• The performance score (combines the energy and computation performances) can 

be used as a more comprehensive index for optimization performance evaluation 

and decision making. The case study demonstrates that good events can be 

selected out with the help of performance scores.  

 

• It is found that the optimization performances of the EDO is related to the 

operation conditions. For instance, the “∆h” is more critical when the RH is high 

(e.g. more than 90%), which is demonstrated by the case of spring scenario.  

 

• The relationship between the energy saving and event threshold is no linear, 

which makes the threshold selection difficult. Extensive simulation or testing 

efforts are always required.  

 

• The assumption of “multiple events” is confirmed in the case study. It is found 

that a better performance can be obtained when more critical events are properly 

defined and used.  
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5.5 Summary 

The aim of this chapter is to demonstrate the knowledge-based method (an indirect 

method) for event space establishment. The possible state transitions are enumerated 

based on the engineering handbooks. From these state transitions, five critical ones 

are identified by the evaluations based on literature review, which are defined as 

events. An algorithm is also developed to optimize the threshold of events with 

continuous-form state variables. For each event, seven different thresholds are tested 

based on three typical load and weather profiles. The optimization performances of 

events are analyzed in a comprehensive way regarding the energy saving, 

computation saving and performance score. With the help of performance score, the 

best event and event threshold are identified in each event source. Insignificant events 

are not used to avoid potential event duplications. These identified events are then 

used to formulate the EDO policy. The result validates that the formulated EDO 

policy can effectively reduce the computational load while the energy performance is 

further improved. The possible reasons are that the EDO can reduce the optimization 

action delay and avoid unnecessary optimization actions.  

 

In summary, the results suggest that EDO might be a good alternative for the RTO of 

HVAC systems (compared with the conventional TDO) considering that the operation 
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conditions are highly stochastic. The result also suggests that a key factor to the 

success of the EDO is the selections of events and event thresholds. Unsuitable 

selections can increase the computation or deteriorate the energy efficiency. As 

different events from various event sources may be encountered in a system, 

especially when the system becomes complex and when dealing with some new 

building systems like green buildings and zero-energy buildings, the proposed 

knowledge-based method is an effective way for event space establishment. However, 

the event threshold selection in the knowledge-based method requires extensive 

efforts. Thus, next chapter will present a method to quickly find out the suitable 

threshold. 
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CHAPTER 6. DATA-BASED METHOD FOR EVENT SPACE 

ESTABLISHMENT 

 

This chapter presents the data-based method for event space establishment. Section 

6.1 firstly introduces the algorithm used to identify state transitions, the optimization 

reward estimator and the random forest algorithm for variable importance evaluation. 

Then, a simple method to compute the suitable event threshold based on the Euclidean 

distance of decision variable vectors is proposed in Section 6.2. After that, Section 6.3 

and 6.4 presents a case study to demonstrate and validate the effectiveness of the 

proposed data-based method. Finally, the summary is given in Section 6.5.   

 

6.1 Data-based Method for State Transition Identification 

6.1.1 Algorithm of data-based method for state transition identification 

The algorithm of the data-based method for state transition identification is presented 

in Figure 6. 1, and explanations are presented as follows.  

 

• Firstly, the candidate state transition space is formed based on the operational data 

which is obtained from the system with the RTO function. The estimator of the 
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optimization reward (𝑟̂𝑜𝑜𝑜) is developed based on decision variable distance, which 

will be discussed in Section 6.1.2.  

 

• Then, in order to investigate the relationship between the estimated optimization 

reward and state transitions, a function is established through the regression. 

 

• Next, to find the important state transitions corresponding to the optimization 

reward, the evaluation of the “variable importance” is performed by the random 

forest algorithm (presented in Section 6.1.3).   

 

• The variable importance output by the random forest algorithm will go through a 

decision box to examine whether the state transition is significant or not.  

 

• The state transition passing the decision box will be included in a list; otherwise, it 

will be discarded since it is unnecessary to test the insignificant state transitions. 

This process is iterated until the entire candidate state transition space is visited. 

Finally, the algorithm outputs the identified state transition space (𝑆𝑆𝑠𝑠𝑠𝑠𝑠), which 

will be used as input for event definition and event space optimization (i.e. Step 2 

and 3 in Figure 4.4) to identify the event space. 



104 
 

 

 

Figure 6. 1 Algorithm of data-based method for state transition identification 

(𝑟̂𝑜𝑜𝑜=estimated optimization reward; ST = state transition; VI = variable importance ) 

 

6.1.2 Estimate the optimization reward by decision variable vector distance 

In this section, a quantitative index, the Euclidean distance between adjacent decision 

variable vectors, is developed to estimate the optimization reward. As we know in 
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data science, the deviation between objects is usually called “dissimilarity” (Han, Pei 

& Kamber 2011). The commonly used dissimilarity measure is the Euclidean distance 

(others are Minkowski and Mahalanobis distance), which is defined as follows 

(following the notation used in Section 4.2). 

 

2
1,,

2
1,1,1 )()( −− −++−= knknkkk vvvvd   (6. 1) 

 

To eliminate the scale effect in the dataset, data normalization is always performed, 

and the Euclidean distance can be re-written as: 

 

2
,1,,,

2
,1,1,,1, )()( normknnormknnormknormknormk vvvvd −− −++−=   (6. 2) 

)/()( min,max,min,, nnnnnormn vvvvv −−=  (6. 3) 

normkopt dr ,ˆ =  (6. 4) 

 

As discussed in Section 4.2.3, if system state remains unchanged, the normalized 

Euclidean distance (𝑑𝑘,𝑛𝑛𝑛𝑛) is “0”; the more the system state deviates from the 

previous updating, the larger 𝑑𝑘,𝑛𝑛𝑛𝑛 will be. A reasonable assumption is that the 

larger the 𝑑𝑘,𝑛𝑛𝑛𝑛 is, the higher the optimization reward will be. Based on this 
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assumption, the normalized Euclidean distance (𝑑𝑘,𝑛𝑛𝑛𝑛) can be used as an estimator 

for the optimization reward (𝑟̂𝑜𝑜𝑜) as shown in Eqn. (6. 4).  

 

6.1.3 Evaluate variable importance by random forest 

To investigate how the state variables affect the optimization reward, we can write the 

Euclidean distance of decision variable vectors as a function of state variables and 

their variations (Eqn. (6. 5)). 

 

( ) ( )kmkkmkkknormk ssssfSSfd ,,1,,1, ,,,,,, ∆∆=∆=   (6. 5) 

where ( ),,, ,,1 kmkk ssS ∆∆=∆   misss kikiki ,,1,1,,, =−=∆ −
.  

 

Random forest (RF) (Breiman 2001) is used to evaluate the variable importance. RF is 

an ensemble learning method that constructs multiple decision trees (a forest) based 

on random feature selections of data. Each tree is grown by a bootstrapped sample. 

Variables are randomly picked at each node of the tree, which decreases the 

correlation between the trees in the forest, and thus decreasing the error rate. 

 

RF have been found to be excellent comparing with other machine learning 

algorithms (Breiman 2001, Meyer, Leisch & Hornik 2003, Svetnik et al. 2003) and 
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traditional logistic regression models (Hosmer Jr, Lemeshow & Sturdivant 2013). 

Thus, RF becomes popular recently because it is user-friendly, often accurate and is 

capable of handling highly correlated data. Since the prediction is based on the 

outputs of individual trees, RF can avoid overfitting and improve the prediction 

accuracy. Moreover, there are two pretty useful byproducts from RF, out-of-bag 

estimates of generalization error (Breiman 2001, Bylander 2002) and variable 

importance measures (Breiman 2001, Liaw, Wiener 2002, Svetnik et al. 2003).  

 

The variable importance is computed from permuting out-of-bag (oob) data. The 

observations are considered the “oob” observations if they are not used for growing 

the tree. For each tree, the prediction error on the “oob” portion of the data is recorded 

(mean squared error (MSE) for regression). Then, the same is done after permuting 

each predictor variable. The difference between the prediction error on the “oob” 

portion of the data and the same one after permuting each predictor variable is 

represented by “%IncMSE” (after averaging and normalization). This is an inherent 

procedure of RF for evaluating variable importance, which is a robust measure 

(Archer, Kimes 2008) and perfect for the current application. 

 

100%×MSE)/MSE-)(MSE(-v=)%IncMSE(v jj  (6. 6) 
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The %IncMSE is computed in Eqn. (6. 6), where “MSE(−vj)” stands for the MSE if 

vj is not used in the prediction. A small %IncMSE can be interpreted as: without 

certain variable vj, the MSE does not increase much, meaning that the contribution of 

vj to the model output is not significant. On the contrary, a higher %IncMSE suggests 

that the variable vj is more important.  

 

6.2 Specifying the Event Threshold based on Decision Variable Distance 

In the establishment of event space, event thresholds are needed to quantify the 

variation for continuous variables. The event threshold is user-defined parameter. 

Here, in order to select a suitable threshold value, a simple method is suggested based 

on the proposed decision variable distance.  

 

As we know, the event should associate with the “large” optimization reward (i.e. 

“large” 𝑑𝑘,𝑛𝑛𝑛𝑛). Thus, the quantity of state transition associated with the “large” 

𝑑𝑘,𝑛𝑛𝑛𝑛 is suggested as the event threshold. “large” 𝑑𝑘,𝑛𝑛𝑛𝑛 is firstly defined in Eqn. 

(6. 7) based on the common sense that “large” means more than the average. 
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}},...,2,1{,{: ,,arg, nkddd meannormnormkelnorm ∈>∀=  (6. 7) 

 

where 𝑑𝑛𝑛𝑛𝑛,𝑚𝑚𝑚𝑚 means the mean normalized distance and 𝑑𝑘,𝑛𝑛𝑛𝑛 is defined in 

Eqn. (6. 2). 

 

Then, the corresponding state variables and state variable variations associated with 

the large 𝑑𝑘,𝑛𝑛𝑛𝑛 can be identified using the 𝐼𝐼𝐼𝐼𝐼𝑙𝑙𝑙𝑙𝑙, which are represented in 

Eqn. (6. 9). 

 

}},...,2,1{,,{: ,,arg nkddkIndex meannormnormkel ∈>∀=  (6. 8) 

},s{: argkarg elel IndexkS ∈∆=∆ , },s{: argkarg elel IndexkS ∈=  (6. 9) 

 

Finally, the event threshold is calculated based on Eqn. (6. 10) and (6. 11). In this case 

study, the mean of the state variable (or state variable variation) associated with the 

large 𝑑𝑘,𝑛𝑛𝑛𝑛 is suggested as the event threshold since the mean can represent the 

typical values in a data set.  

 

}|,|/{: argarg elel
k

kk IndexkSss ∈= ∑s  (6. 10) 

}|,|/{: argarg elel
k

kk IndexkSss ∈∆∆=∆ ∑s  (6. 11) 
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where || argelS  means the size of the set.  

 

6.3 Case Study: Data Preparation and State Transition Identification 

6.3.1 Data preparation 

In general, the data from a BAS with RTO function can be used to identify the 

important variables and corresponding thresholds with the methods presented in 

Section 6.1 and 6.2. In this case study, the data generated from the simulation 

platform (see Section 3.4) with RTO function was used as an alternative. The 

optimization frequency “15 minutes per optimization” was used because it is a high 

optimization frequency that can reflect the operational condition changes in a fine 

resolution.  

 

Table 6. 1 Load and weather data (in the year of 2013) 

Date Load (kW) Tdb  (˚C ) Twb  (˚C) 

mean max min mean max min mean max min 

May-13 12811 19599 3860 26.0 29.8 23.9 24.4 25.9 23.4 

May-14 12409 18525 4924 26.2 28.0 25.0 25.1 25.8 24.4 

May-15 12148 19258 3355 28.3 30.2 26.0 26.4 27.3 25.3 

May-16 11630 19964 3555 27.6 30.0 25.1 25.7 27.1 24.1 

May-17 6447 9031 3354 25.9 26.9 24.9 25.2 26.2 24.3 

May-20 6539 9894 3775 29.0 31.2 26.0 26.5 27.3 24.0 
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The real weather and load profiles on May 13-17, 2013 were used to generate data for 

data mining (Figure 6. 2-Figure 6. 6). Then, events were defined based on the data 

mining results and used to formulate the EDO policy. This EDO policy was validated 

using the load and weather profiles of May 20, 2013 (Figure 6. 7). All the statistical 

data of load and weather profiles is shown in Table 6. 1. 

 

 

Figure 6. 2 Load and weather profile (May-13) 
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Figure 6. 3 Load and weather profile (May-14) 

 

 

Figure 6. 4 Load and weather profile (May-15) 
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Figure 6. 5 Load and weather profile (May-16) 

 

 

Figure 6. 6 Load and weather profile (May-17) 

 



114 
 

 

Figure 6. 7 Load and weather profile (May-20) 

 

6.3.2 Data mining in “R” 

“R” is an open platform for statistical computing, which provides a wide variety of 

statistical (linear and nonlinear modeling, classical statistical tests, time-series 

analysis, classification, clustering, etc.) and graphical techniques. To implement the 

RF algorithm, the “randomForest” package (version 4.6-12) in R (version 3.3.3) (The 

R Foundation ) is directly used. The documentation of the “randomForest” package 

(version 4.6-12) can be found in (Breiman et al. 2015).  

 

The data for regression was generated by computer simulations based on the load and 

weather profiles of May 13-17, 2013. The R script is shown in Figure 6. 8, where 500 

trees were used, and three variables were tried at each split in the random forest. The 



115 
 

mean of squared residuals of the regression is 0.0415, which shows good prediction 

performance. 

 

 

Figure 6. 8 R script of random forest algorithm 

 

6.3.3 State transition identification based on variable importance 

The variable importance output by RF is shown in Table 6. 2, where “rank 1” means 

the highest importance. “∆h” got the highest importance, and is greater than “Tapr”, 

which agrees well with the domain knowledge and case studies presented in Chapter 5. 

It is observed that, using the data-based method, some critical state transitions are 

newly discovered in comparison with the knowledge-based method, namely 

“Freqct,fan”, “Mw,prm,pump” and “Mw,sec,pump”. In this study, the threshold of the 

variable importance was chosen to be 5% because the “%IncMSE” lower than 5% 

means little effects on the model output (i.e. decision variable distance). Thus, “Twb”, 

“Tdb” and “Numch” were discarded due to the low values of %IncMSE. Finally, the 

critical state transitions were identified through mining the operational data.  
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Table 6. 2 Variable importance of state variables output by random forest 
Variable %IncMSE Rank Description 

∆h 26.84 1 the average difference between the 
specific enthalpies of saturated air 
and bulk air 

Tapr 21.88 2 the cooling tower approach 
temperature 

Freqct,fan 18.62 3 the fan frequency of cooling tower 

PLR 15.42 4 part-load ratio change 
Mw,prm,HX 14.69 5 water mass flow rate of the heat 

exchanger at primary sided 
Mw,sec,pump 11.24 6 water mass flow rate of total 

secondary pumps 

Twb 3.75 7 wet-bulb temperature change 

Tdb 3.4 8 dry-bulb temperature change 

Numch 1.13 9 number of the operating chiller(s) 

 

6.4 Case Study: Event Space Optimization and Validation 

6.4.1 Event attributes extraction and mathematical representations 

By abstraction, three basic event attributes of the discovered critical state transitions 

(Table 6. 2) are extracted in Table 6. 3. Timestamps of all the events belong to the 

type of instant. All the state variables belong to the type of continuous variable, which 

means threshold values are required. The events "∆h", "Tapr"and "Freqct,fan" use 

the absolute-type threshold, while the others use the delta-type threshold.  

 

Table 6. 3 Types of extracted event attributes 
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State variable State variable type Timestamp type Threshold type 

∆h continuous instant absolute 

Tapr continuous instant absolute 

Freqct,fan continuous instant absolute 

PLR continuous instant delta 

Mw,prm,HX continuous instant delta 

Mw,sec,pump continuous instant delta 

 

Based on the types of extracted event attributes, the state transitions listed in Table 6. 

3 are mathematically represented as events in Table 6. 4, and explanations are given 

as follows. Please note the explanations of "∆h", "Tapr" and “PLR Change” are 

given in Section 5.4.1, and thus will not repeat here.  

 

Table 6. 4 Mathematical representations of events  

Event name  Definition 
∆h 𝑒∆ℎ: = {< 𝑋𝜏𝑖 ,𝑋𝜏𝑗 > | ∆ℎ𝜏𝑖 ≥ 𝜎∆ℎ ,∆ℎ𝜏𝑗 < 𝜎∆ℎ } 
Tapr 𝑒𝑇𝑎𝑎𝑎: = {< 𝑋𝜏𝑖 ,𝑋𝜏𝑗 > |  𝑇𝜏𝑖

𝑎𝑎𝑎 ≥ 𝜎𝑇𝑎𝑎𝑎  ,𝑇𝜏𝑗
𝑎𝑎𝑎 < 𝜎𝑇𝑎𝑎𝑎} 

Freqct,fan 𝑒𝐹𝐹𝐹𝐹𝑐𝑐,𝑓𝑓𝑓 : = {< 𝑋𝜏𝑖 ,𝑋𝜏𝑗 > |  𝐹𝐹𝐹𝐹𝜏𝑖
𝑐𝑐,𝑓𝑓𝑓

< 𝜎𝐹𝐹𝐹𝐹𝑐𝑐,𝑓𝑓𝑓  ,𝐹𝐹𝐹𝐹𝜏𝑗
𝑐𝑐,𝑓𝑓𝑓 ≥ 𝜎𝐹𝐹𝐹𝐹𝑐𝑐,𝑓𝑓𝑓} 

PLR Change 𝑒𝑃𝑃𝑃 𝐶ℎ𝑎𝑎𝑎𝑎: = {< 𝑋𝜏𝑖 ,𝑋𝜏𝑗 > |  |𝑃𝑃𝑃𝜏𝑖 − 𝑃𝑃𝑃𝜏𝑗| ≥ 𝜎𝑃𝑃𝑃 𝐶ℎ𝑎𝑎𝑎𝑎} 
Mw,prm,HX Change 𝑒𝑀𝑤,𝑝𝑝𝑝,𝐻𝐻: = {< 𝑋𝜏𝑖 ,𝑋𝜏𝑗 > |  |𝑀𝜏𝑖

𝑤,𝑝𝑝𝑝,𝐻𝐻 − 𝑀𝜏𝑗
𝑤,𝑝𝑝𝑝,𝐻𝐻|

≥ 𝜎𝑀𝑤,𝑝𝑝𝑝,𝐻𝐻} 
Mw,sec,pump  
Change 

𝑒𝑀𝑤,𝑠𝑠𝑠,𝑝𝑝𝑝𝑝: = {< 𝑋𝜏𝑖 ,𝑋𝜏𝑗 > |  |𝑀𝜏𝑖
𝑤,𝑠𝑠𝑠,𝑝𝑝𝑝𝑝 − 𝑀𝜏𝑗

𝑤,𝑠𝑠𝑠,𝑝𝑝𝑝𝑝|
≥ 𝜎𝑀𝑤,𝑠𝑠𝑠,𝑝𝑝𝑝𝑝} 

 (Note: 𝜏𝑗 is the current decision time instant and 𝜏𝑖 is the previous decision time instant.) 
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• “Mw,prm,HX Change” and “Mw,sec,pump Change” reflect the water mass flow 

rates at primary and secondary side of the heat exchanger. The change of the 

water flow rate can partially represent the change in load condition. When the 

change is greater than a threshold, the event will be recognized.  

 

• "Freqct,fan" is the fan frequency of cooling towers. A high fan frequency means 

the natural driving force is low, so the cooling water cannot reject the heat 

effectively, which may need an optimization. When the fan frequency is higher 

than a threshold, the event will be recognized.  

 

6.4.2 Event threshold specification 

The Event threshold was calculated based on Eqn. (6. 10) and (6. 11) using the 

operational data, and results are shown in Table 6. 5. Please note that calculation of 

the absolute-type threshold uses Eqn. (6. 10), while the delta-type threshold uses Eqn. 

(6. 11).  

 

Table 6. 5 Event threshold specification 

Event name  Event threshold value Remark 

∆h 36 kJ/kg Eqn. (6. 10) 
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Tapr 5.5 ºC Eqn. (6. 10) 

Freqct,fan 36 Eqn. (6. 10) 

PLR Change 6% Eqn. (6. 11) 

Mw,prm,HX Change 4.7 L/s Eqn. (6. 11) 

Mw,sec,pump Change 18 L/s Eqn. (6. 11) 

 

6.4.3 Energy and computational performance analyses 

To analyze the optimization performances of events listed in Table 6. 4, energy and 

computational performance are presented in Table 6. 6. Please note that the energy 

saving is computed based on the “No Op.” case (no optimization is performed), and 

the computation saving is calculated based on the case “15 mins” (i.e. one 

optimization per 15 minutes). 

 

Table 6. 6 Energy and computational performances of different events 

Op. methods 
EC 

(Kwh) 
ES Op. times CT(s) CS 

Event 

threshold 

No Op. 158197 N/A 0 N/A N/A 
 

15 mins 142329 10.03% 96 130.6 0.00% 
 

PLR Change  142325 10.03% 60 55.35 57.62% 6% 

∆h  142005 10.24% 82 76.38 41.52% 36 kJ/kg 

Tapr  142710 9.79% 72 68.7 47.40% 5.5 ºC 
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Freqct,fan 142305 10.05% 108 145.1 -11.10% 36 

Mw,prm,HX Change 142266 10.07% 30 28.74 77.99% 4.7 L/s 

Mw,sec,pump Change 143277 9.43% 77 71.62 45.16% 18 L/s 

 

For the energy performance, “∆h” obtains the highest energy saving, while the 

“Mw,sec,pump Change” gets the lowest. Four cases are equal to or higher than the 

TDO benchmark (“15 mins”), while the cases of  “Tapr” and “Mw,sec,pump Change” 

are below the TDO benchmark.  

  

Regarding the computational performance, except the case of “Freqct,fan”, around 

40-78% of computation was saved, which shows a good potential of EDO for 

computation reduction. The case of “Freqct,fan” can be regarded as the frequent event 

triggering since the optimization times is higher the TDO benchmark (“15 mins”).   

 

6.4.4 Performance score and event redundancy analyses 

The performance scores of different events are shown in  

“Mw,prm,HX Change” performed the best since it has the highest performance score 

(1.394). Thus, “Mw,sec,pump Change” in the same group was discarded. In another 

event group, since “∆h” got the highest performance score, “Tapr” and “Freqct,fan” 
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were not used. Please note that “Freqct,fan” got a performance score lower than 

“1.000” because its computation saving is negative. In summary, “Mw,sec,pump 

Change”, “Tapr” and “Freqct,fan” are considered as the redundant events, which were 

discarded to avoid the potential event overlap.  

 

Table 6. 7, where “1.000” was set as the benchmark performance score. “∆h”, “Tapr” 

and “Freqct,fan” are grouped into one event group as they indicate the efficiency of 

heat rejection process in cooling towers (Chang et al. 2015). “Mw,prm,HX Change” 

and “Mw,sec,pump Change” are grouped into one event group as they all reflect the 

changes in the chilled water loop.  

 

“Mw,prm,HX Change” performed the best since it has the highest performance score 

(1.394). Thus, “Mw,sec,pump Change” in the same group was discarded. In another 

event group, since “∆h” got the highest performance score, “Tapr” and “Freqct,fan” 

were not used. Please note that “Freqct,fan” got a performance score lower than 

“1.000” because its computation saving is negative. In summary, “Mw,sec,pump 

Change”, “Tapr” and “Freqct,fan” are considered as the redundant events, which were 

discarded to avoid the potential event overlap.  
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Table 6. 7 Performance scores of different events (“PS”= “Performance score”) 

Event name Threshold PS 

PLR Change 6% 1.288 

∆h  36 kJ/kg 1.228 

Tapr  5.5 ºC 1.213 

Freqct,fan 36 0.946 

Mw,prm,HX Change 4.7 L/s 1.394 

Mw,sec,pump Change 18 L/s 1.166 

 

6.4.5 Validation: optimization performance of established event space 

 

Figure 6. 9 EDO policy 

 

Table 6. 8 Optimization performance of different methods (“Op.” = “Optimization”) 

Op. methods ES CS PS 

No Op. 0.00% \  

15mins 10.03% 0.00% 1.000 

Mw,prm,HX Change 10.07% 77.99% 1.394 
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PLR Change 10.03% 57.62% 1.288 

∆h 10.24% 41.52% 1.228 

Multiple events  11.01% 62.75% 1.411 

(Please note: “multiple events” contains “Mw,prm,HX Change”, “PLR Change” and “∆h”; ; 

threshold of “PLR Change” is 6%; threshold of “∆h” is 36 kJ/kg; threshold of “Mw,prm,HX 

Change” is 4.7 L/s. ) 

 

To validate the identified event space, this section presents the optimization 

performance using multiple events.  Based on the performance analyses of different 

events presented in the previous sections, following event space and EDO policy are 

established (Figure 6. 9). Please note that only one default action is adopted, i.e. if any 

of events in the event space happened, the action will be taken to optimize all the 

decision variables.  

 

The performances of “multiple events” and single event are listed in Table 6. 8. 

Results show that, compared with TDO benchmark(“15mins”) or single event, the 

performance score of “multiple events” is the highest. It also shows that, by adopting 

the events discovered by the RF algorithm, the energy saving of EDO (11.01%) is 

almost 1% higher than the TDO benchmark. Meanwhile, 62.75% of computation was 

saved.  
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6.4.6 Discussions 

In this case study, the effectiveness of the algorithm of the data-based method for state 

transition identification is validated. The optimization performances of events 

identified from operational data are evaluated. The findings are summarized as 

follows. 

 

• The proposed index, Euclidean distance of decision variable vectors, is an 

effective estimator of the optimization reward. The optimization reward can be 

quickly estimated from the operational data by establishing the function between 

the Euclidean distance of decision variable vectors and state transitions. 

Important state transitions can be identified by evaluating the variable importance 

using the random forest algorithm.  

 

• Suitable threshold values can be directly computed based on the identified 

“significant” optimization reward using the Euclidean distance of decision 

variable vectors, which avoids the tedious trial-and-error method used in the 

knowledge-based method.  

 

• Compared with the knowledge-based method, new events are found in the 
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operational data, namely “Freqct,fan”, “Mw,prm,pump” and “Mw,sec,pump”. 

 

• The overall optimization performances (including energy and computational 

performances) of the discovered events are all better than the TDO benchmark, 

except the case of frequent event triggering in “Freqct,fan”. It is found that the 

bad threshold selection would increase the computation as shown by the case of 

“Freqct,fan”.  

 

• It is confirmed again that, compared with using the single event, a better 

optimization performance can be obtained when multiple critical events are 

properly defined and used.  

  

• A limitation of the proposed data-based method is that the HVAC system should 

have the RTO function so that the operation data will contain information about 

the decision variables, though the detailed simulation can be used as an 

alternative.  
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6.5 Summary 

Instead of using the knowledge-based method, this chapter has effectively explored 

another indirect method for event space establishment, i.e. the data-based method. An 

algorithm of the data-based method for state transition identification in operational 

data is proposed, and the effectiveness of the algorithm is demonstrated through case 

studies. The Euclidean distance of decision variable vectors is proposed to estimate 

the optimization reward, which is represented as a function of state transitions. The 

variable importance is calculated by the random forest algorithm, based on which 

important state transitions are identified. New events are found from the operational 

data comparing with from the prior knowledge. Results show that, using the 

discovered events, the overall energy and computational performances are both 

improved compared with the TDO benchmark, except a case of frequent event 

triggering caused by the unsuitable threshold selection.  

 

With the data-based method, users can easily select state transitions based on the 

variable importance instead of domain knowledge. Besides, the event threshold 

selection is convenient comparing with the trial-and-error method. Moreover, the data 

mining technique makes it possible to customize the event space for the targeted 

system. For instance, the events and event thresholds can be customized for the 
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targeted system based on the system operational data. In this way, the formulated 

EDO policy can handle the HVAC optimal control more precisely. Based on the above 

findings, we conclude that the data-based method can improve the practicability of 

EDO since only minor effort is required in terms of finding important events and 

suitable event thresholds. The data-based method is also a good supplementary of the 

knowledge-based method when human prior knowledge is inadequate.  
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CHAPTER 7. DIRECT METHOD FOR EVENT SPACE 

ESTABLISHMENT BASED ON SCOP DEVIATION 

 

This chapter presents the direct method for event space establishment. The 

SCOP-deviation-based method is used to directly emulate the optimization objective.  

Section 7.1 illustrates the transient and accumulated SCOP deviations, and presents 

the equations for calculations as well as the event definitions based on COP·mins. 

Section 7.2 introduces the method for finding the reference SCOP based on simulation, 

where the artificial neural network is utilized. The case study is presented in Section 

7.3 to illustrate the performance of the SCOP-deviation-based method. At last, a 

summary is given in Section 7.4.   

 

7.1 Direct Method for State Transition Identification 

The direct method for event space establishment refers to the direct emulation of the 

optimization objective(s) (Miskowicz, Lunze 2015). The principle of the direct 

emulation is simple: it triggers an action when the deviation between the current 

system state value and the reference value exceeds a defined threshold. The basic 

form of the event triggering condition is shown in Eqn. (7. 1), where y is a state 

variable and 𝜎𝑦 is a user-defined threshold. With the direct emulation, the EDO 
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actually mimics the desirable performance trajectory ( 𝑦𝑟𝑟𝑟 ) with controllable 

precision; while the cost of the improvement is to spend more resources (such as 

computation, communication or energy).   

 

y|| σ<−=∆ yyy ref  (7. 1) 

 

7.1.1 SCOP-deviation-based method 

Two examples are shown in Figure 7. 1 to illustrate the idea of SCOP-deviation-based 

method. Assume that desired system operation efficiency is known; 𝜎𝑡𝑡𝑡𝑡𝑡 is the 

threshold for the transient SCOP (Yao et al. 2004) deviation and 𝜎𝑎𝑎𝑎𝑎𝑎 is the 

threshold for the accumulated SCOP deviation. In the “case a” of Figure 7. 1, the 

event will be triggered between time 𝑘 and 𝑙 because the transient SCOP deviation 

is larger than the threshold 𝜎𝑡𝑡𝑡𝑡𝑡. However, this is not sufficient as there will be 

cases that the ∆SCOP(i) is always lower than 𝜎𝑡𝑡𝑡𝑡𝑡. As shown in “case b” of Figure 

7. 1, although the 𝜎𝑡𝑡𝑡𝑡𝑡 is satisfied all the time, the accumulated SCOP deviation 

cannot be neglected when the time period is significant. This is confirmed by the 

ASHRAE handbook (ASHRAE 2015), which states that “optimizations of the plant 

operation are most important when loads vary and when the system operation is far 

from the design condition for a significant period”.   
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Figure 7. 1 Illustrate two forms of SCOP deviation 

 

trans)()()( s<−=∆ iSCOPiSCOPiSCOP ref  (7. 2) 

accum

k

j
dtiSCOPkjSCOP σ<∆=−∆ ∫ )()(  (7. 3) 

 

Thus, both the transient and accumulated SCOP deviations are defined in Eqn. (7. 2) 

and (7. 3), where “𝑖, 𝑗, 𝑘” are time instants. The accumulated SCOP deviation is 

represented as the integration of ∆SCOP(i) over time. As long as the Eqn. (7. 2) or (7. 

3) is violated, an event will be triggered, and the optimization will be performed. It is 

assumed that every optimization can bring the current SCOP to the desired value. 

Thus, a large SCOP deviation (∆𝑆𝑆𝑆𝑆) means a large optimization reward. The 

threshold is defined by users, and a smaller threshold can provide a better emulation 

of the desired SCOP, but more actions will be triggered.  
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7.1.2 COP·mins 

Considering the discrete nature of the measurement in BAS (by sampling), the term 

“COP·mins” is proposed for the calculation convenience of the integration in Eqn. (7. 

3). As the name indicates, one minute is chosen to be the discretization time interval, 

which is small enough in HVAC RTO problems. Consequently, Eqns. (7. 2) and (7. 3) 

can be rewritten as follows. 

 

)()()()(minsCOP iSCOPiSCOPiSCOPi ref −=∆=⋅  (7. 4) 

∑∫ =
∆≈∆=−∆=−⋅

k

ji

k

j
iSCOPdtiSCOPkjSCOPkj )()()()(minsCOP  (7. 5) 

 

To unify the notion, the transient SCOP deviation (“∆SCOP(i)”) is represented by 

“COP · mins(i)” as shown in Eqn. (7. 4). The accumulated SCOP deviation from time 

𝑘 to 𝑙 (i.e. “∆SCOP(j − k)”) is approximated by the summation of “∆SCOP(i)”, 

which is denoted as “COP · mins(j − k)” (as shown in Eqn. (7. 5)). The “COP·mins” 

defined above is used to define the events, and the mathematical representations of the 

two events are given in Error! Not a valid bookmark self-reference.. 
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Table 7. 1 Mathematical representations of COP·mins 

Event name  Definition 

COP · mins(trans) 𝑒COP·mins(trans): = {< 𝑋𝜏𝑖 ,𝑋𝜏𝑗 > | COP · mins(i)

≤ 𝜎𝑡𝑡𝑡𝑡𝑡, COP · mins(j) > 𝜎𝑡𝑡𝑡𝑡𝑡} 

COP · mins(accum. ) 𝑒COP·mins(accum ): = {< 𝑋𝜏𝑖 ,𝑋𝜏𝑗 > | COP · mins(i − j)

≤ 𝜎𝑎𝑎𝑎𝑎𝑎, COP · mins(i − j) > 𝜎𝑎𝑎𝑎𝑎𝑎} 

(Note: “trans”= “transient”; “accum”= “accumulated”; “j > i”.) 

 

7.2 Finding the Reference SCOP by Simulation 

To compute the SCOP deviation (∆SCOP(i)), the reference SCOP model is necessary. 

Here, the maximum SCOP is considered as the reference SCOP because the objective 

is to maximize the operating efficiency. There are several ways to get the maximum 

SCOP model. For instance, the SCOP curve of a chiller can be obtained by 

manufactures’ data or from the curve fitting of in-situ performance data (ASHRAE 

2015). Typically, the SCOP can be represented as a function of PLR and other 

necessary variables (such as the condenser and evaporator water temperature).  

 

For simplicity, a simulation-based method was adopted to generate the data. The 

maximum SCOP model was obtained by applying an extremely high optimization 

frequency (i.e. one optimization per 5 minutes) in the simulation for a given a load 
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profile. In the regression, SCOP is represented as a function of nine critical variables 

(Yu et al. 2017) as shown in Eqn. (7. 6). 

 

( )prmschwscwfanctchaprwbdbref TTFreqNumThTTPLRfSCOP ,, ,,,,,,,, ∆=  (7. 6) 

 

The reference SCOP model is obtained using the artificial neural network (ANN) 

which can produce satisfactory predictions for complex non-liner relationships (Li et 

al. 2009). In this study, a feed-forward neural network of 3 hidden layers were used as 

given in Figure 7. 2, which is able to give satisfactory accuracy for the given data. 

 

 

Figure 7. 2 Artificial neural network structure 

 

7.3 Case Study 

7.3.1 Load and weather profiles 

Load and weather data are shown in Table 7. 2, and their profiles are shown in Figure 

7. 3 and Figure 7. 4. 
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Table 7. 2 Load and weather data (in the year of 2013) 

Case Date Load (kW) Tdb  (˚C ) Twb  (˚C) 

mean max min mean max min mean max min 

Summer Aug-20 13412 21463 3817 28.9 30.8 27 26.5 27.6 25.7 

Spring Apr-2 10669 15936 3757 21.1 22.5 20 20.3 21.5 18.8 

 

 

Figure 7. 3 Summer load and weather profile (Aug-20) 
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Figure 7. 4 Spring load and weather profile (Apr-2) 

 

7.3.2 Establish the maximum SCOP model by ANN 

The ANN model was developed based on the Levenberg-Marquardt backpropagation 

algorithm in MATLAB ANN toolbox (Beale, Hagan & Demuth 2017), and the 

detailed code can be found in Appendix E. The code was used to simulate the trained 

ANN in order to generate the reference SCOP model.  

 

The summer and spring cases were trained separately. There are totally 2880 samples 

for each case, where 70% of the data was used for training, 15% was used for 
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validation and 15% was used for testing. The regression R values are shown in 

Figure 7. 5 and Figure 7. 6. Regression R values (or coefficient of correlation) 

measure the correlation between model outputs and targets (real values). An R value 

of “1” means a close relationship, while “0” means a random relationship. Both cases 

got R values above 0.9, which shows good prediction performance.  

 

 
Figure 7. 5 Regression R values of spring case 
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Figure 7. 6 Regression R values of summer case 

 

7.3.3 Event threshold selection for COP·mins 

To select the threshold value for the events of COP·mins, simple calculations were 

performed based on 𝑆𝑆𝑆𝑆𝑟𝑟𝑟. The power consumption difference at each time instant 

(∆𝑃𝑃𝑃𝑃𝑃(𝑖)) that results from the SCOP deviation (∆𝑆𝑆𝑆𝑆(𝑖)) can be calculated by 

Eqn. (7. 7). Substituting Eqn. (7. 8) into Eqn. (7. 7), ∆𝑆𝑆𝑆𝑆(𝑖) can be computed by 

specifying the ∆𝑃𝑃𝑃𝑃𝑃(𝑖) using Eqn. (7. 9). This can be used as the threshold for the 

event “COP · mins(trans. )”.  
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refSCOPiloadiSCOPiloadiPower /)()(/)()( −=∆  (7. 7) 

)()( iSCOPSCOPiSCOP ref −=∆  (7. 8) 

))()((/)()( 2
refref SCOPiPoweriloadSCOPiPoweriSCOP ×∆+×∆=∆  (7. 9) 

 

Details for the threshold calculation is shown in Table 7. 3. Based on the simulation 

data, the means of 𝑆𝑆𝑆𝑆𝑟𝑟𝑟  are 2.26 and 2.46 in summer and spring cases 

respectively. Please note that the maximum SCOP model was obtained by applying a 

high optimization frequency (i.e. “one optimization per 5 minutes”) in the simulation.  

 

Loadmean  is obtained from the Table 7. 2. ECBC  is the base case energy 

consumption, in which no optimization is taken. Powermean is computed by ECBC
24 ℎ𝑜𝑜𝑜𝑜

, 

which is the average power consumption. 10% of the base case Powermean is 

selected as a significant portion, which is represented by ∆Power in Table 7. 3. 

Based on Eqn. (7. 9), the significant SCOP deviation (∆SCOP) is 0.255 and 0.172 

corresponding to 10% power consumption difference in summer and spring cases. 

The average value (i.e. 0.214) is taken as the 𝜎𝑡𝑡𝑡𝑡𝑡.. 

 

The threshold of “COP · mins(accum. )” was obtained by taking half of the 𝜎𝑡𝑡𝑡𝑡𝑡. in 

Table 7. 3 (i.e. 0.214 ÷ 2 = 0.107), and a duration of 30 minutes was considered as 
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a significant period. Thus, the “COP · mins(accum. )” is 3.21 which will be used as 

the threshold (𝜎𝑎𝑎𝑎𝑎𝑎.). Please note that the values were selected arbitrarily in this 

case study since the main purpose of this study is to demonstrate the effectiveness of 

the proposed COP·mins. Other threshold values can be discussed in the future when 

necessary.  

 

Table 7. 3 Details for threshold calculation 

Variable name Summer Spring 

Loadmean 13412 10669 

ECBC (kWh) 181379 78241 

Powermean (kW) 7557 (= ECBC
24 ℎ𝑜𝑜𝑜𝑜

) 3260 

Portion  10% 10% 

∆Power (kW) 756  326  

SCOPref 2.26 2.46 

∆SCOP 0.255  0.172  

𝜎𝑡𝑡𝑡𝑡𝑡. 0.214 

 

7.3.4 Energy and computational performances 
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Table 7. 4 Optimization performance of different methods (Op. = Optimization) 

Op. methods 
EC 

(Kwh) 
ES 

Op. 

times 
CT(s) CS 

Event 

threshold 

Spring case 

No Op. 78241 0.00% 0 0 \ 
 

15 mins 74361 4.96% 96 69.83 0.00% 
 

Ch. On/Off, PLR Change 

& ∆h 
73765 5.72% 18 17.44 75.03% 11%; 27kJ/kg 

COP·mins 72812 6.94% 12 14.57 79.14% 0.214;3.21 

Summer case 

No Op. 181379 0.00% 0 0 \  

15 mins 161608 10.90% 96 138.4 0.00%  

Ch. On/Off, PLR Change 

& ∆h 
161521 10.95% 43 62.26 55.01% 11%; 27kJ/kg 

COP·mins 160484 11.52% 16 26.27 81.02% 0.214;3.21 

 

As shown in Table 7. 4, comparing with the TDO method, the EDO using multiple 

events can achieve a better energy saving (5.72% and 10.95%) together with a 

considerable computational reduction (75.03% and 55.01%). This agrees well with 

the previous findings as presented in Chapter 5 and 6. However, choosing the 

threshold is difficult because the threshold does not have a direct relationship with the 

optimization reward. 
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COP·mins-based EDO method achieves 6.94% and 11.52% of energy savings, 

79.14% and 81.02% of computation savings in spring and summer cases respectively, 

which are all higher than the EDO method using multiple events “Ch. On/Off, PLR 

Change and ∆h”. The main reason is that COP·mins is a direct performance indicator 

that can reflect the optimization reward in a more precise way, and thus leads to a 

more efficient manipulation of the optimization.   

 

7.3.5 Discussions 

The proposed SCOP-deviation-based method can mimic the optimization objective 

directly. Results show that the SCOP-deviation-based EDO performs better than the 

multiple events (“Ch. On/Off, PLR Change and ∆h”) regarding both energy and 

computational efficiencies. Besides, users can easily select thresholds according to 

their requirements since the relationship between the SCOP deviation and 

optimization reward is clear. For instance, if the computation resource is limited in a 

system, a large threshold should be selected to prevent frequent optimization 

triggering which would consume a lot of computation. If the computation resource is 

sufficient, a small threshold can be used to achieve better emulation of the objective. 

However, if an indirect index (e.g. PLR) is used, this may not be easy since the 

relationship between the threshold and optimization performance is unclear.  
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7.4 Summary 

This chapter presents a direct method for event space establishment. The event is 

defined based on the SCOP deviation which can estimate the optimization reward 

directly in either transient or accumulated form. COP·mins is proposed for the 

convenience of calculation for SCOP deviations. Results show that the direct 

emulation of the objective is more efficient than the indirect methods concerning the 

energy and computational performances. As both transient and accumulated 

performance deviation are defined, the robustness can be ensured for different load 

types, e.g. sharp load profiles or slow-change load profiles. In terms of the 

implementation, the threshold selection can be easily done. Meanwhile, the flexibility 

is offered by the controllable threshold. Users can decide the balance between energy 

and computation efficiencies by adjusting the thresholds. However, the applicability 

of the direct method depends on whether the explicit model of optimization objective 

(e.g. SCOP) is available, which restricts its applications. The developed 

SCOP-deviation-based method is general and can be applied in other systems.  
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CHAPTER 8. CONCLUSIONS AND FUTURE WORK 

 

8.1 Summary 

Real-time optimization (RTO) is regarded as an effective way for improving 

energy-efficient operations of HVAC systems. However, the growing complexity of 

HVAC systems makes the conventional TDO mechanism of RTO no longer efficient 

due to the postponed or unnecessary optimization actions when responding to 

stochastic state transitions. Consequently, the energy and computational performances 

cannot be well balanced, which restricts the applications of RTO in complex HVAC 

systems. Therefore, it is necessary to develop a more efficient optimization strategy so 

as to better balance the energy and computational performances and proliferate the 

applications of RTO. This thesis addresses this need through establishing an EDO 

framework and developing a design approach for event space establishment. The main 

contents and findings are summarized as follows.  

 

8.1.1 EDO framework 

To facilitate the event-driven mechanism for RTO in HVAC systems, an EDO 

framework was established. A control diagram of EDO was firstly presented, and the 

working principle of the EDO was explained by the {event, policy, action} structure. 
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An event describes a set of state transitions that happen instantly or continuously in a 

period of time. For HVAC systems, three basic event attributes were synthesized, 

including timestamp, descriptive state variable and threshold. Each attribute was 

divided into two categories. Thus, in total, events were divided into eight total event 

types based on event attributes. To facilitate the real-world implementations of EDO, 

events were express in mathematical forms. The event identification process was also 

presented, which is used to recognize the occurrence of the events.  

 

The simulation results (in Chapter 5, 6 and 7) show that the EDO could reduce the 

computational load while still respecting the energy efficiency in comparison with the 

TDO. The reason is that EDO is capable of adapting to the changing environment. 

Thus, the responses to state transitions are quicker and unnecessary optimization 

actions can be avoided. Indeed, compared with the TDO benchmark, the formulated 

EDO can achieve even higher energy efficiencies with lower computational load in 

most of the cases. Thus, the EDO is suggested as a good alternative to the TDO, 

especially when the system dynamics are highly stochastic and difficult to predict.  
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8.1.2 EDO design 

The essence of the EDO design problem is to capture the most critical state transitions 

and properly define them into events for the policy formulation. To ensure the EDO 

can achieve the satisfactory optimization performance, a design approach for EDO 

was developed. Firstly, a five-step design procedure was introduced, which mainly 

deals with the tasks of designing the structure of {event, policy, action}. Special 

attention was paid to the event space due to its dominant role in EDO. The 

methodology of event space establishment was developed to address the problems of 

the state transition identification, event definition and event space optimization. Both 

direct and indirect methods were established in order to identify critical state 

transitions under different situations. The direct method was constructed based on the 

SCOP deviation while two indirect methods were developed based on 

prior-knowledge and operational data. The relationships of these methods and their 

optimization performances are summarized separately as below.    

 

 Direct method and its performance 

To directly emulate the optimization objective (i.e. SCOP), a direct method was 

developed based on the SCOP deviation. Whenever the current SCOP deviates away 

from the reference level for a certain quantity (transient or accumulated), an event will 
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be triggered, and actions will be taken to optimize the decision variables. “COP·mins” 

was proposed for the calculation convenience of the accumulated SCOP deviation. 

Results show that the SCOP-deviation-based direct method is superior to the TDO 

method and indirect methods concerning both the energy and computation savings. 

Meanwhile, the robustness can be ensured for different load types, e.g. steep load 

profiles or slow-change load profiles, since both transient and accumulated SCOP 

deviation are captured. Because the relationship between the event threshold and 

optimization objective is clear, the threshold selection can be easily done. Moreover, 

the flexibility is offered by the controllable threshold. Users can decide the balance 

between energy and computation efficiencies by adjusting the thresholds. However, 

the applicability of the proposed direct method depends on whether the explicit model 

of the optimization objective (e.g. SCOP) is available.  

 

 Indirect methods 

(1) Knowledge-based method and its performance 

To utilize the well-developed prior knowledge for identifying important state 

transitions, a knowledge-based method was developed. The possible state transitions 

were found from the engineering handbooks. Based on the literature review, critical 

state transitions were identified from the candidates, which were defined as events. In 
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order to select the suitable thresholds of events, an algorithm was also developed for 

continuous-form state variables.  

 

Each event was assigned with several candidate thresholds, and tested based on the 

typical load and weather profiles. The optimization performances of events were 

analyzed in a comprehensive manner regarding the energy saving, computation saving 

and performance score. The best event and event threshold were identified in each 

event source based on the optimization performance analyses. Aa a result, 

insignificant events were discarded, and the event space was established. The results 

validate that the formulated EDO policy (using the established event space) can 

effectively reduce the computational load and further increase the energy saving. The 

reasons are that the EDO can reduce the optimization action delay and avoid 

unnecessary optimization actions. It has been demonstrated that the proposed 

knowledge-based method can be an effective way for event space establishment. 

However, the knowledge-based method only has qualitative evaluations upon the state 

transitions. The event and threshold selections may require extensive efforts, and 

sometimes are tedious. Besides, only general events can be found.  

 

(2) Data-based method and its performance 
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When the well-developed knowledge is not available, the data-based method can be 

used since the building operational data contains meaningful information about the 

building operational patterns. The random forest algorithm was adopted to compute 

the variable importance corresponding to the optimization reward. The optimization 

reward was estimated by the Euclidean distance of adjacent decision variable vectors 

in a quantitative way. Some new events that are not discovered using the prior 

knowledge can be found from the operational data. Results show that, using the 

discovered events, the overall energy and computational performances are both higher 

than the TDO benchmark. The data-based method enables the easy selections of state 

transitions and event thresholds. Additionally, the data mining technique also makes 

the event space customizable for the targeted system. Thus, the data-based method 

can be a good supplement for the knowledge-based method when human prior 

knowledge is limited. The limitation of this method is that it requires enough 

operational data. 

 

In summary, three methods were developed for state transition identification, which 

can be used in different situations. These methods are useful to improve the 

performance of EDO designs. The direct method, developed based on the SCOP 

deviation, is simple, effective and controllable. However, it requires the explicit 
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model of the optimization objective, which may not be available in most of the 

complex HVAC systems. When the direct method cannot be used, the indirect 

methods can be used as alternatives. The knowledge-based method can be used to 

define general events for typical HVAC systems when the prior knowledge is 

applicable. The data-based method is applicable in any systems for which the 

operational data are available and allows events to be customized for the targeted 

system.  

 

8.2 Conclusions: Main Contributions of Thesis 

The presented thesis makes the following main contributions.  

(1) The EDO framework is established for HVAC systems, which provides the 

infrastructure for the realization of the EDO. Event attributes are synthesized and 

event types are categorized for the first time in HVAC systems, which can help people 

to understand the nature of events. The developed EDO framework provides a good 

alternative to the traditional TDO mechanism when facing with stochastic system 

dynamics and enriches the HVAC optimal control techniques. 

 

(2) An EDO design procedure is proposed to establish the {event, policy, action} 

structure. The methodology for event space establishment is developed, and three 
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methods are developed to identify important state transitions from different aspects. 

These methods enable much convenience and effectiveness in selecting suitable 

events and event thresholds for different situations of practical HVAC applications. It 

is also beneficial for engineers or building operators to identify key operational 

patterns of the system from the event-driven point of view. The contributions of the 

individual method are presented as below.  

 

 The SCOP-deviation-based method can mimic the desired state trajectory directly 

by capturing both transient and accumulated forms of SCOP deviations. It is 

effective, controllable and simple to implement. The robustness can also be 

ensured for different load types, e.g. steep load profiles or slow-change load 

profiles. The limitation is that it requires the explicit model of the optimization 

objective. However, it is still a general method and can be applicable in other 

industrial systems where SCOP is the main concern.  

 

 A knowledge-based method utilizes the prior knowledge to identify important state 

transitions. Since no numerical techniques are involved, the knowledge-based 

method is straightforward and easy to implement when prior knowledge is 

available. In the case study, the general events that can be used in the EDO are 



151 
 

identified. These events are useful for building operators to construct the HVAC 

operation strategies in an event-driven manner.  

 

 A data-based method is proposed to explore the building operational data for state 

transition identification. The Euclidean distance of decision variable vectors is 

proposed as a basis for estimating the corresponding optimization reward. The 

data-based method enables the discovery of new events and the easy identifications 

of state transitions and event thresholds. In addition, it also makes the event space 

customizable for the targeted system, which is beneficial for further improvement 

of the optimization performance of EDO. The data-based method is a good 

supplement for the knowledge-based method when the human prior knowledge is 

inadequate. Apart from its use in EDO, the data-based method can help the users or 

building operators to identify the key state transitions, and thus improving the 

existing operation strategies. The developed data-based method requires minor 

efforts and would have more applications with the increasing amount of building 

operational data. 

 

(3) Comprehensive optimization performance analyses of typical events in HVAC 

systems are performed. General events are identified and studied in a typical HVAC 
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system. These results can be used to guide the design of EDO in typical HVAC 

systems. Some guidelines are summarized here. 

 

 Important events in typical HVAC systems are: chiller sequence change, 

part-load-ratio change, the average enthalpy difference between the specific 

saturated (at inlet and outlet cooling water temperature) and bulk air, chilled-water 

mass flow rate change. These events can be used and extended to improve the 

operating efficiencies of similar systems. 

 

 The ill-designed EDO can increase the computation or deteriorate the energy 

efficiency, especially when the operational condition is extreme or fluctuating. 

Thus, events and event thresholds need to be carefully selected in the design stage 

in order to prevent the unfavorable optimization actions, such as the frequent event 

triggering. Prior to the implementation of the EDO design, it is also necessary to 

evaluate the performance in different aspects, such as the energy efficiency, 

computational efficiency and robustness under different event thresholds or 

operation scenarios. 

 

 Using multiple events often have a better optimization performance than using 
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single event since more critical state transitions are captured. However, the 

potential event duplications should be avoided since it is unnecessary to repeat the 

optimization actions. 

 

8.3 Limitations and Future Work 

The limitations and possible future work are summarized as follows. 

(1) It should be noted that the validation of the presented work is limited to a 

simulated case system, in which the air-side system is simplified. The identified 

events come from the system and operational environment, while the human side is 

not studied. More sophisticated systems and events from occupants need be 

investigated in the future. In addition, the in-situ implementation and validation of the 

developed EDO strategy should be performed.   

 

(2) “Local events” can be used. For instance, if one event is observed at one building 

zone, it may not be necessary to optimize the entire system. Probably, an action at the 

corresponding local system will solve the optimal control problem very well, which 

also saves computation and reduces the fluctuations. Actually, this idea originates 

from the study by Wu, Jia and Guan (2015) in which they call it the local-event-based 
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approach. The approach they developed is still simple, and thus further investigations 

can be done in the future.  

 

(3) This thesis does not answer the second fundamental question in Chapter 2, i.e. the 

selection of the optimization action. To simplify the problem, only the default action 

is used in the case study, i.e. optimization all the decision variables. However, the 

choice of decision variables can also be optimized according to the operational 

conditions. It is beneficial to allow some degree of freedom in the decision variable 

resetting, i.e. relax the optimization action. For instance, assume there are four 

decision variables. In principle, all the four decision variables should be updated at 

the same time to make sure the performance is optimal. However, in the premise of 

not deteriorating the optimization performance, two or three decision variables can be 

updated while the others are kept unchanged. The direct benefit is that the required 

computation is much less than updating all the four decision variables due to the 

reduced dimension of the search space. Meanwhile, the response time can be quicker, 

which is beneficial to the optimization performance. How to balance the performance 

decrease result from the relaxed optimization action and the performance increase 

result from the quicker response is an interesting question. Thus, it is worthwhile to 

investigate the optimal selection of the optimization action in the future.  
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(4) The event threshold can be a fixed value or a variable value. In the case study, the 

event threshold is predefined and keeps unchanged in the operation period as the main 

purpose is to demonstrate the methodology. It is interesting to study the adaptive 

event threshold as a variable threshold could be more adaptable than a fixed threshold 

in a dynamic environment. The selection of event threshold is critical as bad 

selections it may cause unstable performance. For instance, when the state variable 

fluctuate and the threshold is defined near the fluctuating point, the system may 

become unstable due to the frequent event triggering and optimization. This should be 

carefully prevented at the design stage. 

 

(5) As there will be cases that some events happen physically, but the system may not 

be able to observe. For these unobservable events, how to make the reliable inference 

based on observed data is an interesting issue. Besides, in principle, different event 

types should have different event identification methods. This is an implementation 

issue and is worthwhile to investigate in the future.   

 

(6) It is possible that several events will happen simultaneously in a complex system.   



156 
 

For instance, considering a complex building energy system incorporating with 

renewable energy systems and power grids, if several events happened at the same 

time, how to react to simultaneous events would be a challenging problem. One way 

is to execute the action based on the event priorities. Higher event priority can be 

given to those events with “higher” optimization reward. 

 

With the wide use of BASs, the realization of EDO is not difficult provided that the 

events, actions and policy are well identified and suitably defined. While this thesis 

has established an EDO framework and addressed the critical part (i.e. event space 

establishment), there are still many open problems in the field of EDO. Further 

research efforts are required to enrich the research of EDO and improve its 

practicability in HVAC systems. 

  



157 
 

REFERENCES 

A˚ström, K.J. & Kumar, P.R. 2014, "Control: A perspective", Automatica, vol. 50, no. 
1, pp. 3-43. 

Abou-Ziyan, H.Z. & Alajmi, A.F. 2014, "Effect of load-sharing operation strategy on 
the aggregate performance of existed multiple-chiller systems", Applied Energy, 
vol. 135, pp. 329-338. 

Afram, A. & Janabi-Sharifi, F. 2014, "Review of modeling methods for HVAC 
systems", Applied Thermal Engineering, vol. 67, no. 1, pp. 507-519. 

Ahmad, M.W., Mourshed, M., Yuce, B. & Rezgui, Y. 2016, "Computational 
intelligence techniques for HVAC systems: A review", Building 
SimulationSpringer, , pp. 359. 

Ahn, B.C. & Mitchell, J.W. 2001, "Optimal control development for chilled water 
plants using a quadratic representation", Energy and Buildings, vol. 33, no. 4, pp. 
371-378. 

Anta, A. & Tabuada, P. 2010, "To sample or not to sample: Self-triggered control for 
nonlinear systems", IEEE Transactions on Automatic Control, vol. 55, no. 9, pp. 
2030-2042. 

Araújo, J., Mazo, M., Anta, A., Tabuada, P. & Johansson, K.H. 2014, "System 
architectures, protocols and algorithms for aperiodic wireless control systems", 
IEEE Transactions on Industrial Informatics, vol. 10, no. 1, pp. 175-184. 

Archer, K.J. & Kimes, R.V. 2008, "Empirical characterization of random forest 
variable importance measures", Computational Statistics & Data Analysis, vol. 
52, no. 4, pp. 2249-2260. 

Arzén, K. 1999, "A simple event-based PID controller", Proc. 14th IFAC World 
Congress, pp. 423. 

Asad, H.S., Yuen, R.K.K. & Huang, G. 2017, "Multiplexed real-time optimization of 
HVAC systems with enhanced control stability", Applied Energy, vol. 187, pp. 
640-651. 



158 
 

Asad, H.S., Yuen, R.K.K. & Huang, G. 2016, "Degree of freedom based set-point 
reset scheme for HVAC real-time optimization", Energy and Buildings, vol. 128, 
pp. 349-359. 

ASHRAE 2015, "CHAPTER 42 SUPERVISORY CONTROL STRATEGIES AND 
OPTIMIZATION" in ASHRAE Handbook - HVAC Applications., SI ed edn, USA: 
ASHRAE Inc., Atlanta. 

Aste, N., Manfren, M. & Marenzi, G. 2016, "Building Automation and Control 
Systems and performance optimization: A framework for analysis", Renewable 
and Sustainable Energy Reviews, . 

Aström, K.J. 2008, "Event based control" in Analysis and design of nonlinear control 
systems Springer, , pp. 127-147. 

Astrom, K.J. & Bernhardsson, B.M. 2002, "Comparison of Riemann and Lebesgue 
sampling for first order stochastic systems", Decision and Control, 2002, 
Proceedings of the 41st IEEE Conference onIEEE, , pp. 2011. 

Beale, M.H., Hagan, M.T. & Demuth, H.B. 2017, Neural Network Toolbox™ User's 
Guide, The MathWorks, Inc., Natick, MA. 

Bernhardsson, B. & Aström, K. 1999, "Comparison of periodic and event based 
sampling for first-order stochastic systems", Preprints of the 14th IFAC World 
Congress. 

Braun, J.E. 2014, "Building Control Systems" in Encyclopedia of Systems and 
Control, eds. B. John & S. Tariq, Springer London, , pp. 1. 

Braun, J.E., Klein, S.A., Beckman, W.A. & Mitchell, J.W. 1989, "Methodologies for 
optimal control of chilled water systems without storage", ASHRAE Transactions, 
vol. 95, pp. 652-662. 

Braun, J. & Diderrich, G. 1990, "Near-optimal control of cooling towers for 
chilled-water systems", ASHRAE Transactions (American Society of Heating, 
Refrigerating and Air-Conditioning Engineers);(United States), vol. 96, no. 
CONF-9006117--. 

Breiman, L. 2001, "Random forests", Machine Learning, vol. 45, no. 1, pp. 5-32. 



159 
 

Breiman, L., Cutler, A., Liaw, A. & Wiener, M. 2015, Breiman and Cutler's Random 
Forests for Classification and Regression. 

Bylander, T. 2002, "Estimating generalization error on two-class datasets using 
out-of-bag estimates", Machine Learning, vol. 48, no. 1-3, pp. 287-297. 

Cai, J. & Braun, J.E. 2015, "A generalized control heuristic and simplified model 
predictive control strategy for direct-expansion air-conditioning systems", 
Science and Technology for the Built Environment, vol. 21, no. 6, pp. 773-788. 

Cai, J. 2015, A low cost multi-agent control approach for building energy system 
management, Purdue University. 

Cao, X., Zhao, Y., Jia, Q. & Zhao, Q. 2013, "An Introduction to Event ‐Based 

Optimization: Theory and Applications", Reinforcement Learning and 
Approximate Dynamic Programming for Feedback Control, , pp. 432-451. 

Cao, X. 2007, Stochastic learning and optimization: a sensitivity-based approach, 
Springer. 

Cassandras, C.G. 2014, "The event-driven paradigm for control, communication and 
optimization", Journal of Control and Decision, vol. 1, no. 1, pp. 3-17. 

Cassandras, C.G. & Lafortune, S. 2009, Introduction to discrete event systems, 
Springer Science & Business Media. 

Chang, Y., Chen, W., Lee, C. & Huang, C. 2006, "Simulated annealing based optimal 
chiller loading for saving energy", Energy Conversion and Management, vol. 47, 
no. 15, pp. 2044-2058. 

Chang, C., Shieh, S., Jang, S., Wu, C. & Tsou, Y. 2015, "Energy conservation 
improvement and ON–OFF switch times reduction for an existing 
VFD-fan-based cooling tower", Applied Energy, vol. 154, pp. 491-499. 

Cooling Technology Institute 2016, STD-201 Thermal Certification. 

Cumali, Z. 1994, "Application of real-time optimization to building systems", 
ASHRAE Transactions, vol. 100, no. 1. 



160 
 

Darby, M.L., Nikolaou, M., Jones, J. & Nicholson, D. 2011, "RTO: An overview and 
assessment of current practice", Journal of Process Control, vol. 21, no. 6, pp. 
874-884. 

Davidsson, P. & Boman, M. 2005, "Distributed monitoring and control of office 
buildings by embedded agents", Information Sciences, vol. 171, no. 4, pp. 
293-307. 

Drees, K.H. & Braun, J.E. 1996, "Development and evaluation of a rule-based control 
strategy for ice storage systems", HVAC&R Research, vol. 2, no. 4, pp. 312-334. 

El Gamal, A., Nair, C., Prabhakar, B., Uysal-Biyikoglu, E. & Zahedi, S. 2002, 
"Energy-efficient scheduling of packet transmissions over wireless networks", 
INFOCOM 2002. Twenty-First Annual Joint Conference of the IEEE Computer 
and Communications Societies.IEEE, , pp. 1773. 

Evans, L.C. 2005, "An introduction to mathematical optimal control theory", Lecture 
Notes, University of California, Department of Mathematics, Berkeley, . 

Fan, C., Xiao, F., Madsen, H. & Wang, D. 2015, "Temporal knowledge discovery in 
big BAS data for building energy management", Energy and Buildings, vol. 109, 
pp. 75-89. 

Fisk, D. 2013, "Optimising heating system structure using exergy Branch and Bound", 
Building Services Engineering Research and Technology, , pp. 
0143624413489891. 

Fong, K.F., Hanby, V.I. & Chow, T. 2009, "System optimization for HVAC energy 
management using the robust evolutionary algorithm", Applied Thermal 
Engineering, vol. 29, no. 11, pp. 2327-2334. 

Fong, K.F., Hanby, V.I. & Chow, T. 2006, "HVAC system optimization for energy 
management by evolutionary programming", Energy and Buildings, vol. 38, no. 3, 
pp. 220-231. 

Fülöp, J. 2005, "Introduction to decision making methods", BDEI-3 workshop, 
WashingtonCiteseer, . 

Guan, X., Zhao, Q., Jia, Q.S., Wu, J. & Liu, T. 2016, Cyber-Physical Energy 
Systems (in Chinese), China Science Press, Beijing, China. 



161 
 

Han, J., Pei, J. & Kamber, M. 2011, Data mining: concepts and techniques, Elsevier. 

Heemels, W., Gorter, R., Van Zijl, A., Van den Bosch, P., Weiland, S., Hendrix, W. & 
Vonder, M. 1999, "Asynchronous measurement and control: a case study on 
motor synchronization", Control Engineering Practice, vol. 7, no. 12, pp. 
1467-1482. 

Heemels, W., Johansson, K.H. & Tabuada, P. 2015, "Event-triggered and 
self-triggered control", Encyclopedia of Systems and Control, , pp. 384-391. 

Heemels, W., Sandee, J. & Van Den Bosch, P. 2008, "Analysis of event-driven 
controllers for linear systems", International Journal of Control, vol. 81, no. 4, 
pp. 571-590. 

Hendricks, E., Jensen, M., Chevalier, A. & Vesterholm, T. 1994, "Problems in event 
based engine control", American Control Conference, 1994IEEE, , pp. 1585. 

Henningsson, T., Johannesson, E. & Cervin, A. 2008, "Sporadic event-based control 
of first-order linear stochastic systems", Automatica, vol. 44, no. 11, pp. 
2890-2895. 

Hinze, A., Sachs, K. & Buchmann, A. 2009, "Event-based applications and enabling 
technologies", Proceedings of the Third ACM International Conference on 
Distributed Event-Based SystemsACM, , pp. 1. 

Hordeski, M.F. 2001, HVAC control in the new millennium, CRC Press. 

Hosmer Jr, D.W., Lemeshow, S. & Sturdivant, R.X. 2013, Applied logistic regression, 
John Wiley & Sons. 

Huang, G., Wang, S. & Sun, Y. 2008, "Enhancing the reliability of chiller control 
using fused measurement of building cooling load", HVAC&R Research, vol. 14, 
no. 6, pp. 941-958. 

Huang, S. & Zuo, W. 2014, "Optimization of the water-cooled chiller plant system 
operation", American Society of Heating, Refrigeration, and Air-Conditioning 
Engineers (ASHRAE). 

Huang, P., Huang, G. & Wang, Y. 2015, "HVAC system design under peak load 
prediction uncertainty using multiple-criterion decision making technique", 
Energy and Buildings, vol. 91, pp. 26-36. 



162 
 

Huang, S., Zuo, W. & Sohn, M.D. 2017, "Improved cooling tower control of legacy 
chiller plants by optimizing the condenser water set point", Building and 
Environment, vol. 111, pp. 33-46. 

Huang, S., Zuo, W. & Sohn, M.D. 2016, "Amelioration of the cooling load based 
chiller sequencing control", Applied Energy, vol. 168, pp. 204-215. 

Hussain, S., Gabbar, H.A., Bondarenko, D., Musharavati, F. & Pokharel, S. 2014, 
"Comfort-based fuzzy control optimization for energy conservation in HVAC 
systems", Control Engineering Practice, vol. 32, pp. 172-182. 

Jia, Q. 2014, "A brief tutorial on event-based optimization with applications in smart 
buildings", Proceeding of the 11th World Congress on Intelligent Control and 
Automation, pp. 1292. 

Kusiak, A., Li, M. & Tang, F. 2010, "Modeling and optimization of HVAC energy 
consumption", Applied Energy, vol. 87, no. 10, pp. 3092-3102. 

Lam, J.C. & Hui, S.C. 1995, "Outdoor design conditions for HVAC system design 
and energy estimation for buildings in Hong Kong", Energy and Buildings, vol. 
22, no. 1, pp. 25-43. 

Lam, J.C., Wan, K.K.W. & Cheung, K.L. 2009, "An analysis of climatic influences on 
chiller plant electricity consumption", Applied Energy, vol. 86, no. 6, pp. 
933-940. 

Lebrun, J., Silva, C.A., Trebilcock, F. & Winandy, E. 2004, "Simplified models for 
direct and indirect contact cooling towers and evaporative condensers", Building 
Services Engineering Research and Technology, vol. 25, no. 1, pp. 25-31. 

Li, G., Hu, Y., Chen, H., Li, H., Hu, M., Guo, Y., Liu, J., Sun, S. & Sun, M. 2017, 
"Data partitioning and association mining for identifying VRF energy 
consumption patterns under various part loads and refrigerant charge conditions", 
Applied Energy, vol. 185, pp. 846-861. 

Li, H. & Shi, Y. 2014, "Event-triggered robust model predictive control of 
continuous-time nonlinear systems", Automatica, vol. 50, no. 5, pp. 1507-1513. 

Li, L., Ho, D.W., Zou, Y., Huang, C. & Lu, J. 2013, "Event-trigged control for 
discrete-time multi-agent networks", Control Conference (ASCC), 2013 9th 
AsianIEEE, , pp. 1. 



163 
 

Li, Q., Meng, Q., Cai, J., Yoshino, H. & Mochida, A. 2009, "Predicting hourly cooling 
load in the building: a comparison of support vector machine and different 
artificial neural networks", Energy Conversion and Management, vol. 50, no. 1, 
pp. 90-96. 

Liao, Y., Huang, G., Sun, Y. & Zhang, L. 2014, Uncertainty analysis for chiller 
sequencing control. 

Liaw, A. & Wiener, M. 2002, "Classification and regression by randomForest", R 
news, vol. 2, no. 3, pp. 18-22. 

Liu, Q., Wang, Z., He, X. & Zhou, D. 2014, "A survey of event-based strategies on 
control and estimation", Systems Science & Control Engineering: An Open 
Access Journal, vol. 2, no. 1, pp. 90-97. 

Lunze, J. & Lehmann, D. 2010, "A state-feedback approach to event-based control", 
Automatica, vol. 46, no. 1, pp. 211-215. 

Ma, Z. 2008, Online supervisory and optimal control of complex building central 
chilling systems, The Hong Kong Polytechnic University. 

Ma, Z. & Wang, S. 2009, "An optimal control strategy for complex building central 
chilled water systems for practical and real-time applications", Building and 
Environment, vol. 44, no. 6, pp. 1188-1198. 

Ma, Z. & Wang, S. 2011, "Supervisory and optimal control of central chiller plants 
using simplified adaptive models and genetic algorithm", Applied Energy, vol. 88, 
no. 1, pp. 198-211. 

Meyer, D., Leisch, F. & Hornik, K. 2003, "The support vector machine under test", 
Neurocomputing, vol. 55, no. 1, pp. 169-186. 

Miller, C., Nagy, Z. & Schlueter, A. 2015, "Automated daily pattern filtering of 
measured building performance data", Automation in Construction, vol. 49, pp. 
1-17. 

Miskowicz, M. & Lunze, J. 2015, "Event-Based Control: Introduction and Survey" in 
Event-Based Control and Signal Processing CRC Press, , pp. 3-20. 



164 
 

Mossolly, M., Ghali, K. & Ghaddar, N. 2009, "Optimal control strategy for a 
multi-zone air conditioning system using a genetic algorithm", Energy, vol. 34, 
no. 1, pp. 58-66. 

Nassif, N., Kajl, S. & Sabourin, R. 2005, "Optimization of HVAC control system 
strategy using two-objective genetic algorithm", HVAC&R Research, vol. 11, no. 
3, pp. 459-486. 

Okochi, G.S. & Yao, Y. 2016, "A review of recent developments and technological 
advancements of variable-air-volume (VAV) air-conditioning systems", 
Renewable and Sustainable Energy Reviews, vol. 59, pp. 784-817. 

Pérez-Lombard, L., Ortiz, J. & Pout, C. 2008, "A review on buildings energy 
consumption information", Energy and Buildings, vol. 40, no. 3, pp. 394-398. 

Sandee, J., Heemels, W. & Van Den Bosch, P. 2007, "Case studies in event-driven 
control" in Hybrid Systems: computation and control Springer, , pp. 762-765. 

Sandee, J.H. 2006, Event-driven control in theory and practice: Trade-offs in software 
and control performance, Technische Universiteit Eindhoven (The Netherlands). 

Shaikh, P.H., Nor, N.B.M., Nallagownden, P., Elamvazuthi, I. & Ibrahim, T. 2014, "A 
review on optimized control systems for building energy and comfort 
management of smart sustainable buildings", Renewable and Sustainable Energy 
Reviews, vol. 34, pp. 409-429. 

Stark, W., Wang, H., Worthen, A., Lafortune, S. & Teneketzis, D. 2002, "Low-energy 
wireless communication network design", IEEE Wireless Communications, vol. 9, 
no. 4, pp. 60-72. 

Suganthi, L., Iniyan, S. & Samuel, A.A. 2015, "Applications of fuzzy logic in 
renewable energy systems–a review", Renewable and Sustainable Energy 
Reviews, vol. 48, pp. 585-607. 

Sun, B., Luh, P.B., Jia, Q. & Yan, B. 2015, "Event-Based Optimization Within the 
Lagrangian Relaxation Framework for Energy Savings in HVAC Systems", IEEE 
Transactions on Automation Science and Engineering, vol. 12, no. 4, pp. 
1396-1406. 

Sun, B., Luh, P.B., Jia, Q. & Yan, B. 2013a, "Event-based optimization with 
non-stationary uncertainties to save energy costs of HVAC systems in buildings", 



165 
 

Automation Science and Engineering (CASE), 2013 IEEE International 
Conference onIEEE, , pp. 436. 

Sun, J. & Reddy, A. 2005, "Optimal control of building HVAC&R systems using 
complete simulation-based sequential quadratic programming (CSB-SQP)", 
Building and Environment, vol. 40, no. 5, pp. 657-669. 

Sun, Y., Huang, G., Li, Z. & Wang, S. 2013b, "Multiplexed optimization for complex 
air conditioning systems", Building and Environment, vol. 65, pp. 99-108. 

Sun, Y., Wang, S. & Xiao, F. 2013, "In situ performance comparison and evaluation of 
three chiller sequencing control strategies in a super high-rise building", Energy 
and Buildings, vol. 61, pp. 333-343. 

Svetnik, V., Liaw, A., Tong, C., Culberson, J.C., Sheridan, R.P. & Feuston, B.P. 2003, 
"Random forest: a classification and regression tool for compound classification 
and QSAR modeling", Journal of chemical information and computer sciences, 
vol. 43, no. 6, pp. 1947-1958. 

Tang, F., Kusiak, A. & Wei, X. 2014, "Modeling and short-term prediction of HVAC 
system with a clustering algorithm", Energy and Buildings, vol. 82, pp. 310-321. 

The R Foundation R: A language and environment for statistical computing. 

U.S. Department of Energy 2016, International Energy Outlook 2016, U.S. Energy 
Information Administration, Washington, DC. 

van Moeseke, G., Bruyère, I. & De Herde, A. 2007, "Impact of control rules on the 
efficiency of shading devices and free cooling for office buildings", Building and 
Environment, vol. 42, no. 2, pp. 784-793. 

Wang, S. 1998, "Dynamic simulation of a building central chilling system and 
evaluation of EMCS on-line control strategies", Building and Environment, vol. 
33, no. 1, pp. 1-20. 

Wang, S. & Burnett, J. 1998, "Variable-air-volume air-conditioning systems: Optimal 
reset of static pressure setpoint", Building Services Engineering Research and 
Technology, vol. 19, no. 4, pp. 219-231. 

Wang, S. & Ma, Z. 2008, "Supervisory and optimal control of building HVAC 
systems: a review", HVAC&R Research, vol. 14, no. 1, pp. 3-32. 



166 
 

Wang, J., Huang, G., Sun, Y. & Liu, X. 2016, "Event-driven optimization of complex 
HVAC systems", Energy and Buildings, vol. 133, pp. 79-87. 

Windham, A. & Treado, S. 2016, "A review of multi-agent systems concepts and 
research related to building HVAC control", Science and Technology for the Built 
Environment, vol. 22, no. 1, pp. 50-66. 

Wu, Z., Jia, Q. & Guan, X. 2016, "Optimal control of multiroom HVAC system: An 
event-based approach", IEEE Transactions on Control Systems Technology, vol. 
24, no. 2, pp. 662-669. 

Wu, Z., Jia, Q. & Guan, X. 2015, "Local and global event-based optimization: 
Performace and complexity", Automation Science and Engineering (CASE), 2015 
IEEE International Conference onIEEE, , pp. 1375. 

Wu, Z., Jia, Q. & Guan, X. 2014, "Event-based optimization for multi-room HVAC 
system", Control Conference (CCC), 2014 33rd ChineseIEEE, , pp. 3927. 

Xia, L., Jia, Q. & Cao, X. 2014, "A tutorial on event-based optimization—a new 
optimization framework", Discrete Event Dynamic Systems, vol. 24, no. 2, pp. 
103-132. 

Xiao, F. & Fan, C. 2014, "Data mining in building automation system for improving 
building operational performance", Energy and Buildings, vol. 75, pp. 109-118. 

Xu, W., Ho, D.W., Li, L. & Cao, J. 2017, "Event-triggered schemes on 
leader-following consensus of general linear multiagent systems under different 
topologies", IEEE transactions on cybernetics, vol. 47, no. 1, pp. 212-223. 

Yao, Y., Lian, Z., Hou, Z. & Zhou, X. 2004, "Optimal operation of a large cooling 
system based on an empirical model", Applied Thermal Engineering, vol. 24, no. 
16, pp. 2303-2321. 

You, K. & Xie, L. 2013, "Survey of Recent Progress in Networked Control Systems", 
Acta Automatica Sinica, vol. 39, no. 2, pp. 101-108. 

Yu, F., Ho, W., Chan, K. & Sit, R. 2017, "Critique of operating variables importance 
on chiller energy performance using random forest", Energy and Buildings, vol. 
139, pp. 653-664. 



167 
 

Yu, Z., Haghighat, F., Fung, B.C. & Yoshino, H. 2010, "A decision tree method for 
building energy demand modeling", Energy and Buildings, vol. 42, no. 10, pp. 
1637-1646. 

Yu, F.W. & Chan, K.T. 2010, "Economic benefits of optimal control for water-cooled 
chiller systems serving hotels in a subtropical climate", Energy and Buildings, 
vol. 42, no. 2, pp. 203-209. 

Yu, F.W. & Chan, K.T. 2008, "Optimization of water-cooled chiller system with 
load-based speed control", Applied Energy, vol. 85, no. 10, pp. 931-950. 

Zaheer-uddin, M. & Zheng, G.R. 2000, "Optimal control of time-scheduled heating, 
ventilating and air conditioning processes in buildings", Energy Conversion and 
Management, vol. 41, no. 1, pp. 49-60. 

Zhang, J. & Feng, G. 2014, "Event-driven observer-based output feedback control for 
linear systems", Automatica, vol. 50, no. 7, pp. 1852-1859. 

Zhong, M. & Cassandras, C.G. 2010, "Asynchronous distributed optimization with 
event-driven communication", IEEE Transactions on Automatic Control, vol. 55, 
no. 12, pp. 2735-2750. 

  

  



168 
 

APPENDIX 

Appendix A – Component Models 

A.1 Chiller performance model 

A simplified physical chiller model was used to predict the power consumption (Pch) 

after the variables of condenser inlet water temperature, evaporator cooling energy 

and its outlet water temperature set-point were given. The overall heat transfer 

coefficients of the evaporator and condenser (UAev , UAcd) were needed for calculation 

of the refrigerant vapor compression power (Pcom) and they were calculated in Eq. 

(A.1) and (A.2) respectively (Ma, Wang 2009). The chiller power consumption (Pch) 

was estimated based on Pcom, as in Eq. (A.3). The nine parameters (c1-9) used in the 

model can be identified using a regression approach (Huang, Wang & Sun 2008).  

 

evevevw UAcQcMc /13
745.0

2
8.0

,1 =++ −−  (A.1) 

( ) cdchevevw UAcPQcMc /16
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5
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,4 =+++−  (A.2) 

2
987 comcomch PcPccP ++=  (A.3) 

 

where Mw,ev and Qev are chilled water flow rate and chiller supplied cooling 

respectively.  
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A.2 Cooling tower performance model 

In this study, a simplified cooling tower model developed by (Lebrun et al. 2004) was 

used to estimate the required air flow rate (Ma) for maintaining the cooling water 

supply temperature at its set-point. Eq. (A.4) was used to predict the needed air flow 

rate (Ma). Cp,af was the fictitious air specific heat which was computed by Eq. (A.5). 

Model parameters D0, m and n can be identified using a regression approach. 

 

( ) ( ) ( )apafp
n

desaa
m

desww CCMMMMDUA ,,,,0 ///=  (A.4) 

inwboutwbinaoutaafp TThhC ,,,,, / −−=  (A.5) 

 

where M is mass flow rate, T is temperature and h represents enthalpy; subscripts w, a, 

des and wb are water, air, designed value and wet bulb temperature respectively. 

 

A.3 AHU coil performance model 

The performance model of AHU coil was shown in Eq. (A.6) and (A.7). The 

relationship between the water temperatures and the air temperatures was 

approximated as Eq. (A.6) where coefficient α can be identified using the data from 

the constructed platform.  
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AHUinwAHUoutairAHUoutw TTT ,,,,,, −=a  (A.6) 

( )AHUinwAHUoutwpAHUw TTCQM ,,,,, / −=  (A.7) 

 

where Q is the building cooling load; Cp is the water specific heat; M is mass flow 

rate and T is temperature; subscripts w, air, in and out are water, air, inlet and outlet 

respectively.  

 

A.4 Heat exchanger performance model 

The heat exchanger performance model was used to predict the required chilled water 

flow rate (Mw,prm,HX) and outlet water temperature (Tout,prm,HX) at the primary side as 

shown in Eq. (A.8) and (A.9).  

 

( )HXprminHXinwpHXprmw TTCQM ,,sec,,,,, / −=  (A.8) 

HXprmwwpHXprminHXprmout MCQTT ,,,,,,, /+=  (A.9) 

 

where Cp,w is the water specific heat; subscripts HX, prm and sec are heat exchanger, 

primary side and secondary side; others are same with above.  
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A.5 Pump and fan performance models 

The power consumptions (P) of the cooling tower fans and the variable speed water 

pumps were estimated simply using the affinity law, as shown in Eq. (A.10). For 

simplicity, the coefficient β took the value 0.6 for fans and 3 for pumps in this study. 

3MP β=  (A.10)  
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Appendix B – TRNSYS Settings 

 

Table A.1 Major TRNSYS settings in “control cards” 

Item Value Unit 

Simulation start time 0 min 

Simulation stop time 1440 min 

Simulation time step 30 s 

Solution method Successive / 

The minimum relaxation factor 1 / 

The maximum relaxation factor 1 / 

Equation solver 0 / 

Equation trace False / 

Debug mode False / 

Tolerance integration 0.001 dimensionless 

Tolerance convergence 0.001 dimensionless 

Tolerance value Absolute / 
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Appendix C – Calculation of "∆𝐡" 

 

"∆h" is the average difference between the specific enthalpies of saturated (at inlet 

and outlet cooling water temp.) and bulk air. Since the case study of this thesis uses 

the spring, summer and autumn operation scenarios in Hong Kong, the corresponding 

outdoor air temperatures are listed in (Lam, Hui 1995) Table A.2. The averages 

dry-bulb and wet-bulb temperatures from April to November were used as the outdoor 

air condition. In Table A.3, the enthalpy difference was calculated in a reverse way to 

find the lower bound, where the bulk air condition was assumed to be constant in the 

cooling tower for the sake of calculation convenience; the outlet cooling water 

temperature is selected by adding a 2.8 ºC approach to the average wet-bulb 

temperature (from Table A.2); the inlet cooling water temperature is selected by 

applying a 5 ºC range to the outlet cooling water temperature.  

 

Table A.2 Monthly average dry-bulb and wet-bulb temperatures of Hong Kong 

(45-year data)  

 Apr May Jun Jul Aug Sep Oct Nov Ave 

Tdb(ºC) 22 25.8 27.6 28.6 28.3 27.5 25 21.2 25.8  

Twb(ºC) 20.1 23.7 25.4 26 25.8 24.7 21.1 17.7 23.1  
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Table A.3 Enthalpy difference calculation 

Parameter 

Name 

𝐓𝐝𝐝(ºC)   RH (%) Enthalpy 

(kJ/kg) 

Enthalpy 

difference from 

bulk air (kJ/kg) 

Remark 

Bulk air 25.8  

80  

(Twb=23.1º

C)  

69 / 
Data from Table 

A.2 

Inlet cooling 

water temp. 30.9 100 104 35 
30.9 = 25.9 + 5 

(ºC) 

Outlet 

cooling 

water temp. 

25.9 100 80 11 
25.9 = 23.1 + 2.8 

(ºC) 

Average 

enthalpy 

difference 

𝟑𝟑+𝟏𝟏
𝟐

= 𝟐𝟐 (kJ/kg) 

(Note: “temp.” = “temperature”) 
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Appendix D – Energy and Computational Performances of Different Events 

Table A.4 Energy and computational performances of different optimization methods 

(autumn case) 

Op. methods EC (Kwh) ES 
Triggering 

times 
CT(s) CS 

Event 

threshold 

No Op. 132416 N/A 0 N/A N/A 
 

15 mins 120429 9.05% 96 109.8 0.00% 
 

Ch. On/Off 125437 5.27%# 4 6.69 93.91%^ 
 

   
 

   
PLR Change 120169 9.85% 36 36.44 66.81% 7% 
PLR Change 120455 9.00% 30 33.37 69.61% 8% 
PLR Change 120646 8.80% 29 28.85 73.72% 9% 
PLR Change 120724 8.80% 25 24.17 77.99% 10% 
PLR Change 120891 8.72% 22 22.28 79.71% 11% 
PLR Change 120891 8.67% 20 20.43 81.39% 12% 
PLR Change 120891 8.61% 20 20.43 81.39% 13% 

Average 
 

8.92%  
 

75.80% 
 

STD  0.08%   3.19%  

   
 

   
Twb Change 121386 8.33% 27 25.57 76.71% 0.1 ºC 
Twb Change 121521 8.23% 13 14.6 86.70% 0.2 ºC 
Twb Change 122087 7.80% 4 5.67 94.84% 0.3 ºC 
Twb Change 123727 6.56% 4 5.67 94.84% 0.4 ºC 
Twb Change 125724 5.05% 3 3.91 96.44% 0.5 ºC 
Twb Change 126672 4.34% 1 2.78 97.47% 0.6 ºC 
Twb Change 126672 4.34% 1 2.78 97.47% 0.7 ºC 

Average 
 

6.38%  
 

92.07% 
 

STD  1.80%   7.72%  

   
 

   
Tapr 123126 7.02% 1 1.31 98.81% 2.8 ºC 
Tapr 121457 8.28% 2 3.23 97.06% 3.2 ºC 
Tapr 121546 8.21% 3 4.76 95.66% 3.6 ºC 
Tapr 121766 8.04% 5 6.88 93.73% 4.0 ºC 
Tapr 121493 8.25% 11 15.70 85.70% 4.4 ºC 
Tapr 121387 8.33% 13 18.60 83.06% 4.8 ºC 
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Tapr 121321 8.38% 30 32.50 70.40% 5.2 ºC 

Average 
 

8.07%  
 

89.20% 
 

STD  0.48%   10.16%  

   
 

   
∆h 121362 8.35% 13 13.12 88.05% 24 kJ/kg 

∆h 121362 8.35% 13 13.12 88.05% 27 kJ/kg 

∆h 120708 8.84% 14 18.50 83.15% 30 kJ/kg 

∆h 120793 8.78% 15 18.93 82.76% 33 kJ/kg 

∆h 121538 8.22% 25 28.40 74.13% 36 kJ/kg 

∆h 120449 9.04% 63 68.37 37.73% 39 kJ/kg 

∆h 120174 9.25% 155 140.30 -27.78% 42 kJ/kg 

Average 
 

8.69%  
 

60.87% 
 

STD  0.39%   42.86%  
 (“Op.” = “Optimization”; “EC” = “Energy Consumption”; “ES” = “Energy Saving”; “CT” = 

“Computation Time”; “CS” = “Computation Saving”; “STD” = “Sample Standard 

Deviation”)  

# Energy saving = (132416−125437)
132416

× 100% = 5.27% 

^ Computation saving = (109.8−6.69)
109.8

× 100% = 93.91% 

 

Table A.5 Energy performances, computational performances and performance scores 

of different optimization methods (summer case)  

Op. methods EC (Kwh) ES Triggering 
times CT(s) CS Event 

threshold 

No Op.  197663 N/A 0 N/A N/A 
 15 mins 177456 10.22% 96 138.9 0.00% 
 Ch. On/Off 182030 7.91% 3 1.83 98.68%  

       
PLR Change 177171 10.37% 45 70.28 49.40% 7% 
PLR Change 177707 10.10% 39 63.59 54.22% 8% 
PLR Change 175522 11.20% 37 60.27 56.61% 9% 
PLR Change 177095 10.41% 32 52.94 61.89% 10% 
PLR Change 177855 10.02% 29 48.04 65.41% 11% 
PLR Change 179201 9.34% 25 46.07 66.83% 12% 
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PLR Change 178668 9.61% 24 44.07 68.27% 13% 

Average  10.15%   60.38%  
STD  0.60%   7.12%  
       
Twb Change 179232 9.32% 28 42.29 69.55% 0.1 ºC 
Twb Change 180479 8.69% 10 15.59 88.78% 0.2 ºC 
Twb Change 182088 7.88% 6 8.03 94.22% 0.3 ºC 
Twb Change 183094 7.37% 3 5.02 96.39% 0.4 ºC 
Twb Change 183392 7.22% 2 3.53 97.46% 0.5 ºC 
Twb Change 183392 7.22% 2 3.53 97.46% 0.6 ºC 
Twb Change 183392 7.22% 2 3.53 97.46% 0.7 ºC 

Average  7.85%   91.62%  
STD  0.85%   10.22%  
       
Tapr  178689 9.60% 9 9.52 93.15% 2.8 ºC 
Tapr  178534 9.68% 10 10.68 92.31% 3.2 ºC 
Tapr  176916 10.50% 11 13.50 90.28% 3.6 ºC 
Tapr  180822 8.52% 35 49.52 64.35% 4.0 ºC 
Tapr  181421 8.22% 51 75.19 45.87% 4.4 ºC 
Tapr  181791 8.03% 83 116.90 15.84% 4.8 ºC 
Tapr  182045 7.90% 153 137.10 1.30% 5.2 ºC 

Average  8.92%   57.58%  
STD  1.00%   37.93%  
       

∆h  180137 8.87% 12 10.81 92.22% 24 kJ/kg 

∆h  180611 8.63% 17 17.00 87.76% 27 kJ/kg 

∆h  178953 9.47% 27 34.15 75.41% 30 kJ/kg 

∆h  174986 11.47% 60 83.59 39.82% 33 kJ/kg 

∆h  178851 9.52% 71 105.00 24.41% 36 kJ/kg 

∆h  176461 10.73% 74 109.20 21.38% 39 kJ/kg 

∆h  177619 10.14% 91 120.20 13.46% 42 kJ/kg 

Average  9.83%   50.64%  
STD  1.02%   33.58%  
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Table A.6 Energy performances, computational performances and performance scores 

of different optimization methods (spring case)  

Op. methods EC (Kwh) ES Triggering 
times CT(s) CS Event 

threshold 

No Op.  77279 N/A 0 N/A N/A 

 15 mins 73670 4.67%  96 97.6 0.00% 

 Ch. On/Off 75299 2.56% 2 3.00 96.93%  

       

PLR Change 74059 4.17% 23 31.31 66.64% 7% 

PLR Change 73812 4.49% 21 26.93 71.31% 8% 

PLR Change 74212 3.97% 17 14.73 84.30% 9% 

PLR Change 73848 4.44% 16 14.12 84.95% 10% 

PLR Change 73642 4.71% 15 13.68 85.42% 11% 

PLR Change 74368 3.77% 13 12.06 87.15% 12% 

PLR Change 74252 3.92% 13 12.06 87.15% 13% 

Average  4.21%   79.96%  

STD  0.35%   8.39%  

       

Twb Change 73763 4.55% 22 28.04 70.12% 0.1 ºC 

Twb Change 73981 4.27% 7 10.03 89.31% 0.2 ºC 

Twb Change 75109 2.81% 3 6.24 93.35% 0.3 ºC 

Twb Change 75267 2.60% 1 1.05 98.88% 0.4 ºC 

Twb Change 75267 2.60% 1 1.05 98.88% 0.5 ºC 

Twb Change 75267 2.60% 1 1.05 98.88% 0.6 ºC 

Twb Change 75267 2.60% 1 1.05 98.88% 0.7 ºC 

Average  3.15%   92.62%  

STD  0.87%   10.60%  

       

Tapr  77279 0.00% 0 0.00 100.00% 2.8 ºC 

Tapr  77279 0.00% 0 0.00 100.00% 3.2 ºC 

Tapr  77279 0.00% 0 0.00 100.00% 3.6 ºC 

Tapr  75524 2.27% 1 0.89 99.05% 4.0 ºC 

Tapr  75052 2.88% 2 1.32 98.59% 4.4 ºC 

Tapr  73827 4.47% 3 4.50 95.21% 4.8 ºC 

Tapr  73916 4.35% 4 7.64 91.86% 5.2 ºC 

Average  2.00%   97.82%  

STD  2.02%   3.13%  
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∆h  73950 4.31% 4 2.88 96.93% 24 kJ/kg 

∆h  72286 6.46% 5 3.50 96.27% 27 kJ/kg 

∆h  72963 5.58% 18 11.61 87.63% 30 kJ/kg 

∆h  72880 5.69% 27 16.78 82.12% 33 kJ/kg 

∆h  73744 4.57% 76 42.78 54.42% 36 kJ/kg 

∆h  72981 5.56% 102 98.5 -4.95% 39 kJ/kg 

∆h  73567 4.80% 255 227.1 -141.98% 42 kJ/kg 

Average  5.28%    38.63%   

STD  0.75%   87.35%  
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Appendix E – Code of Neural Network Simulation Function in MATLAB 

E.1- Code for Spring Case 

function [y1] = myNeuralNetworkFunction(x1) 

%MYNEURALNETWORKFUNCTION neural network simulation function. 

% 

% Generated by Neural Network Toolbox function genFunction, 03-Aug-2017 15:54:27. 

% 

% [y1] = myNeuralNetworkFunction(x1) takes these arguments: 

%   x = 9xQ matrix, input #1 

% and returns: 

%   y = 1xQ matrix, output #1 

% where Q is the number of samples. 

 

%#ok<*RPMT0> 

 

% ===== NEURAL NETWORK CONSTANTS ===== 

 

% Input 1 

x1_step1.xoffset = 

[0.460139984439836;2.9362168204308;14.1539656461813;20;18.8;1;0;21.7362168204308;5.008615

48815778]; 

x1_step1.gain = 

[3.23019393173495;0.378877066324021;0.0367910153978271;0.000688494228701654;0.740740740

739662;2;0.0491265987231754;0.296630191288634;0.663530013671568]; 

x1_step1.ymin = -1; 
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% Layer 1 

b1 = [3.6250332062058996;-3.9521385655819925;-6.7165056873757836]; 

IW1_1 = [2.3733484841448269 1.8819935850095633 -5.1765568714416235 4.4856560325512742 

-1.5538174461666483 -0.90683327727021379 0.0029723761220809414 0.51692657961245048 

-0.17880690187438697;-0.38134973328905059 -0.39173715699228873 -0.17213764917095242 

-2.4629290303259239 0.97084796405211471 -3.0553140793474896 2.0220836492217078 

0.19424982219241702 -1.3566325500029237;0.89632286323076715 7.3500489699524785 

-14.728861145392237 5.8092446046493622 -0.21942430646773642 -0.60049088118299654 

6.8047938016715879 4.2747919967918167 0.021792958319730667]; 

 

% Layer 2 

b2 = -0.42897355504984491; 

LW2_1 = [0.56836497335322811 -0.46818554712929816 0.54454377695323763]; 

 

% Output 1 

y1_step1.ymin = -1; 

y1_step1.gain = 4.45162316371251; 

y1_step1.xoffset = 1.92545393854397; 

 

% ===== SIMULATION ======== 

 

% Dimensions 

Q = size(x1,2); % samples 

 

% Input 1 
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xp1 = mapminmax_apply(x1,x1_step1); 

 

% Layer 1 

a1 = tansig_apply(repmat(b1,1,Q) + IW1_1*xp1); 

 

% Layer 2 

a2 = repmat(b2,1,Q) + LW2_1*a1; 

 

% Output 1 

y1 = mapminmax_reverse(a2,y1_step1); 

end 

 

% ===== MODULE FUNCTIONS ======== 

 

% Map Minimum and Maximum Input Processing Function 

function y = mapminmax_apply(x,settings) 

y = bsxfun(@minus,x,settings.xoffset); 

y = bsxfun(@times,y,settings.gain); 

y = bsxfun(@plus,y,settings.ymin); 

end 

 

% Sigmoid Symmetric Transfer Function 

function a = tansig_apply(n,~) 

a = 2 ./ (1 + exp(-2*n)) - 1; 

end 
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% Map Minimum and Maximum Output Reverse-Processing Function 

function x = mapminmax_reverse(y,settings) 

x = bsxfun(@minus,y,settings.ymin); 

x = bsxfun(@rdivide,x,settings.gain); 

x = bsxfun(@plus,x,settings.xoffset); 

end 

 

E.2- Code for Summer Case 

function [y1] = myNeuralNetworkFunction(x1) 

%MYNEURALNETWORKFUNCTION neural network simulation function. 

% 

% Generated by Neural Network Toolbox function genFunction, 03-Aug-2017 15:32:48. 

% 

% [y1] = myNeuralNetworkFunction(x1) takes these arguments: 

%   x = 9xQ matrix, input #1 

% and returns: 

%   y = 1xQ matrix, output #1 

% where Q is the number of samples. 

 

%#ok<*RPMT0> 

 

% ===== NEURAL NETWORK CONSTANTS ===== 

 

% Input 1 

x1_step1.xoffset = [0.477;0;0;27;25.4;1;0;24.6;5.01]; 
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x1_step1.gain = 

[3.3167495854063;0.284900284900285;0.0241545893719807;0.000354421407052986;0.6896551724

13793;1;0.0421052631578947;0.238095238095238;0.56980056980057]; 

x1_step1.ymin = -1; 

 

% Layer 1 

b1 = [-3.2480340257091358;-0.39706110132746958;-2.7047685650128046]; 

IW1_1 = [-1.3972899242192005 -0.49478163838702993 0.87574765043826042 

2.3537803012377636 1.0997802122248643 -2.50241028226651 4.2632569903417918 

-1.9007762531993735 3.389380240409801;2.8474144197495126 1.8704569620886109 

-0.9803878395665887 -0.11877528973702328 -0.48625386903836498 -1.3571961375102204 

2.9877642331337606 -2.4898881509520052 2.3119454799894812;-1.4168147158870206 

-0.91020353982264735 0.20176568930739958 -0.68208759915879202 0.1234549942898804 

-0.13407388991308655 2.4050539285695107 -0.3497274330110488 1.1223750820299703]; 

 

% Layer 2 

b2 = -0.056027787891006001; 

LW2_1 = [0.25781689498681559 0.15927246701372047 -0.35013740072612409]; 

 

% Output 1 

y1_step1.ymin = -1; 

y1_step1.gain = 1.58730158730159; 

y1_step1.xoffset = 1.38; 

 

% ===== SIMULATION ======== 
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% Dimensions 

Q = size(x1,2); % samples 

 

% Input 1 

xp1 = mapminmax_apply(x1,x1_step1); 

 

% Layer 1 

a1 = tansig_apply(repmat(b1,1,Q) + IW1_1*xp1); 

 

% Layer 2 

a2 = repmat(b2,1,Q) + LW2_1*a1; 

 

% Output 1 

y1 = mapminmax_reverse(a2,y1_step1); 

end 

 

% ===== MODULE FUNCTIONS ======== 

 

% Map Minimum and Maximum Input Processing Function 

function y = mapminmax_apply(x,settings) 

y = bsxfun(@minus,x,settings.xoffset); 

y = bsxfun(@times,y,settings.gain); 

y = bsxfun(@plus,y,settings.ymin); 

end 

 

% Sigmoid Symmetric Transfer Function 
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function a = tansig_apply(n,~) 

a = 2 ./ (1 + exp(-2*n)) - 1; 

end 

 

% Map Minimum and Maximum Output Reverse-Processing Function 

function x = mapminmax_reverse(y,settings) 

x = bsxfun(@minus,y,settings.ymin); 

x = bsxfun(@rdivide,x,settings.gain); 

x = bsxfun(@plus,x,settings.xoffset); 

end 
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Appendix F – EDO Code in TRNSYS 

------------------------------------------------------------------------------------------------------- 

% Event-driven optimization for HVAC optimal control 

% Author: WANG Junqi ; Sep-2016 

% Department of Architecture and Civil Engineering, City University of Hong Kong 

% Solution algorithm: use exhaustive search to update four decision variables;  

% Problem type: model-based optimal control & static optimization 

% ******************************************************************* 

% Inputs:   

%    1.  Twevin Evaporator inlet water temperature               (C) 

%    2.  Twcdin Condenser inlet water temperature              (C) 

%    3.  Qev     Single chiller cooling load                       (kW) 

%    4.  C1     Coefficient for evaporator UA calculation             (-) 

%    5.  C2     Coefficient for evaporator UA calculation             (-) 

%    6.  C3     Coefficient for evaporator UA calculation             (-) 

%    7.  C4 Coefficient for condenser UA calculation         (-) 

%    8.  C5 Coefficient for condenser UA calculation            (-) 

%    9.  C6 Coefficient for condenser UA calculation              (-) 

%    10.  a0 Coefficient for the chiller power calculation          (-) 

%    11. a1 Coefficient for the chiller power calculation       (-) 

%    12. a2 Coefficient for the chiller power calculation       (-) 

% *******************************************************************  

% Outputs: 

%    1. Twcdout  Condeser outlet water temperature         (C) 

%    2. Pcom    Chiller power consumption                 (kW) 
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% *******************************************************************% 

% Example M-file called by TRNSYS Type 155 

% 

% Data passed from / to TRNSYS  

% trnTime (1x1):  simulation time  

% trnInfo (15x1):  TRNSYS info array 

% trnInputs (nIx1):  TRNSYS inputs  

% trnStartTime (1x1):  TRNSYS Simulation Start time 

% trnStopTime (1x1):  TRNSYS Simulation Stop time 

% trnTimeStep (1x1):  TRNSYS Simulation time step 

% mFileErrorCode (1x1): Error code for this m-file. It is set to 1 by TRNSYS and the m-file should set 

it to 0 at the end to indicate that the call was successful. Any non-zero value will stop the simulation 

% trnOutputs (nOx1): TRNSYS outputs   

% Notes:  

% ------ 

% You can use the values of trnInfo(7), trnInfo(8) and trnInfo(13) to identify the call (e.g. first iteration, 

etc.) 

% Real-time controllers (callingMode = 10) will only be called once per time step with trnInfo(13) = 1 

(after convergence) 

% The number of inputs is given by trnInfo(3) 

% The number of expected outputs is given by trnInfo(6) 

% WARNING: if multiple units of Type 155 are used, the variables passed from/to TRNSYS will be 

sized according to   

% the maximum required by all units. You should cope with that by only using the part of the arrays 

that is  

% really used by the current m-File. Example: use "nI = trnInfo(3); myInputs = trnInputs(1:nI);"  



189 
 

% rather than "MyInputs = trnInputs;"  

% Please also note that all m-files share the same workspace in Matlab (they are "scripts", not 

"functions") so 

% variables like trnInfo, trnTime, etc. will be overwritten at each call.  

% "Local" variables like iCall, iStep in this example will also be 

% shared by all units  

% (i.e. they should be given a different name in each m-File if required) 

------------------------------------------------------------------------------------------------------- 

% This example implements a very simple component. The component is iterative (should be called at 

each TRNSYS call) 

% MKu, October 2004 

------------------------------------------------------------------------------------------------------- 

 

% TRNSYS sets mFileErrorCode = 1 at the beginning of the M-File for error detection 

% This file increments mFileErrorCode at different places. If an error occurs in the m-file the last 

successful step will be indicated by mFileErrorCode, which is displayed in the TRNSYS error message   

% (Alan)-so the indicated value of mFileErrorCode can help you to find the error  

% At the very end, the m-file sets mFileErrorCode to 0 to indicate that everything was OK 

 

mFileErrorCode = 100;    %  Beginning of the m-file  

% Part 0 

% --- Process Inputs and global parameters--- 

nI = trnInfo(3);   % The number of inputs is given by trnInfo(3) 

nO = trnInfo(6);  % The number of expected outputs is given by trnInfo(6) 

Flow_Inlet = trnInputs(1);             % Inlet water flow rate in primary loop 

Temperature_Inlet = trnInputs(2);       % Chilled water (from CH) entering temp. to HX (cold side) 
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Temperature_Outlet = trnInputs(3);      % Chilled water leaving temp. from HX (cold side) 

%PLR = trnInputs(4);                 % imported from txt file   

T_HX_cold_out = trnInputs(5);         % Type 699 

T_CT_out = trnInputs(6);              % T253_CT 

T_HX_hot_out = trnInputs(7);          % Type 661 

Tw_CT_in = trnInputs(8);              % T252_Div, added new on 8-Sep-2016 

Tw_ev_in = trnInputs(9);               % T251_Div1, added new on 12-Sep-2016 

Ctrl_sig_HX = trnInputs(10);            % from 'Tchw_sup_HX', flow rate = [5,2075] 

Ctrl_sig_Tair_sup = trnInputs(11);        % from 'Tair_sup', flow rate = [5,2100] 

Q_load_act = trnInputs(39); 

Tair_AHU_sup = trnInputs(40); 

Wair_AHU_sup = trnInputs(41); 

Pow_chiller = trnInputs(42);              % one chiller 

Pow_CT = trnInputs(43);                 % one CT fan 

Pow_pump_constant = trnInputs(44);       % from 'Pcom' 

Mw_pump_HX_prm = trnInputs(45);       % overall primary side flow rate of HX 

%Mw_pump_HX_sec = trnInputs(46);      % overall secondary side flow rate of HX, 'AHU_Num' 

Mw_AHU = trnInputs(47);                % water flow rate in one AHU, 'Tair_sup' 

Mw_pump_HX_sec = Mw_AHU; 

T_db_amb = trnInputs(48); 

T_wb_amb = trnInputs(49); % wet bulb 

Mwct = trnInputs(50);      % water flow rate in single CT 

Num_ct = trnInputs(51);  

Thot_in_HX = trnInputs(55);  

Tcold_in_HX = trnInputs(56);   

Num_HX=round(max(1,Mw_pump_HX_sec/10));  
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mFileErrorCode = 110;     % After processing inputs 

 

% Part 1 

% --- First call of the simulation: initial time step (no iterations) --- 

% (note that Matlab is initialized before this at the info(7) = -1 call, but the m-file is not called) 

if ( (trnInfo(7) == 0) && (trnTime-trnStartTime < 1e-6) )   

 % This is the first call (Counter will be incremented later for this very first call) 

    iCall = 0; % "Local" variables like iCall, iStep in this example will also be shared by all units (i.e. 

they should be given a different name in each m-File if required).  

    % This is the first time step 

    iStep = 1;   

    % Do some initialization stuff,  

    % e.g. initialize variables and history of the variables for plotting at the end of the simulation 

    % set the format of variables, i.e. value or vector/matrix. 

    % (uncomment lines if you wish to store variables)  

    nTimeSteps = (trnStopTime-trnStartTime)/trnTimeStep + 1; 

    % Chillers' statement 

    CH1.ONOFF = 1; 

    CH1.OTime = trnTime;        % the latest operating (on or off) time 

    CH2.ONOFF = 0; 

    CH2.OTime = trnTime; 

    CH3.ONOFF = 0; 

    CH3.OTime = trnTime; 

    CH4.ONOFF = 0; 

    CH4.OTime = trnTime; 
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    CH5.ONOFF = 0; 

    CH5.OTime = trnTime; 

    CH6.ONOFF = 0; 

    CH6.OTime = trnTime; 

    CH=[CH1,CH2,CH3,CH4,CH5,CH6]; % CH1's type is 'struct' 

    history.states = CH; 

    OTime = 0;               % the latest time when a chiller is opened    

    history.OTime = OTime; 

    Num_previous=1; 

    history.Num_previous=Num_previous; 

    Pre_oper = 1;              % assuming at the beginning the chiller switch one more 

    history.Pre_oper = Pre_oper; 

    op_times=0; 

    event_index=0; 

    t_compute = 0; 

    t_tot = 0; 

    Tcdw_set=26;  % settings of spring case 

    Tchw_set=7.5; 

    Tchw_set_HX=9; 

    Tair_set=14; 

    T_threshold=0.5; 

    Tcdw_set_previous=26;   

    Tchw_set_previous=7.5; 

    Tchw_set_HX_previous=9; 

    Tair_set_previous=14; 
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    history.Tcdw_set=Tcdw_set; 

    history.Tchw_set=Tchw_set; 

    history.Tchw_set_HX=Tchw_set_HX; 

    history.Tair_set=Tair_set;     

    Q_load_act_vec=[]; 

    history.Q_load_act_vec=Q_load_act_vec;  

    history.PLR=[]; 

    history.op_times=0; 

    history.event_index=event_index; 

    history.t_tot=t_tot; 

    history.T_wb_amb=T_wb_amb;         

    history.P_ch=0; 

    history.P_ct=0; 

    history.P_Tot_act=0; 

    Num_AHU_prv=40; 

    history.Num_AHU_prv=Num_AHU_prv; 

    Num_HX_prv=40; 

    history.Num_HX_prv=Num_HX_prv; 

    % some varaibles for event-driven strategy 

    dev_Twb = 0; 

    T_approach = 0; 

    delt_h = 0; 

    % No return, normal calculations are also performed during this call 

    mFileErrorCode = 120;    % After initialization call 

end 
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% --- Very last call of the simulation (after the user clicks "OK") --- 

% ---------------------------------------------------------------------------------------------------------------------- 

if ( trnInfo(8) == -1 ) 

    mFileErrorCode = 1000;   

    % Do stuff at the end of the simulation,  

    % e.g. calculate stats, draw plots, etc...  

    mFileErrorCode = 0; % Tell TRNSYS that we reached the end of the m-file without errors 

    return 

end 

 

% --- Post convergence calls: store values --- 

% ---------------------------------------------------------------------------------------------------------------------- 

if (trnInfo(13) == 1) 

    mFileErrorCode = 200;   % Beginning of a post-convergence call  

    % This is the extra call that indicates that all Units have converged. You should do things like:  

    % - calculate control signal that should be applied at "next time step" 

    % - Store history of variables (for th euse of comparison at next step) 

    history.Num_previous=Num_previous; 

    history.Num_AHU_prv=Num_AHU_prv; 

    history.Num_HX_prv=Num_HX_prv; 

    history.states = CH; 

    history.OTime = OTime; 

    history.Pre_oper = Pre_oper; 

    history.Tcdw_set=Tcdw_set; 

    history.Tchw_set=Tchw_set; 

    history.Tchw_set_HX=Tchw_set_HX; 
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    history.Tair_set=Tair_set; 

    history.op_times=op_times; 

    history.event_index=event_index; 

    history.t_tot=t_tot; 

    history.T_wb_amb=T_wb_amb; 

    history.P_ch=P_ch; 

    history.P_ct=P_ct; 

    history.P_Tot_act=P_Tot_act; 

    %history.Ctrl_sig_HX=Ctrl_sig_HX; 

    % Note: If Calling Mode is set to 10, Matlab will not be called during iterative calls. 

% In that case only this loop will be executed and things like incrementing the "iStep" counter 

should be done here     

    mFileErrorCode = 0; % Tell TRNSYS that we reached the end of the m-file without errors 

    return  % Do not update outputs at this call 

end 

 

% Part 2 

% --- All iterative calls --------------------------------------------------------------------------------------------- 

% ---------------------------------------------------------------------------------------------------------------------- 

% --- If this is a first call in the time step, increment counter --- 

if ( trnInfo(7) == 0 ) 

    iStep = iStep+1; % 'iStep' is the time step indicator, whose unit is the 'simulation time step' in  

end 

 

% --- Process Inputs --- 

mFileErrorCode = 130;   % Beginning of iterative call 
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% --- Take value from history.(must have) --- 

Num_previous=history.Num_previous; 

Tcdw_set=history.Tcdw_set; 

Tchw_set=history.Tchw_set; 

Tchw_set_HX=history.Tchw_set_HX; 

Tair_set=history.Tair_set; 

op_times=history.op_times; 

t_tot=history.t_tot;    

 

%************************************************************************ 

% "Traditional Chiller Sequence Control" 

% chiller on/off event 

%************************************************************************ 

OPeriodThreshold = 10/60;    % the time period (hour) for two operations with same direction  

CPeriodThreshold = 10/60;    % the time period (hour) for two operations with opposite directions  

water_specific_heat = 4.19; 

DeadBand = 8; 

CAP=7230;  

% calculate the number of chillers in operation 

OTime = history.OTime; 

Pre_oper = history.Pre_oper; 

% the number of chillers in operation 

% the period 

Period = trnTime-OTime;        

% the threshold for switching on/off a chiller 

Q_state_threshold = Num_previous*CAP*(1+DeadBand/100); 
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Q_Destate_threshold = (Num_previous-1)*CAP*(1-DeadBand/100); 

 

mFileErrorCode = 132; 

% determine the number of chillers should be in operation 

% open a chiller 

Q_load=Q_load_act; % Q_load_act = trnInputs(39) 

ChOnOffIndicator=0; 

if Q_load > Q_state_threshold & Num_previous < 6 

    if Period >= OPeriodThreshold & Pre_oper==1 

        Num_previous = Num_previous+1;ChOnOffIndicator=1; 

        Pre_oper=1; 

        OTime = trnTime; 

    elseif Period >= CPeriodThreshold & Pre_oper==-1 

        Num_previous = Num_previous+1;ChOnOffIndicator=1; 

        Pre_oper=1; 

        OTime = trnTime; 

    end 

end 

 

% close a chiller 

if Q_load < Q_Destate_threshold & Num_previous > 1 

    if Period >= OPeriodThreshold & Pre_oper==-1 

        Num_previous = Num_previous-1;ChOnOffIndicator=1; 

        Pre_oper=-1; 

        OTime = trnTime; 

    else if  Period >= CPeriodThreshold & Pre_oper==1 
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        Num_previous = Num_previous-1;ChOnOffIndicator=1; 

        Pre_oper=-1; 

        OTime = trnTime; 

    end 

end 

 

if Num_previous<6 

    for i=1:Num_previous 

        CH(i).ONOFF = 1; 

    end 

    for i=Num_previous+1:6 

        CH(i).ONOFF = 0; 

    end 

else 

    for i=1:Num_previous 

        CH(i).ONOFF = 1; 

    end 

end 

%************************************************************************ 

% End "Traditional Chiller Sequence Control" 

%************************************************************************ 

 

% --- Event-driven strategies are coded here ---  

%************************************************************************ 

% “PLR change” 

%************************************************************************ 
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mFileErrorCode = 140; 

CAP=7230;  

Available_CAP = Num_previous*CAP; 

PLR = Q_load_act / Available_CAP;  

event_index=history.event_index; 

history.PLR(iStep) = PLR; 

PLRIndicator=0;  

event_duration = iStep - event_index;  

if event_duration >= 10   %  a minimal time interval   

if event_index > 10      %  every step=30 s  

% compare with the last contrl change, calculate 5mins-average 'PLR' 

deviation = abs(PLR-mean(history.PLR((event_index-9):(event_index)))); 

if deviation >= 0.07 

      PLRIndicator=1;  

 end      

end 

end  

%************************************************************************ 

% End "PLR change" 

%************************************************************************ 

 

%************************************************************************ 

% “Twb change” 

%************************************************************************ 

TwbIndicator=0; 

dev_Twb = abs(T_wb_amb-history.T_wb_amb); 
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if dev_Twb >= 0.4  % threshold of "Twb change"= [0.2,0.3,0.4] 

  TwbIndicator=1;   

end 

%************************************************************************ 

% End "Twb" 

%************************************************************************ 

 

mFileErrorCode = 150; 

%************************************************************************ 

% Tapproach change 

%************************************************************************ 

T_approachIndicator=0; 

T_approach = T_CT_out-T_wb_amb; 

if event_duration >= 10 

if T_approach < 4.0      % threshold of "T_approach"= [2.8, 5.2], BC=4.0 degree C 

   T_approachIndicator=1; 

end 

end 

%************************************************************************ 

% delt_enthalpy_diff change 

%************************************************************************ 

% delt_h = h(Tw_CT_in,Tw_CT_in)- h(T_db_amb,T_wb_amb); fucntion, h(Tdb,Twb) 

% [ref] C.C Chang, 2015, Applied Energy 

% FHAIR(TDB,W)            HAIR = ENTHALPY OF MOIST AIR (KJ/KG DRY AIR) 

% FWTWB(TDB,TWB,PATM)  W = HUMIDITY RATIO(KG MOIST./KG DRY AIR 

PATM = 101325;  
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HR_1 = FWTWB(T_db_amb,T_wb_amb,PATM); 

h_1 =  FHAIR(T_db_amb,HR_1); 

h_2 = FHSAT(Tw_CT_in,PATM); 

delt_h = h_2 - h_1;   % unit=KJ/KG  

delt_hIndicator=0; 

if event_duration >= 10 

if delt_h < 33  % threshold of "delt_h"= [24, 42], BC=33 KJ/KG 

   delt_hIndicator=1; 

end 

end 

%************************************************************************ 

% End "--- Event-driven strategies are coded here --- " 

%************************************************************************ 

 

%************************************************************************ 

% --- Control Optimization --- 

%************************************************************************ 

mFileErrorCode=180; 

Qev=Q_load_act/max(0.1,Num_previous);  

C1=0;C2=0;C3=1.014712E-3;C4=0;C5=0;C6=1.247556E-3;a0=175;a1=0.8;a2=0; 

b0=4.33096417708899;  b1=0.67687427213009; b2=-0.18025853127327;b3=-0.53797104466615;  

b4=0.15777630465005;b5=-5.74761612912195;b6=68.2830117147551;    

 

mFileErrorCode=141; 

x_coeff = [C1,C2,C3,C4,C5,C6,a0,a1,a2,b0,b1,b2,b3,b4,b5,b6]; 

x1=[Tcdw_set,Tchw_set,Tchw_set_HX,Tair_set]; 
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mFileErrorCode=160; 

x2=[Q_load_act,Flow_Inlet,Qev,x_coeff,Mw_AHU,T_db_amb,T_wb_amb,Mwct,Num_ct,Num_previ

ous,Pow_pump_constant]; 

 

mFileErrorCode=182; 

T_threshold=0.5;        

Time_interval=120/60;  % frequency of time-driven optimization 

Steplength=0.1; 

t_compute=0; 

% trnTime_duration=trnTime-trnStartTime; % the unit of 'trnTime' is 'hour' 

% if mod(trnTime_duration,Time_interval)==0 

 

if iStep == 11       % added on Mar-2-2016 

  event_index=iStep; % initialization, first 'event_index' should > 10 

end 

 

if  PLRIndicator==1 | delt_hIndicator==1 | ChOnOffIndicator==1   

 tic   

 event_index=iStep; 

 POWER_ARRARY=[]; 

 INDEX_ARRARY=[]; 

mFileErrorCode=183; 

 

% set the ranges of 4 decision variables 

% The dramatic change of the setting is not allowed in practice 

if Tcdw_set+T_threshold>30  % set this bound based on outdoor Twb. 
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   Tcdw_up=30; 

else Tcdw_up=Tcdw_set+T_threshold; 

end 

if Tcdw_set-T_threshold<24 

   Tcdw_low=24; 

else Tcdw_low=Tcdw_set-T_threshold; 

end 

 

if Tchw_set+T_threshold>8 

   Tchw_up=8; 

else Tchw_up=Tchw_set+T_threshold; 

end 

if Tchw_set-T_threshold<5 

   Tchw_low=5; 

else Tchw_low=Tchw_set-T_threshold; 

end 

 

if Tchw_set_HX+T_threshold>11.5 

   Tchw_HX_up=11.5; 

else Tchw_HX_up=Tchw_set_HX+T_threshold; 

end 

if Tchw_set_HX-T_threshold<Tchw_up+0.8 

   Tchw_HX_low=Tchw_up+0.8; 

else Tchw_HX_low=Tchw_set_HX-T_threshold 

end    
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if Tchw_HX_low > Tchw_HX_up % added new to avoid error. 

   Tchw_HX_up =  Tchw_HX_low+T_threshold; 

end 

if Tair_set+T_threshold>15 

   Tair_up=15; 

else Tair_up=Tair_set+T_threshold; 

end 

if Tair_set-T_threshold<12 

   Tair_low=12; 

else Tair_low=Tair_set-T_threshold; 

end   

 

% Exhaustive search method 

for a1= Tcdw_low:Steplength:Tcdw_up 

  for a2= Tchw_low:Steplength:Tchw_up 

    for a3= Tchw_HX_low:Steplength:Tchw_HX_up   

      for a4= Tair_low:Steplength:Tair_up 

mFileErrorCode=144;       

     x1=[a1,a2,a3,a4]; 

     POWER=GA_P_W([x1,x2]); 

     POWER_ARRARY=[POWER_ARRARY;POWER]; 

     INDEX_ARRARY=[INDEX_ARRARY;x1]; 

      end 

    end 

  end 

end 
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mFileErrorCode=185; 

[C,I]=min(POWER_ARRARY); 

X=INDEX_ARRARY(I,:); 

 

mFileErrorCode=186;      

    Tcdw_set=X(1);   

    Tchw_set=X(2); 

    Tchw_set_HX=X(3); 

    Tair_set=X(4); 

    toc 

    t_compute=toc; 

    op_times=op_times+1; 

    t_tot=t_compute+history.t_tot; 

end 

%************************************************************************ 

% End "--- Control Optimization ---" 

%************************************************************************ 

Flow_prm_makeup=0; 

 

%************************************************************************ 

% Calculate power consumption of components 

%************************************************************************ 

x1=[Tcdw_set,Tchw_set,Tchw_set_HX,Tair_set]; 

x1_act=[T_CT_out,Temperature_Inlet,T_HX_hot_out,Tair_AHU_sup]; 

P_tot_predict = GA_P_W([x1,x2]); 

mFileErrorCode=190; 
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x2_act=[Q_load_act,Flow_Inlet,Qev,x_coeff, 

Mw_pump_HX_prm,T_db_amb,T_wb_amb,Mwct,Num_ct,Num_previous,Pow_pump_constant,Ctrl_s

ig_HX,Ctrl_sig_Tair_sup]; 

[P_Tot_act,P_ch,P_ct,P_fan_AHU,P_pump_HX_prm,P_pump_HX_sec]=GA_Pow_act([x1_act, 

x2_act]);   

%********************************END*************************************** 

% End "Calculate power consumption of components" 

%*************************************************************************** 

% --- Set outputs --- 

trnOutputs(1) = Num_previous; 

trnOutputs(2) = CH(1).ONOFF; 

trnOutputs(3) = CH(2).ONOFF; 

trnOutputs(4) = CH(3).ONOFF; 

trnOutputs(5) = CH(4).ONOFF; 

trnOutputs(6) = CH(5).ONOFF; 

trnOutputs(7) = CH(6).ONOFF; 

trnOutputs(8) = Q_load_act; 

trnOutputs(9) = cop;  

trnOutputs(11) = PLR; 

trnOutputs(12) = T_approach; 

trnOutputs(13) = delt_h; 

mFileErrorCode = 300;  

trnOutputs(16) = Tcdw_set;     % set-point of cooling water supply temperature 

trnOutputs(17) = Tchw_set;     % set-point of chilled water supply temperature 

%trnOutputs(18) = m_air_flow_tot; 

trnOutputs(19) = Tchw_set_HX;  % set-point  
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trnOutputs(20) = P_tot_predict;   % PcomTot; 

trnOutputs(21) = Tair_set;     % set-point  

trnOutputs(31) = Num_AHU;      % not used 

trnOutputs(32) = Num_HX; 

mFileErrorCode = 301;  

trnOutputs(33) = (P_ch+P_pump_HX_prm+P_pump_HX_sec+Pow_pump_constant); % chiller plant 

energy consumption 

trnOutputs(34) = P_Tot_act;      % changed 12-Sep-2016  

trnOutputs(35) = P_ch; 

trnOutputs(36) = P_ct; 

trnOutputs(37) = P_fan_AHU;      % changed 12-Sep-2016  

trnOutputs(38) = P_pump_HX_prm;  % changed 12-Sep-2016  

trnOutputs(39) = P_pump_HX_sec;  % changed 12-Sep-2016 

mFileErrorCode = 302;  

trnOutputs(40) = t_compute; 

trnOutputs(41) = Ctrl_sig_HX; 

trnOutputs(42) = Mw_HX_prm_each; 

trnOutputs(43) = event_index; 

trnOutputs(44) = Flow_prm_makeup;   

trnOutputs(45) = op_times; 

trnOutputs(46) = t_tot; 

mFileErrorCode = 0;    % Tell TRNSYS that we reached the end of the m-file without errors 

return 

------------------------------------------------------------------------------------------------------- 

END “Appendix C – Control code” 
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