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Abstract

Musical genre classification is a potential yet challendask in the field of music
information retrieval. As an important first step of any gedassification system, music
feature extraction is a critical process that will dradtycaffect the final performance. In
this thesis, we will try to address two important questioithe feature extraction stage:
1) is there any potential alternative techniques for mudezgture extraction when tra-
ditional audio feature sets seem to meet their performaatteehecks? 2) is the widely
used MFCC feature purely a timbral feature set so that itiariant to changes in mu-
sical key and tempo in the songs? To answer the first questierpropose a novel
approach to extract musical pattern features in audio mussitg convolutional neural
network (CNN), a model widely adopted in image informatietrieval tasks. Our ex-
periments show that CNN has strong capacity to capturenmdtve features from the
variations of musical patterns with minimal prior knowledgrovided. To answer the
second question, we investigate the invariance of MFCC teicalikey and tempo, and
show that MFCCs in fact encode both timbral and key infororat\We also show that
musical genres, which should be independent of key, arecinriluenced by the fun-
damental keys of the instruments involved. As a result, getassifiers based on the
MFCC features will be influenced by the dominant keys of thergeresulting in poor
performance on songs in less common keys. We propose anaappt@ address this
problem, which consists of augmenting classifier trainind prediction with various
key and tempo transformations of the songs. The resultingegeassifier is invariant
to key, and thus more timbre-oriented, resulting in impbekassification accuracy in

our experiments.
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Chapter 1

Introduction

1.1 Why Automatic Music Genre Classification?

| would like the raise the question at the beginning of thipgra why do we need
automatic music genre classification, as is the most frefyuasked question when | try
to present my research to someone who is not familiar withienarmation retrieval

(MIR). The answer to that question is crucial for this whosper, and | would like to

address it with the following two scenarios.

Scenario 1.John is an IT company engineer. He loves music, and he |astesing
to it at work and at home. His favorite MP3 player is filled wgbngs he obtained
from various sources. Some of them are ripped from CDs hehipagme are shared
by this co-workers; some are downloaded from online digitakic retailers such as
iTunes and Amazon. One day he tried to build up a play list @£ Jausic because he

just develops a strong fond of it recently. He soon discoi@son-trivial task. Simply



sorting the names of the songs brings no solution to the enebNot only because the
genres label "Jazz” may not appear in the names of the fileégs|swoifiles from different
sources follow different naming conventions, renderinghna@ased batch processing
impossible. Some of his tools is capable reading the métairmation stored in the
files. It helps finding the songs with proper meta-inform@tibut it is unhelpful with
the rest. Perhaps the most secure way is to listen to the somglsy one to determine

its genre. But it is simply mission impossible on his tenttb@nd-song collection.

Scenario 2.1-Want-To-Listen-To-Music.com is an online digital musatailer com-
pany founded in 2000. The company tries to develop a serwidesplay the songs and
albums on its web pages by genres and tags, since it assstsén to navigate the
database and potentially increases sales. The task tutrie be very difficult. The
company has millions of untagged songs in its database. dada the new service
means to label them all. One solution is hiring a team of esperclassify the songs
manually. But it is hardly practical in terms of expense acalability. The CEO of the

company wonders whether he could use computer to finish stadka

As we can see from the two scenarios above, automatic, deloésied music clas-
sification systems would naturally have both personalesaald business-scale appli-
cations. With the rapid development of digital entertainmi@dustry, we have easy
access to digital music in various forms. Nowadays it is metaimmon to possess an
MP3 player that stores thousands of songs. For song datalgess@zation and play list
generation, we will need the help of meta-information susmaisical genres, moods,
tags, etc. But those information may not necessarily contb thie song file. With
the help of an automatic, content-based music classifitaystem, we will be able

to assign proper labels to song files, and therefore managgrdwing song database



conveniently. On the other hand, online digital music tetaiwould also benefit sub-
stantially from those systems. The tremendously large statgbase will be tagged
and sort out by computers. Such solution is inexpensive ealdlsle. The sales would

potentially increase as users find it more convenient togaeithrough the database.

Music genre classification is a special case of the more gemersic content meta-
information recognition/tagging systems. Actually gergaypically a kind of meta-
information people used to describe musical contents. I&meta-information in-
cludes instrumentation, tempo, artist, etc. The reasonsecdrating our work to genre
are two fold. First, the concept genre is very widely used aaays. When we talk
about bands or singers, it would be very intuitive to use geaardescribe the bands
and the music they produce, as oppose to the instrumentaggruse or the tempo of
the songs. Although it is impossible to argue that genre igenmaportant than other
concepts, | believe it makes a strong case as a candidatetafiniermation for song
classification. Second, music genre classification systeragd share a lot of common-
places with other music content meta-information recogmisystems. Once we build
up a reliable genre classification system, we would be abtet®ralize our work to

other types tagging systems with some minus modificatioh@gtchitecture.

1.2 Scope of this work

The scope of this work is focused on a critical issue of audisioal genre classification:

musical feature extraction. The elaboration of this thsstgganized as follows;

Chapter 2 generally describe the research field of MIR and#oiground of the



genre classification task. Fundamentals about sounds andrhauditory perception

are presented to support the later chapters of this thesis.

Chapter 3 focuses on the application of image techniqueb@music genre clas-
sification problem. As an important processing step, feaaxtraction plays a criti-
cal role that will significantly affect the final classificati performance. However, re-
cent researches [32] shows that using only timbral featet® derived from traditional
speech recognition features will limit the performance efige classification systems.
In this chapter, we try to break through the performanceldmttk, using novel fea-
ture sets extracted with image information retrieval téghes. This chapter describes
the experiments applying convolutional neural network (N state-of-the-art image
digit recognition algorithm, to automatic extraction of snzal pattern features. The
system architecture, the characteristics of CNN and th&sitleation performance are

explained.

Chapter 4 studies the invariance of the widely used MFCQufeatet to musical
key and tempo. Musical genre is a complex concept assoardtadsarious musical
attributes, such as instrumentation, key, tempo, musetdms, etc. In many previous
works [41, 6, 15] , the MFCC feature set is considered to benartal feature set that
contains solely instrumentation information. Our expemts reveals that, apart from
the timbral information, the MFCC feature set also to somr@xencodes the key
information of the songs concerned. The MFCC feature settigwariant to change in
musical key. Likewise, we also investigate into the disttilin of musical keys in the
GTZAN dataset [41], showing that genre is key-related basethe fundamental keys
of the instrumentations. In Chapter 4, the classificatigieay, experiment set-ups and

the detailed performance evaluation are presented.



Chapter 5 concludes the thesis and suggest potentialidimedor future develop-

ment.



Chapter 2

Audio Music Genre Classification

Systems and Feature Extraction

2.1 Classification systems and their evaluations

Classification is a sub-discipline of data mining researthe task description can be
very simple: constructing a system which automaticallgldabe category of an incom-
ing item, given some “features” of the item. For instance camr construct a classifica-
tion system which labels unknown flowers with their namesgeginformation such as
color, petal length, leave length, etc. Such system can bstaeted by hand-crafting,
or by some automated algorithms. Arguably, the most comynasgd scheme for con-
structing a classification system is via supervised legrnihe classification system is
constructed automatically using a learning algorithm ampdealabeled training set. It
saves the trouble and prior knowledge needed to hand-tmftlassification system,

while the actual performance resulted from the supervisadhing process is depen-



dent on the learning algorithm and the classification prmobt®ncerned. There is no

universal learning algorithm that fits all classificatioiplems.

The evaluation of performance of supervised learning élgwois relies on the clas-
sification accuracy. Given a specific data set, it is possthfend a specific learning al-
gorithm that yields excellent classification results. Hegresuch classification results
may not be generalizable to the real world problems the ifieatson system intends
to solve, for the resulted system fits the given data set “teli’ wTo overcome such a
problem, the given data set is usually split into two smalkga sets, one for training, the
other reserved for testing. Because the testing set is wnrkimthe supervised learning
algorithm, it serves as the benchmark of the possible padace on real world prob-
lems. For more accurate evaluation, the split-trainirgjhtg procedure can be carried
out multiple times, and the average of the testing perfomaas used as the evaluation

score of the supervised learning algorithm.

2.2 Audio vs. Symbolic

The research of music information retrieval can be genedilided into two subordi-
nate fields: audio music information retrieval and symbuwiicsic information retrieval,
by the nature of different types of data concerned. Symbulisic files contains the
symbolic representation of songs. For example, the Musnstitument Digital Inter-
face format (MIDI, .mid) records information such as theenohset time, note pitch,
musical effects, instrumentation, etc. It is entirely polesto recover the full score of
the song from a well-recorded MIDI file. Similarly, MusicXMis a XML-based mu-

sic notation file format that stores the actual score of sohds the common standard



designed for score exchange between different types obweiber software. There
are also other symbolic music formats used by various musaraposition software.
Playing a symbolic music file requires a synthesizer thaisiede the musical notations
to actual sounds. The instrumentation library and the agpa€the synthesizer can

drastically affect the quality of music generated, givemittentical symbolic music file.

On the contrary, audio music files contains the pulse-coddutated digital signals
of songs'. Basically, the actual sound wave signals or their compafsm are stored
in audio music format. Example file formats includes the Vilana Audio File Format
(.wav), MPEG-1 Audio Layer 3 format (.mp3) and Free Losskesdio Codec format
(.flac). Playing a audio music file requires a Digital-to-Aog(DA) converter that trans-
form the digitized signals to audible analog sounds. Thegressed audio file formats
may require an additional decoder layer before the DA cdavefhe same audio music
file should sound very similarly on different machines, eifdhey are using different

types of DA converters.

Based on the characteristics of data, the feature extraatiethodology used for
symbolic music information retrieval is very different froits audio counterpart. In
modern classification frameworks, feature extraction igtecal process layer between
the raw data and the classifier. Feature extraction tramsftine complex, elusive raw
data to a compact set of informative attributes (or the featector) that is suitable to
utilized as the input of classifiers. It can be considered gzeagial form of dimension-
ality reduction. The effectiveness of feature extractierritical to the later process

as it will greatly affect the overall performance. Take gealassification for instance.

1In this paper, only digital audio music is concerned. Anategsic on cassettes and gramophone

records is not considered.



Because the high-level musical representations such asongets, pitches and instru-
mentation are readily available in the files, the featureaetion process for symbolic
music genre classification is straight-forward and musigglrelevant. The vast set
of music theory and other musicology knowledge are diregfiglicable to the entire
feature extraction process. As a result, it would be easiachieve satisfactory classifi-
cation accuracy than using only audio features. Followsraglist of example symbolic

music genre classification systems.

e Tzanetakis et. al. [42] presented his five-genre classicatystems using pitch
statistics as feature vector and k-nearest-neighbor (Ka&B\fhe classifier. The
Pitch Histogram he extracted is basically a 128-dimensiveetor indexed by
MIDI note numbers. It shows the frequency of occurrence ohewte in a musi-
cal piece. From the Pitch Histogram he further computes inglsional feature
set that summarizes the major characteristics of the Pitstogtam. The experi-
ments are carried out on three different types of datasatelypMIDI data, audio
files converted from MIDI data and general audio files. It iswgh that, in his
experiments using only pitch histogram features, the ifleg8on accuracy for
purely MIDI data is significantly better than the audio-frdviiDI dataset and the
general audio dataset. The experiments well demonstrageddvantage to ex-

tract reliable pitch information from symbolic music fileges audio music files.

e Basili et. al. [3] presented his classification system orxageinre MIDI dataset.
Various types of feature sets such as melodic intervalsumentation, meter/time
changes and note extension are extracted to facilitateldissification using six
different types of classification algorithms. Investigatiof the impact of differ-

ent musical features on the inductive accuracy is alsoethout. They achieved
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about 60% for multi-class classification accuracy.

e Ponce et. al. [34] adopts the self-organising neural ma@8V)Sas their clas-
sification model. The features extracted include pitch dgsrs, note duration
descriptors, silence duration descriptors, etc. They sloavsmaller SOM map
would produce better overall performance, as their systeonesl 76.9% and
77.5% in average accuracy for jazz melodies and classicdieslgespectively.
They further improved their work in [11] where they introdula feature selection
process. Experiments were refined to obtain better resiis.average accuracy
for jazz melodies and classic melodies classification wewsted to 81.8% and

89.3%.

e McKay et. al. [27] achieved very high accuracy using a highenal classification
system. They extract 109 features which can be divided ieters categories:
instrumentation, musical texture, rhythm, dynamics, lpgtatistics, melody and
chords. Two classification models, i.e. feed-forward neneaworks (NN) and
the k-nearest-neighbor (KNN), are used in their system.yEt&o apply the ge-
netic algorithm to the feature selection process to furboerst up the classifica-
tion accuracy. The MIDI dataset they use includes 950 reegsd Categories are
distributed in three main genres and further in nine sulbartei leave genres. The
experiments show that the hierarchical classificationsehgcores better than the
flat classification scheme as they achieved 90% and 86% fee Ig@nre classifi-

cation respectively.

On the other hand, feature extraction for audio music infdirom retrieval is more
difficult and less musicology relevant. Classifying audiosie in the way of symbolic

music is hardly possible because of the hardship transfgyiie audio signals into its
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Figure 2.1: The demonstration of audio masking effect.

original score form. Take the extraction of pitch for exagm sound of an musical
instrument can be musicologically viewed as compositioa @éindamental frequency
that determines the pitch, and the overtunes that detesttiegimbre. It is an easy task
to extract pitch and the corresponding instrument in marstrument audio signals. But
the situation gets very complicated in poly-instrumenhs@iption in which the over-
tunes of different instruments overlap each other, makiegfindamental frequencies
not apparent. As we can see in Figure 2.1, the two graphs dafthrepresent the spec-
trogram characteristics of two instruments, their fundatalfrequencies and overtunes
indicated as marked. The graph on the right is the effect eamdpthe sound of two in-

struments together. We can observe that some overlapperguoes are enhanced sub-
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stantially to the extent of approximately the level of fundantal frequencies. The more
instrument involved, the more serious such masking effegldcbe. Such spectrogram
masking effect plays an major obstacle in poly-instrumetathpextraction. Similarly,
the note onset detection and the instrument extractiorowitrto be a serious problem in
audio context. At the current state of the art, transfornaindio music into its symbolic
form is still an unsolved problem under active researchinyo apply methodologies
in symbolic music analysis on auto-transcribed audio dataighly impractical since
building up a reliable auto-transcription system for auadliosic appears to be a more
challenging task than audio genre classification itselfatit, the best candidate scored
only about 70% in the 2009 MIREX melody extraction conte$t [ simpler task than

auto-transcription.

Considering the unavailability of reliable symbolic infeation, researchers seek
help from related research fields such as speech recogiidroreliable feature ex-
tractors. Short-time Fourier transform (STFT) and metifrency cepstral coefficients
(MFCC) are two feature sets which have been typically wigelgpted in audio genre
classification systems. The experiments in this thesis rallyoheavily on the MFCC
feature set. Before listing the example audio music gerassdication systems and

their feature sets, | would like to go through some detailhete two feature sets.
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2.3 STFT and MFCC

The Human Ear

Many techniques for processing audio sounds originate &oatyzing the auditory per-
ception of human beings. For instance, the standard audisa@ipling rate is 44.1 kHz.
The selection of this sampling rate is primarily based onhineman audible frequency
range, from 20 Hz to 20 kHz. According to the Nyquist-Shansampling theorem, "a
sampling rate of more than double the maximum frequencyesitnal to be recorded
is needed”. And therefore the sampling rate 44.1 kHz just ealers the the full hu-

man audible frequency range. Similarly, the extraction D5 and MFCC feature are

largely based on the functionality of human ear.

Stapes
(attached to

oval window .
) Semicircular

Canals

Cochlear
Nerve

External
Auditory Canal

Tympanic
Cavity
Eustachian Tube

Round
Window

Tympanic
Membrane

Figure 2.2: The anatomy of human ear.

Figure 2.2 [9] shows the anatomy of human ear. The sound weperis actually
a form of energy that moves through a kind of medium that mafsz=energy from the

source to our ears. The human ear can be divided into thrés marter, middle and



14

inner. The outer part of human ear include the visible pitimagxternal auditory canal
and the tympanic membrane (or the ear drum) that separatutee ear and middle
ear. The middle ear is air-filled cavity immediately behihd tympanic membrane. It
contains three smallest bones in human body that connettteltgmpanic membrane to
the inner ear. The inner ear contains both organs for heéttiegcochlear) and balance
control of the body (three semicircular canals). The reahefinner ear (if we conve-
niently define the part adjacent to the middle is the "fromt"attached to two fibers of

nerve which transmit signals collected in the ear to thenbi@i further process.

When the sound wave arrive at our ears, it is collected by xtermal pinna and
transfered to the tympanic membrane via the external aydiemal. The sound wave is
then transformed to the vibration of the tympanic membr&ueh vibration is enhanced
and transferred to the entry of the inner ear by the threelssaabones. The last ear
bone, the stapes, is attached to an oval window of the cachléa movements of the
ear bones cause pushes on the oval window, resulting in temment of fluid within
the cochlear. When the sound energy arrive in the cochledeiform of cochlea fluid

movement, it is picked up by the receptor cells which fire aigtack to the brain.

Figure 2.3: The illustration of the basilar membrane.
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But what kind of signals is transmitted? Are the signalsdtited based on different
frequencies? Or the signals record the actual form of soume® Such question can
be answered from two different perspectives. First, theystf the inner structures
of the cochlea reveals that the perception of the frequelspyersed sound of human
beings results from the functionality of a stiff structuraémbrane that runs along the
coil of the cochlea, the basilar membrane [4] . When the sama&tgy comes into
the cochlea, different frequency components of it drivéedént sections of the basilar
membrane to vibrate. The vibration of the basilar membraggédred the associated
auditory receptor hair cells to fire neural signals. And ¢lfiene, different auditory cells
give response for different frequency components of thermog sound. The cochlea
acts more or less like a mechanical frequency analyzer #airdposes the complex
acoustical waveform signals into simpler frequency congmtsr Such information is
then shipped via nerve fibers to the auditory cortex in thenbranother answer to the
guestion is obtained from the study of cochlea implants. ddehlea implant is a kind
of electronic device that provides the sense of sound to ersgvauditory-impaired
person. It functions as it capture the environmental soamdstransform the signals
to electrical stimulation directly on the auditory nerveefilzells. Researches on the
electrical activity in inferior colliculus cells of cats 92 proved that the electrical nerve
signals are organized by frequency bands. Based on suchrgfisdientists built up a
multi-channel cochlea implant that encodes environmesatahds in electrical stimulus
on multiple frequency bands, and later on multi-channehtgz implants turned out
to be a great success. Experiments on a congenitally dei@hp@29] showed that,
the multi-channel implant enable the profoundly deaf pdtie capture the melody and
the tempo of the song "Where have all the Flowers Gone”. Naysdnulti-channel

cochlea implants are widely adopted.
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To sum up, the human ear transforms the incoming sound wagefrequency-
dispersed nerve signals before the process of brain. Tdrergfis biologically intuitive
to analyze the sound wave signals by first converting it toftbguency domain, as it

mimics the functionality of the human ear.

Short-Time Fourier Transform

Fourier analysis is a set of mathematical techniques whielused to decompose sig-
nals into sinusoid waves. The Fourier transform basicallyerts a time series signal
to its frequency domain. When it comes to sounds analysrgvéals the frequency
information inside the sound signals. In the research ohgdbuusic feature extraction,
a special form of Fourier transform, the discrete shoretkourier transform (STFT) is
used. This is because audio digital music are discretelsiganad analysis of frequency
only makes sense when a short-time window is concernedgssignals such as speech
and music are generally very changeable over time. Thewollp formula shows the

calculation of STFT.

STFT{z[n]} = X (m,w) = Z r[n]wn —m]e " (2.1)

n=—oo

In the equation aboves;[n| represents the the input signal am¢h| represents the
window function. In typical applications, the STFT is cdkted on a computer using the
Fast Fourier Transform (FFT) algorithm since it is signifita faster than the formula

listed above while the accuracy is well preserved.

Figure 2.4 shows the generic process of STFT extraction.ofigenal audio signal
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Figure 2.4: The short time Fourier Transform process.

first convolve with a certain type of window function. In thiesis, the window function
used is Hamming window. The windowed signals are transfdrogng the equation
listed above. Usually this stage is replaced with a fasgoréhm: Fast Fourier Trans-

form. The result of the transform is STFT values.

After the STFT process, the sound signals are transformtedrnames of spectro-
grams which span typically about 20 milliseconds. For audigsic genre classifica-
tions, additional process steps are often adopted to fucivedense a frame spectro-

gram to compact feature sets. Following is a incompleteofisuch feature sets [41]

e Spectral Centroid : The spectral centroid is defined as the "gravitational@ent

of a STFT frame spectrogram. It is calculated as

X Ml xn
S M [n]

c, (2.2)
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where M, [n| represents the magnitude of STFT spectrogram at friaarel fre-
guency binn. The spectral centroid is a measurement of the spectrodrapes

The larger the value, the more energy in the high frequenogda

e Spectral Rolloff : The spectral rolloff is defined as the frequeriybelow which
85% of spectrogram magnitude is concentrated. It also mesdioe spectrogram

shape.

Ry N
> M[n] =085 x Y M,[n] (2.3)

e Spectral Flux : The spectral flux is defined as the squared difference betwee
the normalized magnitudes of two successive STFT speetnogit measures the

local spectral change amount between two adjacent frames.

F, =Y (N[n] = Nioy[n]) (2.4)

whereN,[n] and N, _,[n] stand for the magnitude of spectrogram at frequency bin

n for framet andt — 1 respectively.

e MFCC : As described in the following subsection.

Mel-Frequency Cepstral Coefficients

The mel-frequency cepstral coefficients (MFCC) is a comsdairt-duration audio fea-
ture set extracted based on the STFT spectrogram. It wasgedmver thirty years ago
[7], and since then it has been widely adopted for variousoguibcessing tasks such as

speech recognition [33], environmental sound recogn{@&hand musical information
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retrieval tasks. MFCC and its derivatives have also beed esensively in many audio

genre classification systems [6, 15, 28, 41].

The calculation of MFCC include the following four stéps

I

Mel scale
Filterhank

Audio Signals

'

Pre - emphasis

Take Logarithm

Windowing DCT
MFCC
FFT CMS
MFCC

Figure 2.5: The MFCC extraction procedure.

1. Transform the audio signals to frames of spectrogramguSIiFT (The Pre-

emphasis, Windowing, and FFT steps in Figure 2.5).

2. Map frequency bins of these spectrogram to mel-scale. vahees of the fre-
guency bins are aggregated into the so-called mel bandg u&ngular overlap-

ping windows.

3. Take the logs of the value of the mel bands.

2The actual parameters such as window number, window shapag vary in applications.
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4. Apply a set of discrete cosine transform (DCT) filters am el bands as if they

were signals. The result is the cepstral coefficients.

5. There is an optional cepstral mean subtraction (CMS) afiep the DCT trans-
form. [31] shows thats such a step is performed for noiseedkton. In this

thesis, the MFCC values are extracted without such a step.

As we can observe from the list above, MFCC feature set take=ral further steps
to compress the STFT spectrogram features, reducing thengdiomality from typically
several hundreds to below twenty. Behind the magic of thesepatationally simple
steps are the findings of the nature of human auditory peosrepThe mel scale was
originally proposed by Stevens, Volkman and Newman [39]987Las they found out
that the linear increase of the perceptive “"pitch distangelild result in exponential
increase in the actual frequency hertz. The formula to adrfveertz tom mel is give

below.

_ o) = I
m = 2595|009, (700 + 1) = 1127log, (700 + 1) (2.5)

In the sense of musicology, it explains the relationshipveen the musical pitches
and their actual frequencies. For example, the pitch of tend A4 (or Concert A,
Middle A ) stands for a frequency of 440 Hz [18] . The pitch amawe above A4, the
A5, stands for a frequency of 880 Hz, which is double that of Ade pitch two octaves
above A4, the A6, has double the frequency of A5, that is 1760étead of the triple
of A4’s frequency 1320 Hz. The third step actually transfertine magnitude of the
mel bands to the decibel scale. The transform is also basédeonuman perception

of sound intensity. The last step of processing decompdsemel bands to a set of
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DCT coefficients. Research [24] show that, the DCT decontiposhas similar effect
as the KL transform that decorrelates mel bands components, is computationally
more efficient. The incorporation of knowledge of human targli system as well as
mathematical techniques makes MFCC very successful ingltedf audio information

retrieval.

2.4 Genre Classification Systems and Feature Sets

The research of audio music genre classification probabiyest at late 90s. In the last
decade, various classification systems and different kiidsature sets are proposed
to solve the problem. Following is an list of the example syst the feature sets they

used.

1. Tzanetakis et. al. [41] proposed his audio music classifin system based on
the feature sets describe three different aspects of mtisibre, beat and pitch.
The derivatives of STFT and MFCC are used as timbral featet® ,swhile the
Pitch Histogram and the Beat Histogram are deviced to calr pitch and beat
characteristics of songs. Experiments are carried out dd0@-$ong, 10 genre
GTZAN dataset® , using classification models such as the k-nearest-neighbo
(KNN) algorithm and the Gaussian mixture model (GMM). Thehiaved 61%
classification accuracy on the dataset. Their comparisangrthe feature sets
also revealed that the two timbral feature sets performguifstantly better than

the pitch and beat feature sets. The experiments were cewotim [21] using

3This dataset is very widely used and tested with variousesyst It can be considered as a sort of

benchmark standard. The experiments in later chapterssattisis are also based on this dataset.
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support vector machine (SVM) and the Linear Discriminanaiais (LDA). The
performance was pushed to 71.1% using the full feature skt BA. The com-

parison among the feature sets showed similar result ag¢heps paper.

. Xu et. al. [44] proposed an audio music classificationesysiising SVM as the
classifier. Their feature set includes linear predictivdieg (LPC) derived cep-
strum, zero crossing rate, spectrum power, MFCC and the Baattrum feature
set deviced to capture the beat characteristics of songseXjperiments was car-
ried out on a 100-song, 4 genre dataset. The performance/fdré8e compared

with other statistical learning model.

. Meng et. al. [28] carried out their experiments on thrdéeint scales of au-
dio features: short-duration, medium-duration and loangation, for the task of
audio music genre classification. The short-duration featst MFCC with its
first six coefficients. The medium-duration features ineltite various statistical
summary of MFCC and derivatives of the zero-crossing regéufe. The long-
duration features include the statistics of the mediunmufeséind two beat-related
feature sets proposed by other researchers [41, 16] Theariexents show that
the long- and medium-duration feature sets derive from M&E&E@ most effective
in music genre classification. The investigated classifireckide Linear Neural

Network and Gaussian classifiers.

. Lidy et. al. [22] proposed their feature set using psyaboustic transforms to
construct effective audio feature extractors. The feasete include the Rhythm
patterns, Statistical Spectrum Descriptors and Rhythnogiam, the function-
ality of them indicated as their names. Their experimentcamied out on a

great variety of datasets, including the GTZAN dataset aatdskts used in the
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2004 ISMIR contest. Different combination of psycho-admusansforms and
classification models were evaluated. Their feature sdieaed very remark-
able performance, scoring 74.9% classification accuradh®iiGTZAN dataset.
In their later paper [23] , they incorporated the informatextracted by an au-
tomatic transcription system to their existing classifmatmodel. Although the
result of auto-transcription system is far from perfecéliyable, the resulting score
still contained sufficient amount of genre-related infotimato improve the final

classification accuracy, scoring 76.8% on the GTZAN dataset

The list above is by no means the complete list of all systemddeature sets. Apart
from the feature sets that is proposed from the perspedtiseund and music process-
ing, researchers also tried to attack the problem from saherhative” angles. Soltau
et. al. [37] tries to train the neural network and use its r@ddyer as the feature
extractor. Similarly, Sundaram et. al. [40] build up thesafure extractors by train-
ing with some generic sound effect libraries. The featuteaexed, the Audio Activity
Rate, is further used in the context of music genre classiica Deshpande et. al.
[13] perceive the music genre classification problem in thage way. They applied
a image information technique, the texture-of-texturerapph, to extract meaningful
information from MFCC and STFT spectrograms. The threeesystabove inspired
me of seeking alternative approaches to attack the audi@ géassification, especially
when the performance of traditional ways meet their bo#tbdn The detailed attempts

will be covered in the following chapters.



Chapter 3

Automatic Musical Pattern Feature
Extraction Using Convolutional Neural

Network

3.1 Introduction

Automatic audio music genre classification is a promisingdiicult task, as much
of the difficulty originates from the modelling of elusive sa features. A first step
of genre classification, feature extraction from musicahdmll significantly influence
the final classification accuracy. Most of the modern audigimgenre classification
systems rely heavily on timbral, statistical spectraldea$. Feature sets pertaining to
other musicological aspects such as rhythm and pitch asgadgosed, but their perfor-
mance is far less reliable compared with the timbral feadete. Additionally, there are

few feature sets aiming at the variations of musical pastefine inadequateness of mu-

24



25

sical descriptors will certainly impose a constraint oniaudusic genre classification

systems.

In this chapter we propose a novel approach to automatioatiieve musical pat-
tern features from audio music using convolutional neuetivork (CNN), a model that
is adopted in image information retrieval tasks. Migrattaghnologies from another
research field brings new opportunities to break througlttineent bottleneck of music
genre classification. The proposed musical pattern feaxtractor has advantages in
several aspects. It requires minimal prior knowledge tadoup. Once obtained, the
process of feature extraction is highly efficient. These aglwantages guarantee the
scalability of our feature extractors. Moreover, our makjgattern features are com-
plementary to other main-stream feature sets used in othssification systems. Our
experiments show that musical data have very similar chkeniatics to image data so
that the variation of musical patterns can be captured uShiy. We also show that the

musical pattern features are informative for genre clasgitin tasks.

3.2 Methodology

The previous chapter has presented some example audio gamse classification sys-
tems. As we observe, most of the proposed systems coneeptibt on feature sets
extracted from a short window of audio signals, using diaibkmeasurements such as
maximum value, average, deviation, etc. Such featuresepresentative of the "musi-
cal texture” of the excerpt concerned, i.e. timbral desimip Feature sets concerning
other musicological aspects such as rhythm and pitch acepatgosed, but their per-

formance is usually far worse than their timbral counteiparhere are few feature sets
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which capture the musical variation patterns. Relying amyimbral descriptors would
certainly limit the performance of genre classificationtegss; Aucouturier et. al. [32]

indicates that a performance bottleneck exists if only tehfeature sets are used.

The dearth of musical pattern features can be ascribed teluls&e characteristics
of musical data; it is typically difficult to hand-craft mgsi pattern knowledge into fea-
ture extractors, as they require extra efforts to hand-sgacific knowledge into their
computation processes, which would limit their scalapilifo overcome this problem,
we propose a novel approach to automatically obtain mupatéérn extractors through
supervised learning, migrating a widely adopted technologmage information re-
trieval. We believe that introducing technology in anotiield brings new opportunities

to break through the current bottleneck of audio genre ifieaton.

In this section, we briefly review the CNN and the proposediogsnre classifica-

tion system.

3.2.1 Convolutional Neural Network

Neural networks is a mathematical model inspired by reataleystem in animals. The
actual structure of the network varies based on the way afection, the distribution of
weights and the training strategies. Arguably, the mostroonly used type of neural
network is the 3-layer feed-forward neural network whiclagplied as a generic non-
linear classifier. The feed-forward neural network is ad&geous in the simpleness of
implementation and the classification speed. Such ar¢brecs also very suitable for

hardware implementation, which makes the classificati@m éaster.
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The design of convolutional neural network (CNN) has itgoriin the study of
visual neural system. The specific method of connectionsodesed in cats’ visual
neurons is responsible for identifying the variations ie thpological structure of ob-
jects seen [30]. LeCun incorporate such knowledge in higydes CNN [5] so that its
first few layers serve as feature extractors that would benaatically acquired via su-
pervised training. It is shown from extensive experimesisjat CNN has considerable

capacity to capture the topological information in visuljexts.

There are few applications of CNN in audio analysis despstsuccesses in vision
research. Neural science research [35] shows that "thg @attical processes and their
implementation are similar across sensory modalities’s&rgking similarities of recep-
tive field organization are found in visual, auditory and sémsensory areas”. The CNN
model achieves the state-of-the-art performance in hattdwidigit recognition tasks
based on its structure derived from real visual neural sysféherefore it is reasonable
to extend its usage to audio tasks since its structure aflexti®the "receptive fields”
connections found in real auditory neural system. The cbjeative of this paper is
to examine and evaluate the possibilities extending théicghion of CNN to music
information retrieval. The evaluation can be further deposed into the following hy-

potheses:

e The variations of musical patterns (after a certain fornrafisform, such as FFT,
MFCC) is similar to those in images and therefore can be etadawith CNN.
e The musical pattern descriptors extracted with CNN arermédive for distin-

guishing musical genres.

In the latter part of this chapter, evidence supportingéte® hypotheses will be pro-
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vided.

3.2.2 CNN Architecture for Audio

Input IstConv  2nd Conv  3rd Conv ~ Output
Raw MFCC 3@46x1 15@10x1  65@I1x1 Genre

1@190x13 10@1x1
— []

Figure 3.1: CNN to extract musical patterns in MFCC

Figure 3.1 shows the architecture of our CNN model. Therdiaedayers in total,
including the input and output layers. The first layer i9& x 13 map, which hosts the
13 MFCCs from 190 adjacent frames of one excerpt. The seeyedis a convolutional
layer of 3 different kernels of equal size. During convaduatithe kernel surveys a fixed
10 x 13 region in the previous layer, multiplying the input valudtwitis associate weight
in the kernel, adding the kernel bias and passing the squaélction. The result is
saved and used as the input to the next convolutional layiéer Aach convolution, the
kernel hops 4 steps forward along the input as a process sésytling. The 3rd and 4th
layer function very similarly to the 2nd layer, with 15 andf@ature maps respectively.
Their kernel size i90 x 1 and their hop size is 4. Each kernel of a convolutional layer
has connections with all the feature maps in the previousrlayhe last layer is an

output layer with full connections with the 4th layer. Theldtecture of this model



29

is designed based on the original CNN model used for digibgettion. Image data
are 2-D in nature, and therefore the image CNN convolves m dwections on the
input image signal, capturing the topological featureslevignoring the slight spacial
variance. When it comes to audio features, the slight veeiave need to cancel is the
variance in time. Since adjacent MFCC coefficients do nattate with each other like
the nearby pixels on images, it is not appropriate to appéffment-wise convolution
on the MFCC maps. All the MFCC coefficients are aggregatelarfitst layer, turning
the 2-D inputinto 1-D. The later layers operate on 1-D ingwes since. The parameter

selection process is described in Section 3.3.2.

It can be observed from the topology of CNN that the model isutifayer neural
network with special constraints on the connections in trevclutional layers, so that
each artificial neuron only concentrates on a small regionmft, just like the receptive
field of one biological neuron. Because the kernel is shacedsa one feature map,
it becomes a pattern detector that would acquire high daiivavhen a certain pattern
is shown in the input. In our experimental setting, each MAGe spans 23ms on
the audio signal with 50% overlap with the adjacent framdseré&fore the first convo-
lutional layer (2nd layer) detects basic musical pattepyear in 127ms. Subsequent
convolutional layers therefore capture musical pattemnsindows size of 541ms and
2.2s, respectively. The CNN is trained using the stochgstdient descent algorithm

[38] for simplicity. The brief description of the algorithis given below:

For a certain neural network mod#f, let £ (z;, w) be the error function of the
neural network given a training sample vecigy and the weight matrixo. The new

weight matricesv is updated by

Whew = w — aVE (w, ;) (3.1)
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as the algorithm sweep through the data sah the equation is the learning factor that
determines the step size of the gradient descent process emor functionE (x;, w) is
usually defined as the mean squared error between the lathed ofput and the actual
output of the network. The process is repeated multiplegiseethat the error function

converges to a local minimum.

It could be better to implement some heuristic search glyorsuch as the genetic
algorithm, simulated annealing algorithm, etc, which nhigg less prone to get trapped
in local minima, but that should significantly add to the @alesystem training time.
After convergence, the values in the intermediate coniaiat layers can be exported

as the features of the corresponding musical excerpt.

The model we use is a modified CNN model presented in [36]. Goatpwith the
traditonal CNN model, we observed that the training is easied the capacity loss is

negligible. In return, as much &6.8% of computational requirement is saved.

3.2.3 Music Genre Classification

Conv. Musical
MFCC Neural | = pyirern
Extraction Network Extractors
Songs —
and
SEFIIED Trained Generic
Musical Classifiers
Pattern & Majority —Genre
Extractors Voting

Figure 3.2: Overview of the classification system
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Figure 3.2 shows the overview of our classification systerhe Tirst step of the
process is MFCC extraction from audio signals. MFCC is arieft and highly in-
formative feature set that has been widely adopted for aanidysis since its proposal.
After MFCC extraction, the input song is transformed intoMiRCC map with 13 pix-
els wide which is then segmented to fit the input size of CNNvlied the song label,
the musical pattern extractors are automatically aquiradwpervised learning. Those
extractors are used to retrieve high-order, patternedlégatures which will later serve
as the input of generic, multi-class classifiers such asdi@tilree Classifiers, Support
Vector Machine etc. After classification of each song segsje¢he result is aggregated

in a majority voting process to produce the song-level label

3.3 Results and Analysis

3.3.1 Dataset

The dataset of our experiment is the GTZAN dataset which bas lised to evaluate
various genre classification systems [41, 6, 23]. It costdi®00 song excerpts of 30
seconds, sampling rate 22050 Hz at 16 bit. Its songs arahbditgd evenly into 10

different genres: Blues, Classical, Country, Disco, HigpHoazz, Metal, Pop, Reggae

and Rock.
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Figure 3.3: Convergence Curve in 200-epoch training

3.3.2 CNN Pattern Extractor

Figure 3.3 shows the convergence of the training error rfad@ioCNN model, on four
sub-datasets extracted from the GTZAN dataset. The srmddésset contains 3 genres:
Classical, Jazz and Rock. The latter datasets increasedrasiDisco, Pop and Blues
genres are added. From the figure we can observe that thedfexdvergence over
different datasets is similar, however the training on s&efirg dataset converges much
faster than the training on a 6-genre dataset. This showdiffieilty in training CNN
increases drastically when the number of genres involveédining increases. We be-

lieve this is because the CNN gets confused with the contglekihe training data and
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therefore never obtains suitable pattern extractors irfitsiefew layers. Additionally
we also found that the combination of genres in the 3-genbsetuwill not affect the

training of CNN. All combinations have very similar curveainvergence.

Based on the observations above, the training of our CNNifeaxtractors are di-
vided in four parallel models to cover the full 10-genre GT¥ Aataset. Three models
are arbitrarily selected to cover 9 non-overlapping genmdsle one model is deliber-
ately chosen to train on the 3 most difficult-to-classify ggsnshown in [41], i.e. Blues,
Metal and Rock. Dividing the dataset into small subsetsdimtthe CNN feature extrac-
tors may have the side-effect that features extracted ssifjasongs within one subset
may not be effective in inter-subset classification, andetfoee it may seem more rea-
sonable to select three 4-genre models instead of four B2geadels. We observe from
our experiments that such alternative is unnecessary sgateres extracted from in-
dividual subsets possess a good capacity for inter-sult@tiadion. Additionally, we
also observe that the training of 4-genre subsets is farefsstive and less efficient

compared with training of 3-genre subsets.

Extensive experiments are also performed towards thetseieaf CNN network
parameters. First is the network layer number. We discdwar@NN with more than
3 convolutional layers is exceptionally difficult to traiorfthe network convergence
will easily get trapped in local minima. On the other hand,N&\with less than 3
convolutional layers do not have sufficient capacity for mmgtassification. The convo-
lution/subsampling size is set at 10/4 for similar critetiarger convolutional sizes are
difficult to train, while smaller ones are subjected to cétydanitation. To determine
the feature map numbers in the three convolutional layeedjnat set the three param-

eters sufficiently large, then watch the performance of CNMa gradually reduce the
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number. We discover that 3, 15 and 65 is the optimal featue maanbers for the first
three convolutional layers. Reducing them further willddi@ally constrain the capacity

of CNN feature extractors.

3.3.3 Evaluation

After obtaining 4 CNNs as described above, we apply the feautractors on the full
dataset to retrieve musical pattern features. We deliblgragserve 20% songs in the
training of CNN as to examine the ability of our feature egtoas on unseen musical
data. The musical pattern features are evaluated usingusgamodels in the WEKA
machine learning system [17]. We discover that the featscesed very well in the
10-genre training evaluation, using a variety of tree dfess such as J48, Attribute Se-
lected Classifier, etc. The classification accuracy is 84férbehe majority voting, and
gets even higher afterwards. Additionally, musical extermwt used in CNN training
have minor difference in classification rate compared witteepts used to train CNNSs.
This provides evidence to support our hypothesis in Se@i@rthat the variations of
musical patterns in the form of MFCC is similar to those of gaa&o that CNN can be
used to automatically extract them. In addition, thosegpast provide useful informa-

tion to distinguish musical genres.

However, further experiments on the split test dataset girg poor performance
compared with the training evaluation; the accuracy ofw&0% is therefore too low to
make any reliable judgments. Such result is consistentifiarent splits of the dataset
into training and testing data. It reveals that our curremsical pattern extraction model

has the deficiency in generalizing the musical patternsteéatunseen musical data. We
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further study such phenomenon and found that the reasoroifote: 1. Musical data
is typically abundant in its variation, and therefore it & dily sufficient for 80 songs to
represent all types of variations in one specific genre; 2 NIRCC feature is sensitive
to the timbral, temple and key variation of music which fertlccentuates the shortage

in training data.

One practical solution to these problems above is to enldgéraining dataset by
adding affine transforms of songs, such as key elevatioefiog, slight tempo shift,
etc. Additional data smooths the variation within one geaird boosts the overall gen-
eralizability. Similar work can be found in [36]. Alternagly, the MFCC feature input
can be replaced with transforms insensitive to timbral pgemnd key variation, such as

mel-frequency spectrum or chroma feature [15].

The attempt to study the filters learned in the first few lagdse prove very difficult.
That is partially due to the difficulties understanding th&®C inputs. Unlike the
topological connections in images which can be easily ofeskthe information hidden
in the MFCC values is hard to tell. After the DCT transformg MFCC coefficients
becomes irregular and random-like. The pre-processingalaation and the first few
layers of CNN, patterns extracted from the original MFCCftioients get more elusive,
rendering any meaningful analysis hardly possible. Fuiuweks could be directed at
learning on different features that contain more intetdeacorrelation, e.g. STFT or

mel-scale filterbanks.

Our method on musical pattern extractor can be comparedtigthwvork in [13],
which also applies an image model to audio music genre @lzson. It is shown that
our system possesses better scalability. The texturextdite model used in [13] is so

highly computational intensive that the authors reducertiaing set to 17 songs each
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category. In comparison our CNN takes less than two hourbt@imfeature extractors
from a 3-genre, 240-song training set. The efficiency of @ssccan be raised further

with parallel computing on different combination of genres

3.4 Conclusion

In this chapter we presented a methodology to automatiexlisact musical patterns
features from audio music. Using the CNN migrated from treeithage information

retrieval field, our feature extractors need minimal prinowledge to construct. Our
experiments show that CNN is a viable alternative for autonfieature extraction. Such
discovery lends support to our hypothesis that the intriclsaracteristics in the variation
of musical data are similar to those of image data. Our CNNehschighly scalable.

We also presented our discovery of the optimal parametearsbest practice using

CNN on audio music genre classification.

Our experiments reveal that our current model is not robusiigh to generalized the
training result to unseen musical data. This can be overcmithhean enlarged dataset.
Furthermore, replacing the MFCCs with other feature seth si3 the Chroma feature
set would also improve the robustness of our model. Furihgliaation of image tech-

niques are likely to produce fruitful results towards mudassification.
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Chapter 4

Genre Classification and the Invariance

of MFCC Features to Key and Tempo

4.1 Introduction

In many genre classification systems, the Mel-frequencgtecaipcoefficients (MFCCs)
[7] have been used as a timbral descriptor [41, 32, 26, 15]jlaAths common to think
of MFCCs as timbre-related features, due to the short-tur&tame on which they are
extracted (e.g., 20 milliseconds), it is still uncertaimhihe key and tempo of a song

affects the MFCC features, and hence the subsequent gassificlation system.

In this chapter, we attempt to address the following quastwe MFCCs invariant
to key and tempo? In other words, is MFCC a purely timbralieaset? If the MFCCs
are purely timbral features, then they should be invariatii¢ changes in musical keys

and tempo. Otherwise, changes in the musical key and temasohg will affect the

38
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MFCCs, which may adversely affect the training of genressfas's. The contributions
of this chapter are three-fold. First, we show that musi@irgs, whichshouldbe
independent of key, are in fact influenced by the fundamdueta of the instruments in-
volved. Second, we show that MFCCs indeed encode both tirabdekey information,
i.e., they are not invariant to shifts in musical key. As autegenre classifiers based
on the MFCC features will be influenced by the dominant keythefgenre, resulting
in poor performance on songs in less common keys. Third, wpgse an approach
to build key-independent genre classifiers, which consiEugmenting the classifier
training and prediction phases with various key and temguasfiormations of the songs.
The resulting genre classifier is invariant to key, and thasentimbre-oriented, resulting

in improved classification accuracy in our experiments.

The rest of this chapter is organized as follows. In Sectid) we explore the
distribution of musical key for different genres. In Seati.3, we study the invariance
of MFCC to musical key and tempo shifts. In Section 4.4, wepee a data-augmented
genre classification scheme, based on key and tempo traregfons, while in Section

4.5 we present experiments on genre classification usingataraugmented system.

4.2 Key Histograms of the GTZAN dataset

In this section, we explore the relationship between mugieares and musical keys.
We manually annotate each song in the GTZAN dataset [41]thélr musical “keys”.
In this section, we define the concept of “key” as the pitchhaf tDo” sound of the
song in the solfege scale (Do-Re-Mi scale). Such definisatifferent from the more

common definition — the tonic sound of the scale (e.g., in mguales the tonic sound
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Figure 4.1: Key histograms of the GTZAN dataset on the cicfléifths scale. The

vertical axis is the number of songs with a certain key.

is the La sound rather than the Do sound). Because a majer aedlits relative minor

scale share the identical composition of pitches, it is $&mjp annotate both scales with
the same label to show that they actually have the same mitgledients in the songs
(e.g., songs in C major and A minor are both labeled with “Gi)ases where the scale

is not apparent, we annotate the key based on the most rdpete.

Figure 4.1 shows the key histograms for different genrehy@enGTZAN dataset,
using our annotation criteria, with keys ordered by theleiof fifths (C is in the cen-
ter). We observe that genre is indeed key-related with teeibiution centered around

particular keys based on the instrumentation.

e Blues: peaks atBand G. B is the fundamental pitch of many horn instruments.
G corresponds to the Do sound for the blues scale in E, whitteifundamental

key for guitar.
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Classical: distribution around F, which is in between thenhastrument funda-

mental B and the piano fundamental C.

Country: broad distribution around D, with keys that areygasplay on guitars

(e.g. G,D,A E, C).

Disco: peaks atizand C. Disco frequently employs Blues scale. For C Blues, the

Do sound is E

Hip Hop: distribution is not obvious. This genre typicallges not have a key, as

the main instruments are human voice and drums.

Jazz: distribution is skewed towards flat keys,(B», Eb, Bp), which are the

fundamental horn pitches. The peak at F is similar to thatlag€ical.

Metal: peaks at C, G, E and FThe G key correspond to E Blues. E is the pitch of
the lowest string on guitar. In Metal, the lowest string isdisxtensively to create
a massive feeling. The peak at, Eorresponding to [EBlues, can be explained
by the common practice of Metal artists to lower the tuningomg semi-tone,

creating an even stronger metal feeling.

Pop: distribution is not obvious. The peak atig the Blues-scale of the C key.

The distributions of Pop and Disco are similar, due to simiatrumentation.

Reggae: peaks at C (keyboard), D (guitar)(Borns) and € (Bb Blues).

Rock: significant distribution around C. The distributisrbie related to the dom-
inance of guitar and piano in this genre. Rock is arguablyntiest key-related

genre in the GTZAN dataset.
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In summary, there is a strong correlation between genre epohkith each genre having
a unique key distribution. Such correlation most likelynssfrom the fundamental keys
associated with the instruments used in each genre. Fanitestthe most common kind
of clarinet is in the key of B while the alto saxophone is inEThe four strings of a

violin are tuned by standard to G, D, A and E. The piano hassalhite keys in C major.

Although it is entirely possible to play a song in any key, edtays are arguably easier
to play than others, depending on the instruments used. &;léme key characteristics

of instruments could unexpectedly associate musical kegpécific genres.

4.3 Are MFCCs Invariant to Key and Tempo?

In this section we study the invariance of MFCCs to shifts usimal key and tempo.

The computation steps of MFCC is listed in Chapter 2. In thigpter, the MFCCs
are extracted with the CATBox toolbox [8], using 40 mel-barmhd 13 DCT coeffi-

cients. The frame size is 18 milliseconds, taken every 9saibnds.

4.3.1 Key and Tempo Transformations

To examine the changes of MFCC values to shifts in keys angdsmwe apply key
shifting and tempo shifting musical transforms to each sonthe GTZAN dataset.
These transformations consist of sharpening/flatteniagtimg up to 6 semitones, and
changing the tempo 5% and 10% faster/slower. The transt@nssare performed with
the WSOLA algorithm [43], which is implemented in the opensse audio editor Au-

dacity [1]. The musical transforms are analogous to affiaedforms of images, which
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deform an image without changing the general shape (e.gtingtand skewing the
number 1). Augmenting the dataset with affine transformsasramon technique in
digit recognition tasks [36], where the enlarged trainiagimproves classification ac-

curacy by encouraging invariance to these deformations.

There are doubts that transforming a song to approximatetnshifted and tempo-
shifted version of the songs might not be appropriate, ssnch transforms might also
contaminate the timbral characteristics of the songs. Weaeathat such an effect is
minor for the following three reasons: 1) qualitatively akimg, the transformed songs
sound perceptually very similar to the original song reedrih different key and tempo,
with critical information for genre classification, suchiastruments, musical patterns
and rhythm characteristics, still preserved; 2) considgtinat musical instruments have
different timbre in different registers, we limit the keyifth to the range of half an
octave (fromy6 to #6); 3) we compared the MFCC values extracted from MIDI songs
and their perfect key-transposed versions, and obsenadite MFCC values vary in

similar ways as in the key-transformed songs.

4.3.2 Comparison of MFCCs under Key and Tempo Transforms

For genre classification, MFCCs are often aggregated ovargzduration window us-
ing statistical methods [41, 6]. Motivated by this fact, wempare the original songs
and their transformed versions by computing the Kullbaeksler (KL) divergence [10]
between corresponding windowed excerpts (3.5 secondsymisg that the MFCCs in
a window follow a Gaussian distribution (e.g., as in [41fe talculation of KL diver-

gence between two windows is given by:
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Figure 4.2: MFCC KL-divergence: the horizontal axis représ the key and tempo
transforms, from left to right, original, 5% slower, 10% sk, 5% faster, 10% faster,
key transformb1 to b6 andf1 to #6. The color represents the average KL divergence

between corresponding frames in the original and transédreongs.
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where(uo, o) and(uy, ¥1) are the mean and covariance for the two Gaussian distribu-

tions, and{ is the dimension.

Figure 4.2 shows the KL divergence between different muisiteasforms of the
same songs, averaged over each genre. From the figure, whatdesy transforms
affect the MFCC distribution, with larger key shifts affexg the distribution more. In-
terestingly, MFCCs for some genres are more sensitive tehhages in key, such as
blues, jazz and metal. This can be explained by the fact tiesiet genres have instru-
ments with richer harmonic structure, and therefore the K&Change more since they
model timbre. On the other hand, tempo transforms do not&gveat effect on the dis-
tribution of MFCC values. This is because transforming agsartime does not change
the frequency characteristics, but only the number of MF&neés. Compressing a
song subsamples the MFCC frame set, while stretching it addsMFCC frames by
interpolation. In both cases, the distribution of the MFG@ser the window remains

about the same.

In the previous, we showed that genres have dominant kegstadine instrumen-
tation of the genre. On the other hand, in this section, we lsfown that MFCCs,
which are common features for genre classification, are matriant to key transfor-
mations. This brings forward an interesting dilemma. Bseagenre is key dependent
and MFCCs are not key invariant, then a classifier based on@4HGay overfit to the
dominant keys of the genre. The resulting classifier wilhtfhe@ve poor accuracy on
songs in the less common keys. In the next section, we lodaating a key-invariant

genre classifier, by augmenting the classifier with differensical transforms.
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Figure 4.3: System architecture.

4.4 Genre Classification with Musical Transforms

In this paper, we adopt the genre classification system qfg428]. Figure 4.3 shows
the architecture of the system, which contains four stepst, Ehe input song is split
into non-overlapping windows of equal length (as in [6], vee wvindow length of 3.5
seconds). These windows then go through a feature extngotaxess, producing fea-
ture vectors which are compact representations of thosgomis. In particular, MFCCs
are first extracted from the audio signal, and the mean amdiztd deviation of the
MFCCs over the window are calculated as the feature veatdahd third step, the fea-
ture vector is fed to a Gaussian mixture model (GMM) classifiée parameters of the
GMM classifier are learned from the training set using the B§b@thm [12], which
iteratively estimates the parameters by maximizing thelililood of the training set.
One GMM is learned for each genre. Given a feature vectoaetdd from a window,
the GMM with the largest likelihood is selected as the geabel for the window. The
labels for all the windows in a song are then aggregated witlajrity voting process

to produce a genre label for the song.

We can modify the genre classification system in two ways t&emainvariant

to musical transforms. First, in the training phase, we cgraed the training set by
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adding transformed versions of the training songs, henoergéng more examples
for learning the genre classifier. Second, in the predigbloase, we can augment the
classifier by processing the test song along with its transéd versions. The final label
for the test song is the majority vote over all windows of @tsions of the songs. The
data augmentation step can be seen as adding a sampleatiffager before either the

training or the predicting phase of the system.

4.5 EXxperiments

In this section we present our experimental results on gaassification in the context

of key and tempo augmentation.

4.5.1 Dataset and Experimental Setup

In our experiments, we use the GTZAN dataset [41], whicha&@iost1000 song clips of
30 seconds each, with a sampling rate of 22050 Hz at 16 biexeTdre 10 musical gen-
res, each with 100 songs: Blues, Classical, Country, Didgohop, Jazz, Metal, Pop,
Reggae, and Rock. We augment the original GTZAN dataseb{ddras the “Orig”
dataset) using different combinations of musical trama®rThe “Tempo” dataset con-
tains the Orig dataset and its tempo variants, 5% and 10%rfalsiwer. The “Key”
dataset contains the Orig dataset and its key variants ffota £6. The “Tempokey”
dataset is the union of the Tempo and Key datasets. We alsneaugur dataset with
key transforms that are based on the circle of fifths. Theth&if dataset contains the

Orig dataset and its key variants with one step on the cirfdigtlas, i.e. b5 and5, while
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the “Fifth2” dataset contains variants with one more step,b2 and#2. The circle of

fifths augmented datasets are strict subsets of the Keyadatas

We carried out three different sets of experiments in cosimn with the 6 aug-
mentations listed above. In the first experiment, denotedwagirain, the classifiers
are trained using the augmented dataset, while genre poeths performed using only
the original songs. In the second experiment, denoted a®vedirt, the classifiers are
trained only on the original dataset, while prediction isfpened by pooling over the
augmented song data. In the final experiment, denoted as @&hgBoth the classifier
training and prediction use the augmented song data. Ga&ssifecation is evaluated
using five random splits of the dataset, with 80% of the soagd (ts variants) used for
training, and the remaining 20% used for testing. The erpemts are carried out on
a range of parameters. We use MFCC lengths from 1 to 13 (he.namber of DCT
coefficients), and vary the number of components in the GNI from 1 to 20. We
also assume diagonal covariance matrices in the GMM. Iretbgperiments, we treat
the number of GMM components as a tunable parameter. Atieehg the value ofiX

could be determined using a standard model selectionier|tet] .

4.5.2 Experimental Results

We first examine the effects of the system parameters, sutte asze of the GMM and

the length of the MFCCs. Figure 4.4a shows the classificatcauracy, averaged over
all the data augmentations and MFCC lengths, while vanfiegiumber of components
in the GMM. In general, the classification accuracy increasgh K, and there does

not seem to be an over-fitting problem for large K, such as 2QurE 4.4b shows the
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Figure 4.4: (a) Averaged accuracy for all datasets and MR&@ths, while varying
the number of GMM components (K); (b) Averaged accuracy liataasets and GMM

components, while varying the MFCC length.

accuracy, averaged over all data augmentations and GMM# wdrying the length
of the MFCCs. Similarly, the accuracy improves as more MF@feésadded. In fact,
despite their sensitivity to noise, these high-order coieffits provide useful details for
genre classification. As a comparison, [41] limited theisteyn to the first 5 MFCC
coefficients and GMMs with K=5, and achieved 61% classifozaéiccuracy when using
MFCCs with three other types of features. In contrast, ogtesy scores 66.3% on the

Orig dataset when using 13 MFCC features.

Next, we look at the effect of signal degradation when usigrhusic transforma-
tion. In particular, we add noise to the Orig training set pplging a “double-shift”
to each training song. This consists of first shifting the &the song, and then shift-
ing it back to the original scale. The result is a trainingganith noise added due to

the musical transformation. The double-shifted trainiegis used to train the genre
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classifier, which then predicts genres on the Orig test datas result is denoted as
DoubleShiftTrain in Figure 4.4. In particular, using thasyatraining data degrades the
accuracy, when compared to the Orig performance (e.g, theacy drops 5% to 53.5%
for K=20). However, in spite of this added noise to the tnagnset, the system is still

able to do genre classification, albeit with reduced acgurac

Finally, we look at the effect of using the proposed dataraeigted classifiers. From
Figure 4.4, we observe that the AugTrain classifier givestontly better performance
than the DoubleShiftTrain classifier, while its performans still lower than that of
the Orig dataset. This suggests that using augmentedrigadi@ta improves the accu-
racy, at least compared to the unaugmented classifier usmigusnoisy training data.
This improvement, however, is not enough to overcome thestoamation noise. On
the other hand, using data-augmented prediction (Augébegives constantly better
performance than the Orig dataset. Finally, using both-datamented classification
and prediction (AugBoth) achieves the best accuracy, datmg both AugPredict and
Orig. Table 4.1 shows the average classification accuraiayg usfferent transformed
datasets and data-augmentation schemes for K=20 and MFQ@1&3. The best per-
formance achieved for all experiments is 69.3%, using thgBaih classifier with the

Key transformations, K=18 and MFCC length 13.

Table 4.2 shows the classification accuracy for differemirge using the AugBoth
classifier. Comparing the genres, Classical has the higicestacy, scoring over 90%
on all datasets, followed by Jazz and Metal. In contrastc®and Rock are the two
worst performing genres. In general, the augmentationefiitaset improves the genre
classification. The only exception is the Rock genre, whaggreentation always lowers

the classification accuracy. Looking at the confusion métn AugBoth, we found that
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Tempo| Key | Tempokey| Fifthl | Fifth2 || Average
Orig - - - - - 64.5%
DoubleShiftTrain - - - - - 61.9%
AugTrain 65.1% | 62.0%| 64.5% | 60.5%| 62.8% | 63.0%
AugPredict 66.2% | 63.6%| 66.4% | 61.0%| 63.7% | 64.2%
AugBoth 66.6% | 67.8%| 68.9% 67.5% | 67.3%| 67.6%

Table 4.1: Genre classification accuracy for different gdatgmentation schemes and

transformed datasets, for K=20 and MFCC length 13.

Blues | Classical | Country | Disco | Hip-Hop | Jazz | Metal | Pop | Reggae| Rock || Average
Orig 59 92 62 41 64 86 77 58 61 45 64.5
Tempo 64 97 62 46 66 85 75 64 68 39 66.6
Key 62 99 67 55 65 90 83 64 60 33 67.8
Tempokey 63 98 67 55 65 91 87 61 63 39 68.9
Fifthl 61 98 67 52 63 88 83 63 62 38 67.5
Fifth2 64 94 63 58 63 90 79 64 66 32 67.3

Table 4.2: AugBoth Classification Rates for different genmgith K = 20 and MFCC

length 13.
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more instances of Rock are misclassified as Metal. On the btred, Disco performs

significantly better because less instances are misckdsaii Blues, Pop and Rock.

4.5.3 Discussion

From these experimental results we have three concludtanss, the MFCC feature set
is largely a timbral feature set. From the confusion masriwe found that confusable
genres have similar instrumentation. Additionally, genndgth distinct instrumentation
stand out from others easily, e.g., Classical uses or@i@sstruments, while Metal has

high frequency distorted guitar.

Second, in addition to timbral information, MFCCs also aete®key information,
which eventually affects the genre classification accurdéyobserved that the key and
tempo augmented classifiers have a significant change iorpehce over the baseline.
Rock and Metal both use guitars and drums as the main instrisiigit they have very
different key distributions as shown in Figure 4.1. The csidn between Rock and
Metal after key augmentation suggest that the classificatidrock music is partly due
to musical keys. If we blur the lines between keys for thesedgenres, we are likely to

lose such information, leading to a degradation of clasgifio performance.

Third, making the genre classifier tempo- and key-invariaiatdata augmentation,
generally improves the classification accuracy. The acoesaf the AugTrain, AugPre-
dict and AugBoth classifiers are significantly better thamnbise-added DoubleShift-
Train baseline. Despite the noise from the imperfect muisiaasforms, the accuracy
of the AugPredict and AugBoth classifiers are constantlieb¢than the Orig baseline.

These results suggest a method for boosting overall gemssiitation performance, by
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artificially generating transformed songs to augment thesifier training and predic-
tion phases, thus strengthening the timbre-orientatidgh@tlassifier. However, some
genres (e.g. Rock) will suffer from such augmentation sitmeerecognition of that

genre is partly due to musical keys.

While the concept of “musical genre” is perceptual and Igrdgemsed on timbre
information, there is still a strong correlation betweenrmgeand key, due to instrumen-
tation, which should also be considered. Future work wdkiat combining timbral and
key information, using appropriate machine learning mgdel push the performance
further. In addition, reducing the noise introduced by thesiwal transform will also

likely improve the classification accuracy.

4.6 Conclusion

MFCCs are widely used audio features in music informatianenal. Extracted over
a short-duration frame, MFCCs are typically perceived amaral descriptor. In this

chapter, we have shown that the MFCCs are not invariant toggsin key, and hence
they encode both timbral and key information. On the othadhee found that musical
genres, which should be independent of key, are in fact infleé by the fundamental
keys of the instruments involved. As a result, genre classifbased on the MFCC
features will be influenced by the dominant keys of the gem®ylting in poor perfor-

mance on songs in less common keys. We suggested an appocaadiiréss this prob-
lem, which consists of data-augmentation during the dia@sgraining and prediction

phases, with key and pitch transformations of the song. €kelting genre classifier

is invariant to key, and thus more timbre-oriented, resglin improved classification
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accuracy in our experiments.
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Chapter 5

Conclusion

In this thesis, we have presented our answers to two criigastions for the develop-
ment of genre classification systems: 1) how possible isattick the musical feature
extraction problem from an alternative perspective, am@ggh different from the tradi-
tional audio processing methodologies; 2) is the MFCC tegpuirely a timbral feature
as believed by many, and is genre independent to musicaldkeysempo? To address
the first question, we employ the convolutional neural neksoa typical image recog-
nition algorithm, as our feature extraction tool. The expent shows that musical data
indeed share many intrinsic characteristics as image d&twvided appropriate mod-
eling techniques from the image information retrieval fielk could develop viable
alternative solutions to the musical feature extractiaybpgm. To the second question,
we showed that the MFCC feature encodes both timbral and¥esmation, and there-
fore the feature is not purely timbral. Likewise, we foundttenre is related to musical
keys for the fundamental keys of the instrumentations. ®yakclination of genre and

MFCC makes classification systems susceptible to the dorhkegys of the genre. To

55
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solve this problem, we augment the classification systenhentriaining and predict-
ing phase, tuning the classifier more timbre-oriented. Thgrentation improves the

overall system performance.

Future works

The experiments in Chapter 3 shows that the CNN model is hifftbudt to train and

not robust enough to generalize the classification to unseesical data. One possible
solution to the generalization problem is providing mogarting data for the system,
while another is improving the overall system architectwith the developments in
neural science research. By better understanding of theshwauditory system, it is

likely to produce fruitful results toward music classificat.

To better improve the overall performance of the augment&skiication system,
we need to eliminate the noise introduced by the audio teamsélgorithms. One possi-
ble strategy is to scale the MFCC windows so as to mimic thdrdeesforms. Doing so
removes several intermediate processing in the systenchvgneserves data integrity.
It could also be fruitful using different features than MF&E the system input, such
as the STFT and Mel-bins, to reveal potential features remaluring the MFCC ex-

traction process.
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