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Abstract

Musical genre classification is a potential yet challengingtask in the field of music

information retrieval. As an important first step of any genre classification system, music

feature extraction is a critical process that will drastically affect the final performance. In

this thesis, we will try to address two important questions of the feature extraction stage:

1) is there any potential alternative techniques for musical feature extraction when tra-

ditional audio feature sets seem to meet their performance bottlenecks? 2) is the widely

used MFCC feature purely a timbral feature set so that it is invariant to changes in mu-

sical key and tempo in the songs? To answer the first question,we propose a novel

approach to extract musical pattern features in audio musicusing convolutional neural

network (CNN), a model widely adopted in image information retrieval tasks. Our ex-

periments show that CNN has strong capacity to capture informative features from the

variations of musical patterns with minimal prior knowledge provided. To answer the

second question, we investigate the invariance of MFCC to musical key and tempo, and

show that MFCCs in fact encode both timbral and key information. We also show that

musical genres, which should be independent of key, are in fact influenced by the fun-

damental keys of the instruments involved. As a result, genre classifiers based on the

MFCC features will be influenced by the dominant keys of the genre, resulting in poor

performance on songs in less common keys. We propose an approach to address this

problem, which consists of augmenting classifier training and prediction with various

key and tempo transformations of the songs. The resulting genre classifier is invariant

to key, and thus more timbre-oriented, resulting in improved classification accuracy in

our experiments.
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Chapter 1

Introduction

1.1 Why Automatic Music Genre Classification?

I would like the raise the question at the beginning of this paper: why do we need

automatic music genre classification, as is the most frequently asked question when I try

to present my research to someone who is not familiar with music information retrieval

(MIR). The answer to that question is crucial for this whole paper, and I would like to

address it with the following two scenarios.

Scenario 1.John is an IT company engineer. He loves music, and he loves listening

to it at work and at home. His favorite MP3 player is filled withsongs he obtained

from various sources. Some of them are ripped from CDs he bought; some are shared

by this co-workers; some are downloaded from online digitalmusic retailers such as

iTunes and Amazon. One day he tried to build up a play list of Jazz music because he

just develops a strong fond of it recently. He soon discoversit a non-trivial task. Simply

1
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sorting the names of the songs brings no solution to the problem. Not only because the

genres label ”Jazz” may not appear in the names of the files, but also files from different

sources follow different naming conventions, rendering name-based batch processing

impossible. Some of his tools is capable reading the meta-information stored in the

files. It helps finding the songs with proper meta-information, but it is unhelpful with

the rest. Perhaps the most secure way is to listen to the songsone by one to determine

its genre. But it is simply mission impossible on his ten-thousand-song collection.

Scenario 2.I-Want-To-Listen-To-Music.com is an online digital musicretailer com-

pany founded in 2000. The company tries to develop a service to display the songs and

albums on its web pages by genres and tags, since it assists the user to navigate the

database and potentially increases sales. The task turns out to be very difficult. The

company has millions of untagged songs in its database. To provide the new service

means to label them all. One solution is hiring a team of experts to classify the songs

manually. But it is hardly practical in terms of expense and scalability. The CEO of the

company wonders whether he could use computer to finish such atask.

As we can see from the two scenarios above, automatic, content-based music clas-

sification systems would naturally have both personal-scale and business-scale appli-

cations. With the rapid development of digital entertainment industry, we have easy

access to digital music in various forms. Nowadays it is not uncommon to possess an

MP3 player that stores thousands of songs. For song databaseorganization and play list

generation, we will need the help of meta-information such as musical genres, moods,

tags, etc. But those information may not necessarily come with the song file. With

the help of an automatic, content-based music classification system, we will be able

to assign proper labels to song files, and therefore manage the growing song database
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conveniently. On the other hand, online digital music retailers would also benefit sub-

stantially from those systems. The tremendously large songdatabase will be tagged

and sort out by computers. Such solution is inexpensive and scalable. The sales would

potentially increase as users find it more convenient to navigate through the database.

Music genre classification is a special case of the more generic music content meta-

information recognition/tagging systems. Actually genreis typically a kind of meta-

information people used to describe musical contents. Similar meta-information in-

cludes instrumentation, tempo, artist, etc. The reasons concentrating our work to genre

are two fold. First, the concept genre is very widely used nowadays. When we talk

about bands or singers, it would be very intuitive to use genre to describe the bands

and the music they produce, as oppose to the instrumentationthey use or the tempo of

the songs. Although it is impossible to argue that genre is more important than other

concepts, I believe it makes a strong case as a candidate of meta-information for song

classification. Second, music genre classification systemswould share a lot of common-

places with other music content meta-information recognition systems. Once we build

up a reliable genre classification system, we would be able togeneralize our work to

other types tagging systems with some minus modification of the architecture.

1.2 Scope of this work

The scope of this work is focused on a critical issue of audio musical genre classification:

musical feature extraction. The elaboration of this thesisis organized as follows;

Chapter 2 generally describe the research field of MIR and thebackground of the
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genre classification task. Fundamentals about sounds and human auditory perception

are presented to support the later chapters of this thesis.

Chapter 3 focuses on the application of image techniques on the music genre clas-

sification problem. As an important processing step, feature extraction plays a criti-

cal role that will significantly affect the final classification performance. However, re-

cent researches [32] shows that using only timbral feature sets derived from traditional

speech recognition features will limit the performance of genre classification systems.

In this chapter, we try to break through the performance bottleneck, using novel fea-

ture sets extracted with image information retrieval techniques. This chapter describes

the experiments applying convolutional neural network (CNN), a state-of-the-art image

digit recognition algorithm, to automatic extraction of musical pattern features. The

system architecture, the characteristics of CNN and the classification performance are

explained.

Chapter 4 studies the invariance of the widely used MFCC feature set to musical

key and tempo. Musical genre is a complex concept associatedwith various musical

attributes, such as instrumentation, key, tempo, musical patterns, etc. In many previous

works [41, 6, 15] , the MFCC feature set is considered to be a timbral feature set that

contains solely instrumentation information. Our experiments reveals that, apart from

the timbral information, the MFCC feature set also to some extent encodes the key

information of the songs concerned. The MFCC feature set is not invariant to change in

musical key. Likewise, we also investigate into the distribution of musical keys in the

GTZAN dataset [41], showing that genre is key-related basedon the fundamental keys

of the instrumentations. In Chapter 4, the classification system, experiment set-ups and

the detailed performance evaluation are presented.
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Chapter 5 concludes the thesis and suggest potential directions for future develop-

ment.



Chapter 2

Audio Music Genre Classification

Systems and Feature Extraction

2.1 Classification systems and their evaluations

Classification is a sub-discipline of data mining research.The task description can be

very simple: constructing a system which automatically label the category of an incom-

ing item, given some “features” of the item. For instance, wecan construct a classifica-

tion system which labels unknown flowers with their names, given information such as

color, petal length, leave length, etc. Such system can be constructed by hand-crafting,

or by some automated algorithms. Arguably, the most commonly used scheme for con-

structing a classification system is via supervised learning: the classification system is

constructed automatically using a learning algorithm and apre-labeled training set. It

saves the trouble and prior knowledge needed to hand-craft the classification system,

while the actual performance resulted from the supervised learning process is depen-

6
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dent on the learning algorithm and the classification problem concerned. There is no

universal learning algorithm that fits all classification problems.

The evaluation of performance of supervised learning algorithms relies on the clas-

sification accuracy. Given a specific data set, it is possibleto find a specific learning al-

gorithm that yields excellent classification results. However, such classification results

may not be generalizable to the real world problems the classification system intends

to solve, for the resulted system fits the given data set “too well”. To overcome such a

problem, the given data set is usually split into two smallerdata sets, one for training, the

other reserved for testing. Because the testing set is unknown to the supervised learning

algorithm, it serves as the benchmark of the possible performance on real world prob-

lems. For more accurate evaluation, the split-training-testing procedure can be carried

out multiple times, and the average of the testing performance is used as the evaluation

score of the supervised learning algorithm.

2.2 Audio vs. Symbolic

The research of music information retrieval can be generally divided into two subordi-

nate fields: audio music information retrieval and symbolicmusic information retrieval,

by the nature of different types of data concerned. Symbolicmusic files contains the

symbolic representation of songs. For example, the MusicalInstrument Digital Inter-

face format (MIDI, .mid) records information such as the note onset time, note pitch,

musical effects, instrumentation, etc. It is entirely possible to recover the full score of

the song from a well-recorded MIDI file. Similarly, MusicXMLis a XML-based mu-

sic notation file format that stores the actual score of songs. It is the common standard
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designed for score exchange between different types of scorewriter software. There

are also other symbolic music formats used by various musical composition software.

Playing a symbolic music file requires a synthesizer that translate the musical notations

to actual sounds. The instrumentation library and the capacity of the synthesizer can

drastically affect the quality of music generated, given the identical symbolic music file.

On the contrary, audio music files contains the pulse-code modulated digital signals

of songs1. Basically, the actual sound wave signals or their compressed form are stored

in audio music format. Example file formats includes the Waveform Audio File Format

(.wav), MPEG-1 Audio Layer 3 format (.mp3) and Free LosslessAudio Codec format

(.flac). Playing a audio music file requires a Digital-to-Analog (DA) converter that trans-

form the digitized signals to audible analog sounds. The compressed audio file formats

may require an additional decoder layer before the DA converter. The same audio music

file should sound very similarly on different machines, evenif they are using different

types of DA converters.

Based on the characteristics of data, the feature extraction methodology used for

symbolic music information retrieval is very different from its audio counterpart. In

modern classification frameworks, feature extraction is a critical process layer between

the raw data and the classifier. Feature extraction transforms the complex, elusive raw

data to a compact set of informative attributes (or the feature vector) that is suitable to

utilized as the input of classifiers. It can be considered as aspecial form of dimension-

ality reduction. The effectiveness of feature extraction is critical to the later process

as it will greatly affect the overall performance. Take genre classification for instance.

1In this paper, only digital audio music is concerned. Analogmusic on cassettes and gramophone

records is not considered.
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Because the high-level musical representations such as note onsets, pitches and instru-

mentation are readily available in the files, the feature extraction process for symbolic

music genre classification is straight-forward and musicology relevant. The vast set

of music theory and other musicology knowledge are directlyapplicable to the entire

feature extraction process. As a result, it would be easier to achieve satisfactory classifi-

cation accuracy than using only audio features. Following is a list of example symbolic

music genre classification systems.

• Tzanetakis et. al. [42] presented his five-genre classification systems using pitch

statistics as feature vector and k-nearest-neighbor (KNN)as the classifier. The

Pitch Histogram he extracted is basically a 128-dimensional vector indexed by

MIDI note numbers. It shows the frequency of occurrence of each note in a musi-

cal piece. From the Pitch Histogram he further computes a 4-dimensional feature

set that summarizes the major characteristics of the Pitch Histogram. The experi-

ments are carried out on three different types of datasets: purely MIDI data, audio

files converted from MIDI data and general audio files. It is shown that, in his

experiments using only pitch histogram features, the classification accuracy for

purely MIDI data is significantly better than the audio-from-MIDI dataset and the

general audio dataset. The experiments well demonstrated the advantage to ex-

tract reliable pitch information from symbolic music files over audio music files.

• Basili et. al. [3] presented his classification system on a six-genre MIDI dataset.

Various types of feature sets such as melodic intervals, instrumentation, meter/time

changes and note extension are extracted to facilitate the classification using six

different types of classification algorithms. Investigation of the impact of differ-

ent musical features on the inductive accuracy is also carried out. They achieved
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about 60% for multi-class classification accuracy.

• Ponce et. al. [34] adopts the self-organising neural maps (SOM) as their clas-

sification model. The features extracted include pitch descriptors, note duration

descriptors, silence duration descriptors, etc. They showed a smaller SOM map

would produce better overall performance, as their system scored 76.9% and

77.5% in average accuracy for jazz melodies and classic melodies respectively.

They further improved their work in [11] where they introduced a feature selection

process. Experiments were refined to obtain better results.The average accuracy

for jazz melodies and classic melodies classification were boosted to 81.8% and

89.3%.

• McKay et. al. [27] achieved very high accuracy using a hierarchical classification

system. They extract 109 features which can be divided into seven categories:

instrumentation, musical texture, rhythm, dynamics, pitch statistics, melody and

chords. Two classification models, i.e. feed-forward neural networks (NN) and

the k-nearest-neighbor (KNN), are used in their system. They also apply the ge-

netic algorithm to the feature selection process to furtherboost up the classifica-

tion accuracy. The MIDI dataset they use includes 950 recordings. Categories are

distributed in three main genres and further in nine subordinate leave genres. The

experiments show that the hierarchical classification scheme scores better than the

flat classification scheme as they achieved 90% and 86% for leave genre classifi-

cation respectively.

On the other hand, feature extraction for audio music information retrieval is more

difficult and less musicology relevant. Classifying audio music in the way of symbolic

music is hardly possible because of the hardship transforming the audio signals into its
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Figure 2.1: The demonstration of audio masking effect.

original score form. Take the extraction of pitch for example, a sound of an musical

instrument can be musicologically viewed as composition ofa fundamental frequency

that determines the pitch, and the overtunes that determines the timbre. It is an easy task

to extract pitch and the corresponding instrument in mono-instrument audio signals. But

the situation gets very complicated in poly-instrument transcription in which the over-

tunes of different instruments overlap each other, making the fundamental frequencies

not apparent. As we can see in Figure 2.1, the two graphs on theleft represent the spec-

trogram characteristics of two instruments, their fundamental frequencies and overtunes

indicated as marked. The graph on the right is the effect combining the sound of two in-

struments together. We can observe that some overlapping overtunes are enhanced sub-
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stantially to the extent of approximately the level of fundamental frequencies. The more

instrument involved, the more serious such masking effect could be. Such spectrogram

masking effect plays an major obstacle in poly-instrument pitch extraction. Similarly,

the note onset detection and the instrument extraction turnout to be a serious problem in

audio context. At the current state of the art, transformingaudio music into its symbolic

form is still an unsolved problem under active research. Trying to apply methodologies

in symbolic music analysis on auto-transcribed audio data is highly impractical since

building up a reliable auto-transcription system for audiomusic appears to be a more

challenging task than audio genre classification itself. Infact, the best candidate scored

only about 70% in the 2009 MIREX melody extraction contest [2] , a simpler task than

auto-transcription.

Considering the unavailability of reliable symbolic information, researchers seek

help from related research fields such as speech recognitionfor reliable feature ex-

tractors. Short-time Fourier transform (STFT) and mel-frequency cepstral coefficients

(MFCC) are two feature sets which have been typically widelyadopted in audio genre

classification systems. The experiments in this thesis alsorely heavily on the MFCC

feature set. Before listing the example audio music genre classification systems and

their feature sets, I would like to go through some details ofthese two feature sets.
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2.3 STFT and MFCC

The Human Ear

Many techniques for processing audio sounds originate fromanalyzing the auditory per-

ception of human beings. For instance, the standard audio CDsampling rate is 44.1 kHz.

The selection of this sampling rate is primarily based on thehuman audible frequency

range, from 20 Hz to 20 kHz. According to the Nyquist-Shannonsampling theorem, ”a

sampling rate of more than double the maximum frequency of the signal to be recorded

is needed”. And therefore the sampling rate 44.1 kHz just well covers the the full hu-

man audible frequency range. Similarly, the extraction of STFT and MFCC feature are

largely based on the functionality of human ear.

Tympanic
Cavity

Incus

Semicircular
Canals

Vestibular
Nerve

Cochlear
Nerve

Eustachian TubeTympanic
Membrane

External
Auditory Canal

Stapes
(attached to 
oval window)

Cochlea

Round
Window

Figure 2.2: The anatomy of human ear.

Figure 2.2 [9] shows the anatomy of human ear. The sound we perceive is actually

a form of energy that moves through a kind of medium that passes the energy from the

source to our ears. The human ear can be divided into three parts: outer, middle and
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inner. The outer part of human ear include the visible pinna,the external auditory canal

and the tympanic membrane (or the ear drum) that separate theouter ear and middle

ear. The middle ear is air-filled cavity immediately behind the tympanic membrane. It

contains three smallest bones in human body that connect thethe tympanic membrane to

the inner ear. The inner ear contains both organs for hearing(the cochlear) and balance

control of the body (three semicircular canals). The rear ofthe inner ear (if we conve-

niently define the part adjacent to the middle is the ”front”)is attached to two fibers of

nerve which transmit signals collected in the ear to the brain for further process.

When the sound wave arrive at our ears, it is collected by the external pinna and

transfered to the tympanic membrane via the external auditory canal. The sound wave is

then transformed to the vibration of the tympanic membrane.Such vibration is enhanced

and transferred to the entry of the inner ear by the three small ear bones. The last ear

bone, the stapes, is attached to an oval window of the cochlear. The movements of the

ear bones cause pushes on the oval window, resulting in the movement of fluid within

the cochlear. When the sound energy arrive in the cochlear inthe form of cochlea fluid

movement, it is picked up by the receptor cells which fire signals back to the brain.

Figure 2.3: The illustration of the basilar membrane.
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But what kind of signals is transmitted? Are the signals structured based on different

frequencies? Or the signals record the actual form of sound wave? Such question can

be answered from two different perspectives. First, the study of the inner structures

of the cochlea reveals that the perception of the frequency-dispersed sound of human

beings results from the functionality of a stiff structuralmembrane that runs along the

coil of the cochlea, the basilar membrane [4] . When the soundenergy comes into

the cochlea, different frequency components of it drive different sections of the basilar

membrane to vibrate. The vibration of the basilar membrane triggered the associated

auditory receptor hair cells to fire neural signals. And therefore, different auditory cells

give response for different frequency components of the incoming sound. The cochlea

acts more or less like a mechanical frequency analyzer that decomposes the complex

acoustical waveform signals into simpler frequency components. Such information is

then shipped via nerve fibers to the auditory cortex in the brain. Another answer to the

question is obtained from the study of cochlea implants. Thecochlea implant is a kind

of electronic device that provides the sense of sound to a severely auditory-impaired

person. It functions as it capture the environmental soundsand transform the signals

to electrical stimulation directly on the auditory nerve fiber cells. Researches on the

electrical activity in inferior colliculus cells of cats [29] proved that the electrical nerve

signals are organized by frequency bands. Based on such a finding, scientists built up a

multi-channel cochlea implant that encodes environmentalsounds in electrical stimulus

on multiple frequency bands, and later on multi-channel cochlea implants turned out

to be a great success. Experiments on a congenitally deaf patient [29] showed that,

the multi-channel implant enable the profoundly deaf patient to capture the melody and

the tempo of the song ”Where have all the Flowers Gone”. Nowadays multi-channel

cochlea implants are widely adopted.
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To sum up, the human ear transforms the incoming sound wave into frequency-

dispersed nerve signals before the process of brain. Therefore it is biologically intuitive

to analyze the sound wave signals by first converting it to thefrequency domain, as it

mimics the functionality of the human ear.

Short-Time Fourier Transform

Fourier analysis is a set of mathematical techniques which are used to decompose sig-

nals into sinusoid waves. The Fourier transform basically converts a time series signal

to its frequency domain. When it comes to sounds analysis, itreveals the frequency

information inside the sound signals. In the research of sound/music feature extraction,

a special form of Fourier transform, the discrete short-time Fourier transform (STFT) is

used. This is because audio digital music are discrete signals, and analysis of frequency

only makes sense when a short-time window is concerned; sound signals such as speech

and music are generally very changeable over time. The following formula shows the

calculation of STFT.

STFT {x [n]} ≡ X (m,ω) =
∞
∑

n=−∞

x [n]w [n−m] e−jωn (2.1)

In the equation above,x[n] represents the the input signal andw[n] represents the

window function. In typical applications, the STFT is calculated on a computer using the

Fast Fourier Transform (FFT) algorithm since it is significantly faster than the formula

listed above while the accuracy is well preserved.

Figure 2.4 shows the generic process of STFT extraction. Theoriginal audio signal
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Figure 2.4: The short time Fourier Transform process.

first convolve with a certain type of window function. In thisthesis, the window function

used is Hamming window. The windowed signals are transformed using the equation

listed above. Usually this stage is replaced with a faster algorithm: Fast Fourier Trans-

form. The result of the transform is STFT values.

After the STFT process, the sound signals are transformed into frames of spectro-

grams which span typically about 20 milliseconds. For audiomusic genre classifica-

tions, additional process steps are often adopted to further condense a frame spectro-

gram to compact feature sets. Following is a incomplete listof such feature sets [41]

.

• Spectral Centroid : The spectral centroid is defined as the ”gravitational center”

of a STFT frame spectrogram. It is calculated as

Ct =

∑N

n=1
Mt [n]× n

∑N

n=1
Mt [n]

(2.2)
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whereMt[n] represents the magnitude of STFT spectrogram at framet and fre-

quency binn. The spectral centroid is a measurement of the spectrogram shape.

The larger the value, the more energy in the high frequency bands.

• Spectral Rolloff : The spectral rolloff is defined as the frequencyRt below which

85% of spectrogram magnitude is concentrated. It also measures the spectrogram

shape.

Rt
∑

n=1

Mt [n] = 0.85×

N
∑

n=1

Mt [n] (2.3)

• Spectral Flux : The spectral flux is defined as the squared difference between

the normalized magnitudes of two successive STFT spectrogram. It measures the

local spectral change amount between two adjacent frames.

Ft =
N
∑

n=1

(Nt [n]−Nt−1 [n]) (2.4)

whereNt[n] andNt−1[n] stand for the magnitude of spectrogram at frequency bin

n for framet andt− 1 respectively.

• MFCC : As described in the following subsection.

Mel-Frequency Cepstral Coefficients

The mel-frequency cepstral coefficients (MFCC) is a compact, short-duration audio fea-

ture set extracted based on the STFT spectrogram. It was proposed over thirty years ago

[7], and since then it has been widely adopted for various audio processing tasks such as

speech recognition [33], environmental sound recognition[25] and musical information
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retrieval tasks. MFCC and its derivatives have also been used extensively in many audio

genre classification systems [6, 15, 28, 41].

The calculation of MFCC include the following four steps2 .

Figure 2.5: The MFCC extraction procedure.

1. Transform the audio signals to frames of spectrogram using STFT (The Pre-

emphasis, Windowing, and FFT steps in Figure 2.5 ).

2. Map frequency bins of these spectrogram to mel-scale. Thevalues of the fre-

quency bins are aggregated into the so-called mel bands using triangular overlap-

ping windows.

3. Take the logs of the value of the mel bands.

2The actual parameters such as window number, window shape, etc may vary in applications.
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4. Apply a set of discrete cosine transform (DCT) filters on the mel bands as if they

were signals. The result is the cepstral coefficients.

5. There is an optional cepstral mean subtraction (CMS) stepafter the DCT trans-

form. [31] shows thats such a step is performed for noise cancellation. In this

thesis, the MFCC values are extracted without such a step.

As we can observe from the list above, MFCC feature set takes several further steps

to compress the STFT spectrogram features, reducing the dimensionality from typically

several hundreds to below twenty. Behind the magic of these computationally simple

steps are the findings of the nature of human auditory perception. The mel scale was

originally proposed by Stevens, Volkman and Newman [39] in 1937 as they found out

that the linear increase of the perceptive ”pitch distance”would result in exponential

increase in the actual frequency hertz. The formula to convert f hertz tom mel is give

below.

m = 2595log
10

(

f

700
+ 1

)

= 1127loge

(

f

700
+ 1

)

(2.5)

In the sense of musicology, it explains the relationship between the musical pitches

and their actual frequencies. For example, the pitch of the sound A4 (or Concert A,

Middle A ) stands for a frequency of 440 Hz [18] . The pitch an octave above A4, the

A5, stands for a frequency of 880 Hz, which is double that of A4. The pitch two octaves

above A4, the A6, has double the frequency of A5, that is 1760 Hz, instead of the triple

of A4’s frequency 1320 Hz. The third step actually transforms the magnitude of the

mel bands to the decibel scale. The transform is also based onthe human perception

of sound intensity. The last step of processing decomposes the mel bands to a set of
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DCT coefficients. Research [24] show that, the DCT decomposition has similar effect

as the KL transform that decorrelates mel bands components,but it is computationally

more efficient. The incorporation of knowledge of human auditory system as well as

mathematical techniques makes MFCC very successful in the field of audio information

retrieval.

2.4 Genre Classification Systems and Feature Sets

The research of audio music genre classification probably started at late 90s. In the last

decade, various classification systems and different kindsof feature sets are proposed

to solve the problem. Following is an list of the example systems the feature sets they

used.

1. Tzanetakis et. al. [41] proposed his audio music classification system based on

the feature sets describe three different aspects of music:timbre, beat and pitch.

The derivatives of STFT and MFCC are used as timbral feature sets , while the

Pitch Histogram and the Beat Histogram are deviced to capture the pitch and beat

characteristics of songs. Experiments are carried out on a 1000-song, 10 genre

GTZAN dataset3 , using classification models such as the k-nearest-neighbor

(KNN) algorithm and the Gaussian mixture model (GMM). They achieved 61%

classification accuracy on the dataset. Their comparison among the feature sets

also revealed that the two timbral feature sets performed significantly better than

the pitch and beat feature sets. The experiments were continued in [21] using

3This dataset is very widely used and tested with various systems. It can be considered as a sort of

benchmark standard. The experiments in later chapters of this thesis are also based on this dataset.
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support vector machine (SVM) and the Linear Discriminant Analysis (LDA). The

performance was pushed to 71.1% using the full feature set and LDA. The com-

parison among the feature sets showed similar result as the previous paper.

2. Xu et. al. [44] proposed an audio music classification system using SVM as the

classifier. Their feature set includes linear predictive coding (LPC) derived cep-

strum, zero crossing rate, spectrum power, MFCC and the BeatSpectrum feature

set deviced to capture the beat characteristics of songs. The experiments was car-

ried out on a 100-song, 4 genre dataset. The performance for SVM are compared

with other statistical learning model.

3. Meng et. al. [28] carried out their experiments on three different scales of au-

dio features: short-duration, medium-duration and long-duration, for the task of

audio music genre classification. The short-duration feature is MFCC with its

first six coefficients. The medium-duration features include the various statistical

summary of MFCC and derivatives of the zero-crossing rate feature. The long-

duration features include the statistics of the medium feature and two beat-related

feature sets proposed by other researchers [41, 16] Their experiments show that

the long- and medium-duration feature sets derive from MFCCs are most effective

in music genre classification. The investigated classifiersinclude Linear Neural

Network and Gaussian classifiers.

4. Lidy et. al. [22] proposed their feature set using psycho-acoustic transforms to

construct effective audio feature extractors. The featuresets include the Rhythm

patterns, Statistical Spectrum Descriptors and Rhythm Histogram, the function-

ality of them indicated as their names. Their experiment arecarried out on a

great variety of datasets, including the GTZAN dataset and datasets used in the
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2004 ISMIR contest. Different combination of psycho-acoustic transforms and

classification models were evaluated. Their feature sets achieved very remark-

able performance, scoring 74.9% classification accuracy onthe GTZAN dataset.

In their later paper [23] , they incorporated the information extracted by an au-

tomatic transcription system to their existing classification model. Although the

result of auto-transcription system is far from perfectly reliable, the resulting score

still contained sufficient amount of genre-related information to improve the final

classification accuracy, scoring 76.8% on the GTZAN dataset.

The list above is by no means the complete list of all systems and feature sets. Apart

from the feature sets that is proposed from the perspective of sound and music process-

ing, researchers also tried to attack the problem from some ”alternative” angles. Soltau

et. al. [37] tries to train the neural network and use its middle layer as the feature

extractor. Similarly, Sundaram et. al. [40] build up their feature extractors by train-

ing with some generic sound effect libraries. The feature extracted, the Audio Activity

Rate, is further used in the context of music genre classification. Deshpande et. al.

[13] perceive the music genre classification problem in the image way. They applied

a image information technique, the texture-of-texture approach, to extract meaningful

information from MFCC and STFT spectrograms. The three systems above inspired

me of seeking alternative approaches to attack the audio genre classification, especially

when the performance of traditional ways meet their bottleneck. The detailed attempts

will be covered in the following chapters.



Chapter 3

Automatic Musical Pattern Feature

Extraction Using Convolutional Neural

Network

3.1 Introduction

Automatic audio music genre classification is a promising yet difficult task, as much

of the difficulty originates from the modelling of elusive music features. A first step

of genre classification, feature extraction from musical data will significantly influence

the final classification accuracy. Most of the modern audio music genre classification

systems rely heavily on timbral, statistical spectral features. Feature sets pertaining to

other musicological aspects such as rhythm and pitch are also proposed, but their perfor-

mance is far less reliable compared with the timbral featuresets. Additionally, there are

few feature sets aiming at the variations of musical patterns. The inadequateness of mu-

24
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sical descriptors will certainly impose a constraint on audio music genre classification

systems.

In this chapter we propose a novel approach to automaticallyretrieve musical pat-

tern features from audio music using convolutional neural network (CNN), a model that

is adopted in image information retrieval tasks. Migratingtechnologies from another

research field brings new opportunities to break through thecurrent bottleneck of music

genre classification. The proposed musical pattern featureextractor has advantages in

several aspects. It requires minimal prior knowledge to build up. Once obtained, the

process of feature extraction is highly efficient. These twoadvantages guarantee the

scalability of our feature extractors. Moreover, our musical pattern features are com-

plementary to other main-stream feature sets used in other classification systems. Our

experiments show that musical data have very similar characteristics to image data so

that the variation of musical patterns can be captured usingCNN. We also show that the

musical pattern features are informative for genre classification tasks.

3.2 Methodology

The previous chapter has presented some example audio musicgenre classification sys-

tems. As we observe, most of the proposed systems concentrate only on feature sets

extracted from a short window of audio signals, using statistical measurements such as

maximum value, average, deviation, etc. Such features are representative of the ”musi-

cal texture” of the excerpt concerned, i.e. timbral description. Feature sets concerning

other musicological aspects such as rhythm and pitch are also proposed, but their per-

formance is usually far worse than their timbral counterparts. There are few feature sets
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which capture the musical variation patterns. Relying onlyon timbral descriptors would

certainly limit the performance of genre classification systems; Aucouturier et. al. [32]

indicates that a performance bottleneck exists if only timbral feature sets are used.

The dearth of musical pattern features can be ascribed to theelusive characteristics

of musical data; it is typically difficult to hand-craft musical pattern knowledge into fea-

ture extractors, as they require extra efforts to hand-craft specific knowledge into their

computation processes, which would limit their scalability. To overcome this problem,

we propose a novel approach to automatically obtain musicalpattern extractors through

supervised learning, migrating a widely adopted technology in image information re-

trieval. We believe that introducing technology in anotherfield brings new opportunities

to break through the current bottleneck of audio genre classification.

In this section, we briefly review the CNN and the proposed music genre classifica-

tion system.

3.2.1 Convolutional Neural Network

Neural networks is a mathematical model inspired by real neural system in animals. The

actual structure of the network varies based on the way of connection, the distribution of

weights and the training strategies. Arguably, the most commonly used type of neural

network is the 3-layer feed-forward neural network which isapplied as a generic non-

linear classifier. The feed-forward neural network is advantageous in the simpleness of

implementation and the classification speed. Such architecture is also very suitable for

hardware implementation, which makes the classification even faster.
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The design of convolutional neural network (CNN) has its origin in the study of

visual neural system. The specific method of connections discovered in cats’ visual

neurons is responsible for identifying the variations in the topological structure of ob-

jects seen [30]. LeCun incorporate such knowledge in his design of CNN [5] so that its

first few layers serve as feature extractors that would be automatically acquired via su-

pervised training. It is shown from extensive experiments [5] that CNN has considerable

capacity to capture the topological information in visual objects.

There are few applications of CNN in audio analysis despite its successes in vision

research. Neural science research [35] shows that ”the early cortical processes and their

implementation are similar across sensory modalities” as ”striking similarities of recep-

tive field organization are found in visual, auditory and somatosensory areas”. The CNN

model achieves the state-of-the-art performance in handwritten digit recognition tasks

based on its structure derived from real visual neural system. Therefore it is reasonable

to extend its usage to audio tasks since its structure also reflects the ”receptive fields”

connections found in real auditory neural system. The core objective of this paper is

to examine and evaluate the possibilities extending the application of CNN to music

information retrieval. The evaluation can be further decomposed into the following hy-

potheses:

• The variations of musical patterns (after a certain form of transform, such as FFT,

MFCC) is similar to those in images and therefore can be extracted with CNN.

• The musical pattern descriptors extracted with CNN are informative for distin-

guishing musical genres.

In the latter part of this chapter, evidence supporting these two hypotheses will be pro-
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vided.

3.2.2 CNN Architecture for Audio

Input

Raw MFCC

1@190x13

1st Conv

3@46x1

2nd Conv

15@10x1

3rd Conv

65@1x1

Output

Genre

10@1x1

Figure 3.1: CNN to extract musical patterns in MFCC

Figure 3.1 shows the architecture of our CNN model. There arefive layers in total,

including the input and output layers. The first layer is a190× 13 map, which hosts the

13 MFCCs from 190 adjacent frames of one excerpt. The second layer is a convolutional

layer of 3 different kernels of equal size. During convolution, the kernel surveys a fixed

10×13 region in the previous layer, multiplying the input value with its associate weight

in the kernel, adding the kernel bias and passing the squashing function. The result is

saved and used as the input to the next convolutional layer. After each convolution, the

kernel hops 4 steps forward along the input as a process of subsampling. The 3rd and 4th

layer function very similarly to the 2nd layer, with 15 and 65feature maps respectively.

Their kernel size is10 × 1 and their hop size is 4. Each kernel of a convolutional layer

has connections with all the feature maps in the previous layer. The last layer is an

output layer with full connections with the 4th layer. The architecture of this model
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is designed based on the original CNN model used for digit recognition. Image data

are 2-D in nature, and therefore the image CNN convolves in two directions on the

input image signal, capturing the topological features while ignoring the slight spacial

variance. When it comes to audio features, the slight variance we need to cancel is the

variance in time. Since adjacent MFCC coefficients do not correlate with each other like

the nearby pixels on images, it is not appropriate to apply coefficient-wise convolution

on the MFCC maps. All the MFCC coefficients are aggregated in the first layer, turning

the 2-D input into 1-D. The later layers operate on 1-D inputsever since. The parameter

selection process is described in Section 3.3.2.

It can be observed from the topology of CNN that the model is a multi-layer neural

network with special constraints on the connections in the convolutional layers, so that

each artificial neuron only concentrates on a small region ofinput, just like the receptive

field of one biological neuron. Because the kernel is shared across one feature map,

it becomes a pattern detector that would acquire high activation when a certain pattern

is shown in the input. In our experimental setting, each MFCCframe spans 23ms on

the audio signal with 50% overlap with the adjacent frames. Therefore the first convo-

lutional layer (2nd layer) detects basic musical patterns appear in 127ms. Subsequent

convolutional layers therefore capture musical patterns in windows size of 541ms and

2.2s, respectively. The CNN is trained using the stochasticgradient descent algorithm

[38] for simplicity. The brief description of the algorithmis given below:

For a certain neural network modelM , let E(xi, w) be the error function of the

neural network given a training sample vectorxi, and the weight matrixw. The new

weight matricesw is updated by

wnew := w − α∇E (w, xi) (3.1)



30

as the algorithm sweep through the data set.α in the equation is the learning factor that

determines the step size of the gradient descent process, while error functionE(xi, w) is

usually defined as the mean squared error between the label ofthe input and the actual

output of the network. The process is repeated multiple times so that the error function

converges to a local minimum.

It could be better to implement some heuristic search algorithm such as the genetic

algorithm, simulated annealing algorithm, etc, which might be less prone to get trapped

in local minima, but that should significantly add to the overall system training time.

After convergence, the values in the intermediate convolutional layers can be exported

as the features of the corresponding musical excerpt.

The model we use is a modified CNN model presented in [36]. Compared with the

traditonal CNN model, we observed that the training is easier, and the capacity loss is

negligible. In return, as much as66.8% of computational requirement is saved.

3.2.3 Music Genre Classification

Songs

MFCC

Extraction

and

Segmentation
Trained

Musical

Pattern

Extractors

Generic

Classifiers

& Majority

Voting

Genre

Conv.

Neural

Network

Musical

Pattern

Extractors

Figure 3.2: Overview of the classification system
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Figure 3.2 shows the overview of our classification system. The first step of the

process is MFCC extraction from audio signals. MFCC is an efficient and highly in-

formative feature set that has been widely adopted for audioanalysis since its proposal.

After MFCC extraction, the input song is transformed into anMFCC map with 13 pix-

els wide which is then segmented to fit the input size of CNN. Provided the song label,

the musical pattern extractors are automatically aquired via supervised learning. Those

extractors are used to retrieve high-order, pattern-related features which will later serve

as the input of generic, multi-class classifiers such as Decision Tree Classifiers, Support

Vector Machine etc. After classification of each song segments, the result is aggregated

in a majority voting process to produce the song-level label.

3.3 Results and Analysis

3.3.1 Dataset

The dataset of our experiment is the GTZAN dataset which has been used to evaluate

various genre classification systems [41, 6, 23]. It contains 1000 song excerpts of 30

seconds, sampling rate 22050 Hz at 16 bit. Its songs are distributed evenly into 10

different genres: Blues, Classical, Country, Disco, Hip Hop, Jazz, Metal, Pop, Reggae

and Rock.
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Figure 3.3: Convergence Curve in 200-epoch training

3.3.2 CNN Pattern Extractor

Figure 3.3 shows the convergence of the training error rate of our CNN model, on four

sub-datasets extracted from the GTZAN dataset. The smallest dataset contains 3 genres:

Classical, Jazz and Rock. The latter datasets increase in size as Disco, Pop and Blues

genres are added. From the figure we can observe that the trendof convergence over

different datasets is similar, however the training on a 3-genre dataset converges much

faster than the training on a 6-genre dataset. This shows thedifficulty in training CNN

increases drastically when the number of genres involved intraining increases. We be-

lieve this is because the CNN gets confused with the complexity of the training data and
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therefore never obtains suitable pattern extractors in thefirst few layers. Additionally

we also found that the combination of genres in the 3-genre subset will not affect the

training of CNN. All combinations have very similar curve ofconvergence.

Based on the observations above, the training of our CNN feature extractors are di-

vided in four parallel models to cover the full 10-genre GTZAN dataset. Three models

are arbitrarily selected to cover 9 non-overlapping genres, while one model is deliber-

ately chosen to train on the 3 most difficult-to-classify genres shown in [41], i.e. Blues,

Metal and Rock. Dividing the dataset into small subsets to train the CNN feature extrac-

tors may have the side-effect that features extracted to classify songs within one subset

may not be effective in inter-subset classification, and therefore it may seem more rea-

sonable to select three 4-genre models instead of four 3-genre models. We observe from

our experiments that such alternative is unnecessary sincefeatures extracted from in-

dividual subsets possess a good capacity for inter-subset distinction. Additionally, we

also observe that the training of 4-genre subsets is far lesseffective and less efficient

compared with training of 3-genre subsets.

Extensive experiments are also performed towards the selection of CNN network

parameters. First is the network layer number. We discover that CNN with more than

3 convolutional layers is exceptionally difficult to train for the network convergence

will easily get trapped in local minima. On the other hand, CNNs with less than 3

convolutional layers do not have sufficient capacity for music classification. The convo-

lution/subsampling size is set at 10/4 for similar criteria. Larger convolutional sizes are

difficult to train, while smaller ones are subjected to capacity limitation. To determine

the feature map numbers in the three convolutional layers, we first set the three param-

eters sufficiently large, then watch the performance of CNN as we gradually reduce the
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number. We discover that 3, 15 and 65 is the optimal feature map numbers for the first

three convolutional layers. Reducing them further will drastically constrain the capacity

of CNN feature extractors.

3.3.3 Evaluation

After obtaining 4 CNNs as described above, we apply the feature extractors on the full

dataset to retrieve musical pattern features. We deliberately reserve 20% songs in the

training of CNN as to examine the ability of our feature extractors on unseen musical

data. The musical pattern features are evaluated using various models in the WEKA

machine learning system [17]. We discover that the featuresscored very well in the

10-genre training evaluation, using a variety of tree classifiers such as J48, Attribute Se-

lected Classifier, etc. The classification accuracy is 84% before the majority voting, and

gets even higher afterwards. Additionally, musical excerpts not used in CNN training

have minor difference in classification rate compared with excerpts used to train CNNs.

This provides evidence to support our hypothesis in Section3.2 that the variations of

musical patterns in the form of MFCC is similar to those of image so that CNN can be

used to automatically extract them. In addition, those patterns provide useful informa-

tion to distinguish musical genres.

However, further experiments on the split test dataset givevery poor performance

compared with the training evaluation; the accuracy of below 30% is therefore too low to

make any reliable judgments. Such result is consistent for different splits of the dataset

into training and testing data. It reveals that our current musical pattern extraction model

has the deficiency in generalizing the musical patterns learnt to unseen musical data. We
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further study such phenomenon and found that the reason is two-fold: 1. Musical data

is typically abundant in its variation, and therefore it is hardly sufficient for 80 songs to

represent all types of variations in one specific genre; 2. The MFCC feature is sensitive

to the timbral, temple and key variation of music which further accentuates the shortage

in training data.

One practical solution to these problems above is to enlargethe training dataset by

adding affine transforms of songs, such as key elevation/lowering, slight tempo shift,

etc. Additional data smooths the variation within one genreand boosts the overall gen-

eralizability. Similar work can be found in [36]. Alternatively, the MFCC feature input

can be replaced with transforms insensitive to timbral, tempo and key variation, such as

mel-frequency spectrum or chroma feature [15].

The attempt to study the filters learned in the first few layersalso prove very difficult.

That is partially due to the difficulties understanding the MFCC inputs. Unlike the

topological connections in images which can be easily observed, the information hidden

in the MFCC values is hard to tell. After the DCT transform, the MFCC coefficients

becomes irregular and random-like. The pre-processing normalization and the first few

layers of CNN, patterns extracted from the original MFCC coefficients get more elusive,

rendering any meaningful analysis hardly possible. Futureworks could be directed at

learning on different features that contain more inter-feature correlation, e.g. STFT or

mel-scale filterbanks.

Our method on musical pattern extractor can be compared withthe work in [13],

which also applies an image model to audio music genre classification. It is shown that

our system possesses better scalability. The texture-of-texture model used in [13] is so

highly computational intensive that the authors reduce thetraining set to 17 songs each
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category. In comparison our CNN takes less than two hours to obtain feature extractors

from a 3-genre, 240-song training set. The efficiency of process can be raised further

with parallel computing on different combination of genres.

3.4 Conclusion

In this chapter we presented a methodology to automaticallyextract musical patterns

features from audio music. Using the CNN migrated from the the image information

retrieval field, our feature extractors need minimal prior knowledge to construct. Our

experiments show that CNN is a viable alternative for automatic feature extraction. Such

discovery lends support to our hypothesis that the intrinsic characteristics in the variation

of musical data are similar to those of image data. Our CNN model is highly scalable.

We also presented our discovery of the optimal parameter setand best practice using

CNN on audio music genre classification.

Our experiments reveal that our current model is not robust enough to generalized the

training result to unseen musical data. This can be overcomewith an enlarged dataset.

Furthermore, replacing the MFCCs with other feature sets such as the Chroma feature

set would also improve the robustness of our model. Further application of image tech-

niques are likely to produce fruitful results towards musicclassification.
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Chapter 4

Genre Classification and the Invariance

of MFCC Features to Key and Tempo

4.1 Introduction

In many genre classification systems, the Mel-frequency cepstral coefficients (MFCCs)

[7] have been used as a timbral descriptor [41, 32, 26, 15]. While it is common to think

of MFCCs as timbre-related features, due to the short-duration frame on which they are

extracted (e.g., 20 milliseconds), it is still uncertain how the key and tempo of a song

affects the MFCC features, and hence the subsequent genre classification system.

In this chapter, we attempt to address the following question: are MFCCs invariant

to key and tempo? In other words, is MFCC a purely timbral feature set? If the MFCCs

are purely timbral features, then they should be invariant to the changes in musical keys

and tempo. Otherwise, changes in the musical key and tempo ofa song will affect the

38
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MFCCs, which may adversely affect the training of genre classifiers. The contributions

of this chapter are three-fold. First, we show that musical genres, whichshouldbe

independent of key, are in fact influenced by the fundamentalkeys of the instruments in-

volved. Second, we show that MFCCs indeed encode both timbral and key information,

i.e., they are not invariant to shifts in musical key. As a result, genre classifiers based

on the MFCC features will be influenced by the dominant keys ofthe genre, resulting

in poor performance on songs in less common keys. Third, we propose an approach

to build key-independent genre classifiers, which consistsof augmenting the classifier

training and prediction phases with various key and tempo transformations of the songs.

The resulting genre classifier is invariant to key, and thus more timbre-oriented, resulting

in improved classification accuracy in our experiments.

The rest of this chapter is organized as follows. In Section 4.2, we explore the

distribution of musical key for different genres. In Section 4.3, we study the invariance

of MFCC to musical key and tempo shifts. In Section 4.4, we propose a data-augmented

genre classification scheme, based on key and tempo transformations, while in Section

4.5 we present experiments on genre classification using ourdata-augmented system.

4.2 Key Histograms of the GTZAN dataset

In this section, we explore the relationship between musical genres and musical keys.

We manually annotate each song in the GTZAN dataset [41] withtheir musical “keys”.

In this section, we define the concept of “key” as the pitch of the “Do” sound of the

song in the solfège scale (Do-Re-Mi scale). Such definitionis different from the more

common definition — the tonic sound of the scale (e.g., in minor scales the tonic sound
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Figure 4.1: Key histograms of the GTZAN dataset on the circleof fifths scale. The

vertical axis is the number of songs with a certain key.

is the La sound rather than the Do sound). Because a major scale and its relative minor

scale share the identical composition of pitches, it is simpler to annotate both scales with

the same label to show that they actually have the same pitch ingredients in the songs

(e.g., songs in C major and A minor are both labeled with “C”).In cases where the scale

is not apparent, we annotate the key based on the most repeated pitch.

Figure 4.1 shows the key histograms for different genres in the GTZAN dataset,

using our annotation criteria, with keys ordered by the circle of fifths (C is in the cen-

ter). We observe that genre is indeed key-related with the distribution centered around

particular keys based on the instrumentation.

• Blues: peaks at B[ and G. B[ is the fundamental pitch of many horn instruments.

G corresponds to the Do sound for the blues scale in E, which isthe fundamental

key for guitar.
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• Classical: distribution around F, which is in between the horn instrument funda-

mental B[ and the piano fundamental C.

• Country: broad distribution around D, with keys that are easy to play on guitars

(e.g. G, D, A, E, C).

• Disco: peaks at E[ and C. Disco frequently employs Blues scale. For C Blues, the

Do sound is E[.

• Hip Hop: distribution is not obvious. This genre typically does not have a key, as

the main instruments are human voice and drums.

• Jazz: distribution is skewed towards flat keys (D[, A[, E[, B[), which are the

fundamental horn pitches. The peak at F is similar to that of Classical.

• Metal: peaks at C, G, E and F]. The G key correspond to E Blues. E is the pitch of

the lowest string on guitar. In Metal, the lowest string is used extensively to create

a massive feeling. The peak at F], corresponding to E[ Blues, can be explained

by the common practice of Metal artists to lower the tuning byone semi-tone,

creating an even stronger metal feeling.

• Pop: distribution is not obvious. The peak at E[ is the Blues-scale of the C key.

The distributions of Pop and Disco are similar, due to similar instrumentation.

• Reggae: peaks at C (keyboard), D (guitar), B[ (horns) and C] (B[ Blues).

• Rock: significant distribution around C. The distribution is be related to the dom-

inance of guitar and piano in this genre. Rock is arguably themost key-related

genre in the GTZAN dataset.
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In summary, there is a strong correlation between genre and key, with each genre having

a unique key distribution. Such correlation most likely stems from the fundamental keys

associated with the instruments used in each genre. For instance, the most common kind

of clarinet is in the key of B[, while the alto saxophone is in E[. The four strings of a

violin are tuned by standard to G, D, A and E. The piano has all its white keys in C major.

Although it is entirely possible to play a song in any key, some keys are arguably easier

to play than others, depending on the instruments used. Hence, the key characteristics

of instruments could unexpectedly associate musical keys to specific genres.

4.3 Are MFCCs Invariant to Key and Tempo?

In this section we study the invariance of MFCCs to shifts in musical key and tempo.

The computation steps of MFCC is listed in Chapter 2. In this chapter, the MFCCs

are extracted with the CATBox toolbox [8], using 40 mel-bands and 13 DCT coeffi-

cients. The frame size is 18 milliseconds, taken every 9 milliseconds.

4.3.1 Key and Tempo Transformations

To examine the changes of MFCC values to shifts in keys and tempos, we apply key

shifting and tempo shifting musical transforms to each songin the GTZAN dataset.

These transformations consist of sharpening/flattening the song up to 6 semitones, and

changing the tempo 5% and 10% faster/slower. The transformations are performed with

the WSOLA algorithm [43], which is implemented in the open-source audio editor Au-

dacity [1]. The musical transforms are analogous to affine transforms of images, which
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deform an image without changing the general shape (e.g. rotating and skewing the

number 1). Augmenting the dataset with affine transforms is acommon technique in

digit recognition tasks [36], where the enlarged training set improves classification ac-

curacy by encouraging invariance to these deformations.

There are doubts that transforming a song to approximate thekey-shifted and tempo-

shifted version of the songs might not be appropriate, sincesuch transforms might also

contaminate the timbral characteristics of the songs. We argue that such an effect is

minor for the following three reasons: 1) qualitatively speaking, the transformed songs

sound perceptually very similar to the original song recorded in different key and tempo,

with critical information for genre classification, such asinstruments, musical patterns

and rhythm characteristics, still preserved; 2) considering that musical instruments have

different timbre in different registers, we limit the key shifts to the range of half an

octave (from[6 to ]6); 3) we compared the MFCC values extracted from MIDI songs

and their perfect key-transposed versions, and observed that the MFCC values vary in

similar ways as in the key-transformed songs.

4.3.2 Comparison of MFCCs under Key and Tempo Transforms

For genre classification, MFCCs are often aggregated over a long-duration window us-

ing statistical methods [41, 6]. Motivated by this fact, we compare the original songs

and their transformed versions by computing the Kullback-Leibler (KL) divergence [10]

between corresponding windowed excerpts (3.5 seconds). Assuming that the MFCCs in

a window follow a Gaussian distribution (e.g., as in [41]), the calculation of KL diver-

gence between two windows is given by:
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where(µ0,Σ0) and(µ1,Σ1) are the mean and covariance for the two Gaussian distribu-

tions, andd is the dimension.

Figure 4.2 shows the KL divergence between different musical transforms of the

same songs, averaged over each genre. From the figure, we see that key transforms

affect the MFCC distribution, with larger key shifts affecting the distribution more. In-

terestingly, MFCCs for some genres are more sensitive to thechanges in key, such as

blues, jazz and metal. This can be explained by the fact that these genres have instru-

ments with richer harmonic structure, and therefore the MFCCs change more since they

model timbre. On the other hand, tempo transforms do not havea great effect on the dis-

tribution of MFCC values. This is because transforming a song in time does not change

the frequency characteristics, but only the number of MFCC frames. Compressing a

song subsamples the MFCC frame set, while stretching it addsnew MFCC frames by

interpolation. In both cases, the distribution of the MFCCsover the window remains

about the same.

In the previous, we showed that genres have dominant keys, due to the instrumen-

tation of the genre. On the other hand, in this section, we have shown that MFCCs,

which are common features for genre classification, are not invariant to key transfor-

mations. This brings forward an interesting dilemma. Because genre is key dependent

and MFCCs are not key invariant, then a classifier based on MFCCs may overfit to the

dominant keys of the genre. The resulting classifier will then have poor accuracy on

songs in the less common keys. In the next section, we look at learning a key-invariant

genre classifier, by augmenting the classifier with different musical transforms.
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Figure 4.3: System architecture.

4.4 Genre Classification with Musical Transforms

In this paper, we adopt the genre classification system of [41, 6, 28]. Figure 4.3 shows

the architecture of the system, which contains four steps. First, the input song is split

into non-overlapping windows of equal length (as in [6], we use window length of 3.5

seconds). These windows then go through a feature extraction process, producing fea-

ture vectors which are compact representations of those windows. In particular, MFCCs

are first extracted from the audio signal, and the mean and standard deviation of the

MFCCs over the window are calculated as the feature vector. In the third step, the fea-

ture vector is fed to a Gaussian mixture model (GMM) classifier. The parameters of the

GMM classifier are learned from the training set using the EM algorithm [12], which

iteratively estimates the parameters by maximizing the likelihood of the training set.

One GMM is learned for each genre. Given a feature vector extracted from a window,

the GMM with the largest likelihood is selected as the genre label for the window. The

labels for all the windows in a song are then aggregated with amajority voting process

to produce a genre label for the song.

We can modify the genre classification system in two ways to make it invariant

to musical transforms. First, in the training phase, we can expand the training set by
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adding transformed versions of the training songs, hence generating more examples

for learning the genre classifier. Second, in the predictionphase, we can augment the

classifier by processing the test song along with its transformed versions. The final label

for the test song is the majority vote over all windows of all versions of the songs. The

data augmentation step can be seen as adding a sample diffusion layer before either the

training or the predicting phase of the system.

4.5 Experiments

In this section we present our experimental results on genreclassification in the context

of key and tempo augmentation.

4.5.1 Dataset and Experimental Setup

In our experiments, we use the GTZAN dataset [41], which contains 1000 song clips of

30 seconds each, with a sampling rate of 22050 Hz at 16 bits. There are 10 musical gen-

res, each with 100 songs: Blues, Classical, Country, Disco,Hip hop, Jazz, Metal, Pop,

Reggae, and Rock. We augment the original GTZAN dataset (denoted as the “Orig”

dataset) using different combinations of musical transforms. The “Tempo” dataset con-

tains the Orig dataset and its tempo variants, 5% and 10% faster/slower. The “Key”

dataset contains the Orig dataset and its key variants from[6 to ]6. The “Tempokey”

dataset is the union of the Tempo and Key datasets. We also augment our dataset with

key transforms that are based on the circle of fifths. The “Fifth1” dataset contains the

Orig dataset and its key variants with one step on the circle of fifths, i.e. [5 and]5, while
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the “Fifth2” dataset contains variants with one more step, i.e. [2 and]2. The circle of

fifths augmented datasets are strict subsets of the Key dataset.

We carried out three different sets of experiments in combination with the 6 aug-

mentations listed above. In the first experiment, denoted asAugTrain, the classifiers

are trained using the augmented dataset, while genre prediction is performed using only

the original songs. In the second experiment, denoted as AugPredict, the classifiers are

trained only on the original dataset, while prediction is performed by pooling over the

augmented song data. In the final experiment, denoted as AugBoth, both the classifier

training and prediction use the augmented song data. Genre classification is evaluated

using five random splits of the dataset, with 80% of the songs (and its variants) used for

training, and the remaining 20% used for testing. The experiments are carried out on

a range of parameters. We use MFCC lengths from 1 to 13 (i.e., the number of DCT

coefficients), and vary the number of components in the GMM (K) from 1 to 20. We

also assume diagonal covariance matrices in the GMM. In these experiments, we treat

the number of GMM components as a tunable parameter. Alternatively, the value ofK

could be determined using a standard model selection criteria [14] .

4.5.2 Experimental Results

We first examine the effects of the system parameters, such asthe size of the GMM and

the length of the MFCCs. Figure 4.4a shows the classificationaccuracy, averaged over

all the data augmentations and MFCC lengths, while varying the number of components

in the GMM. In general, the classification accuracy increases with K, and there does

not seem to be an over-fitting problem for large K, such as 20. Figure 4.4b shows the
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Figure 4.4: (a) Averaged accuracy for all datasets and MFCC lengths, while varying

the number of GMM components (K); (b) Averaged accuracy for all datasets and GMM

components, while varying the MFCC length.

accuracy, averaged over all data augmentations and GMMs, while varying the length

of the MFCCs. Similarly, the accuracy improves as more MFCCsare added. In fact,

despite their sensitivity to noise, these high-order coefficients provide useful details for

genre classification. As a comparison, [41] limited their system to the first 5 MFCC

coefficients and GMMs with K=5, and achieved 61% classification accuracy when using

MFCCs with three other types of features. In contrast, our system scores 66.3% on the

Orig dataset when using 13 MFCC features.

Next, we look at the effect of signal degradation when using the music transforma-

tion. In particular, we add noise to the Orig training set by applying a “double-shift”

to each training song. This consists of first shifting the keyof the song, and then shift-

ing it back to the original scale. The result is a training song with noise added due to

the musical transformation. The double-shifted training set is used to train the genre
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classifier, which then predicts genres on the Orig test data.This result is denoted as

DoubleShiftTrain in Figure 4.4. In particular, using the noisy training data degrades the

accuracy, when compared to the Orig performance (e.g, the accuracy drops 5% to 53.5%

for K=20). However, in spite of this added noise to the training set, the system is still

able to do genre classification, albeit with reduced accuracy.

Finally, we look at the effect of using the proposed data-augmented classifiers. From

Figure 4.4, we observe that the AugTrain classifier gives constantly better performance

than the DoubleShiftTrain classifier, while its performance is still lower than that of

the Orig dataset. This suggests that using augmented training data improves the accu-

racy, at least compared to the unaugmented classifier using similar noisy training data.

This improvement, however, is not enough to overcome the transformation noise. On

the other hand, using data-augmented prediction (AugPredict) gives constantly better

performance than the Orig dataset. Finally, using both data-augmented classification

and prediction (AugBoth) achieves the best accuracy, dominating both AugPredict and

Orig. Table 4.1 shows the average classification accuracy using different transformed

datasets and data-augmentation schemes for K=20 and MFCC length 13. The best per-

formance achieved for all experiments is 69.3%, using the AugBoth classifier with the

Key transformations, K=18 and MFCC length 13.

Table 4.2 shows the classification accuracy for different genres using the AugBoth

classifier. Comparing the genres, Classical has the highestaccuracy, scoring over 90%

on all datasets, followed by Jazz and Metal. In contrast, Disco and Rock are the two

worst performing genres. In general, the augmentation of the dataset improves the genre

classification. The only exception is the Rock genre, where augmentation always lowers

the classification accuracy. Looking at the confusion matrix for AugBoth, we found that
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Tempo Key Tempokey Fifth1 Fifth2 Average

Orig – – – – – 64.5%

DoubleShiftTrain – – – – – 61.9%

AugTrain 65.1% 62.0% 64.5% 60.5% 62.8% 63.0%

AugPredict 66.2% 63.6% 66.4% 61.0% 63.7% 64.2%

AugBoth 66.6% 67.8% 68.9% 67.5% 67.3% 67.6%

Table 4.1: Genre classification accuracy for different data-augmentation schemes and

transformed datasets, for K=20 and MFCC length 13.

Blues Classical Country Disco Hip-Hop Jazz Metal Pop Reggae Rock Average

Orig 59 92 62 41 64 86 77 58 61 45 64.5

Tempo 64 97 62 46 66 85 75 64 68 39 66.6

Key 62 99 67 55 65 90 83 64 60 33 67.8

Tempokey 63 98 67 55 65 91 87 61 63 39 68.9

Fifth1 61 98 67 52 63 88 83 63 62 38 67.5

Fifth2 64 94 63 58 63 90 79 64 66 32 67.3

Table 4.2: AugBoth Classification Rates for different genres, with K = 20 and MFCC

length 13.
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more instances of Rock are misclassified as Metal. On the other hand, Disco performs

significantly better because less instances are misclassified as Blues, Pop and Rock.

4.5.3 Discussion

From these experimental results we have three conclusions.First, the MFCC feature set

is largely a timbral feature set. From the confusion matrices we found that confusable

genres have similar instrumentation. Additionally, genres with distinct instrumentation

stand out from others easily, e.g., Classical uses orchestral instruments, while Metal has

high frequency distorted guitar.

Second, in addition to timbral information, MFCCs also encodes key information,

which eventually affects the genre classification accuracy. We observed that the key and

tempo augmented classifiers have a significant change in performance over the baseline.

Rock and Metal both use guitars and drums as the main instruments, but they have very

different key distributions as shown in Figure 4.1. The confusion between Rock and

Metal after key augmentation suggest that the classification of Rock music is partly due

to musical keys. If we blur the lines between keys for these two genres, we are likely to

lose such information, leading to a degradation of classification performance.

Third, making the genre classifier tempo- and key-invariant, via data augmentation,

generally improves the classification accuracy. The accuracies of the AugTrain, AugPre-

dict and AugBoth classifiers are significantly better than the noise-added DoubleShift-

Train baseline. Despite the noise from the imperfect musical transforms, the accuracy

of the AugPredict and AugBoth classifiers are constantly better than the Orig baseline.

These results suggest a method for boosting overall genre classification performance, by
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artificially generating transformed songs to augment the classifier training and predic-

tion phases, thus strengthening the timbre-orientation ofthe classifier. However, some

genres (e.g. Rock) will suffer from such augmentation sincethe recognition of that

genre is partly due to musical keys.

While the concept of “musical genre” is perceptual and largely based on timbre

information, there is still a strong correlation between genre and key, due to instrumen-

tation, which should also be considered. Future work will look at combining timbral and

key information, using appropriate machine learning models, to push the performance

further. In addition, reducing the noise introduced by the musical transform will also

likely improve the classification accuracy.

4.6 Conclusion

MFCCs are widely used audio features in music information retrieval. Extracted over

a short-duration frame, MFCCs are typically perceived as a timbral descriptor. In this

chapter, we have shown that the MFCCs are not invariant to changes in key, and hence

they encode both timbral and key information. On the other hand, we found that musical

genres, which should be independent of key, are in fact influenced by the fundamental

keys of the instruments involved. As a result, genre classifiers based on the MFCC

features will be influenced by the dominant keys of the genre,resulting in poor perfor-

mance on songs in less common keys. We suggested an approach to address this prob-

lem, which consists of data-augmentation during the classifier training and prediction

phases, with key and pitch transformations of the song. The resulting genre classifier

is invariant to key, and thus more timbre-oriented, resulting in improved classification
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accuracy in our experiments.
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Chapter 5

Conclusion

In this thesis, we have presented our answers to two criticalquestions for the develop-

ment of genre classification systems: 1) how possible is it toattack the musical feature

extraction problem from an alternative perspective, an approach different from the tradi-

tional audio processing methodologies; 2) is the MFCC feature purely a timbral feature

as believed by many, and is genre independent to musical keysand tempo? To address

the first question, we employ the convolutional neural networks, a typical image recog-

nition algorithm, as our feature extraction tool. The experiment shows that musical data

indeed share many intrinsic characteristics as image data.Provided appropriate mod-

eling techniques from the image information retrieval field, we could develop viable

alternative solutions to the musical feature extraction problem. To the second question,

we showed that the MFCC feature encodes both timbral and key information, and there-

fore the feature is not purely timbral. Likewise, we found that genre is related to musical

keys for the fundamental keys of the instrumentations. The key inclination of genre and

MFCC makes classification systems susceptible to the dominant keys of the genre. To

55
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solve this problem, we augment the classification system in the training and predict-

ing phase, tuning the classifier more timbre-oriented. The augmentation improves the

overall system performance.

Future works

The experiments in Chapter 3 shows that the CNN model is both difficult to train and

not robust enough to generalize the classification to unseenmusical data. One possible

solution to the generalization problem is providing more training data for the system,

while another is improving the overall system architecturewith the developments in

neural science research. By better understanding of the human auditory system, it is

likely to produce fruitful results toward music classification.

To better improve the overall performance of the augmented classification system,

we need to eliminate the noise introduced by the audio transform algorithms. One possi-

ble strategy is to scale the MFCC windows so as to mimic the keytransforms. Doing so

removes several intermediate processing in the system, which preserves data integrity.

It could also be fruitful using different features than MFCCfor the system input, such

as the STFT and Mel-bins, to reveal potential features removed during the MFCC ex-

traction process.
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Adaboost for music classification.Machine Learning, 65(2):473–484, 2006.

[7] J. Bridle and M. Brown. An experimental automatic word recognition system.

JSRU Report, 1003, 1974.

57



58

[8] Computer audition toolbox http://cosmal.ucsd.edu/cal/projects/

catbox/catbox.htm.

[9] L. Chittka and A. Brockmann. Perception space: the final frontier. PLoS Biol,

3(4):e137, 2005.

[10] T. Cover and J. Thomas.Elements of information theory. John Wiley and sons,

2006.

[11] P. de León and J. Inesta. Feature-driven recognition of music styles.Lecture Notes

in Computer Science, pages 773–781, 2003.

[12] A. Dempster, N. Laird, D. Rubin, et al. Maximum likelihood from incomplete data

via the EM algorithm.Journal of the Royal Statistical Society. Series B (Method-

ological), 39(1):1–38, 1977.

[13] H. Deshpande, R. Singh, and U. Nam. Classification of music signals in the visual

domain. InProceedings of the COST-G6 Conference on Digital Audio Effects,

2001.

[14] R. Duda, P. Hart, and D. Stork.Pattern classification. 2001.

[15] D. Ellis. Classifying music audio with timbral and chroma features. InInt. Symp.

on Music Information Retrieval (The International Societyfor Music Information

Retrieval), pages 339–340, 2007.

[16] J. Foote and S. Uchihashi. The beat spectrum: a new approach to rhythm analysis.

In IEEE International Conference on Multimedia and Expo, 2001. ICME 2001,

pages 881–884, 2001.



59

[17] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. Witten. The

WEKA data mining software: An update.ACM SIGKDD Explorations Newsletter,

11(1):10–18, 2009.

[18] ISO 16:1975. Acoustics – Standard tuning frequency (Standard musical pitch).

ISO, Geneva, Switzerland.

[19] T. Li and A. Chan. Genre Classification and the Invariance of MFCC Features to

Key and Tempo. InSubmitted to the 17th International Conference on MultiMedia

Modeling, 2010.

[20] T. Li, A. Chan, and A. Chun. Automatic Musical Pattern Feature Extraction Using

Convolutional Neural Network. InProc. International MultiConference of Engi-

neers and Computer Scientists, 2010.

[21] T. Li and G. Tzanetakis. Factors in automatic musical genre classification of audio

signals. InApplications of Signal Processing to Audio and Acoustics, 2003 IEEE

Workshop on., pages 143–146, 2003.

[22] T. Lidy and A. Rauber. Evaluation of feature extractorsand psycho-acoustic trans-

formations for music genre classification. InProc. The International Society for

Music Information Retrieval, pages 34–41, 2005.

[23] T. Lidy, A. Rauber, A. Pertusa, and J. Inesta. Improvinggenre classification by

combination of audio and symbolic descriptors using a transcription system.Proc.

The International Society for Music Information Retrieval, Vienna, Austria, 2007.

[24] B. Logan. Mel frequency cepstral coefficients for musicmodeling. InInternational

Symposium on Music Information Retrieval, volume 28, 2000.



60

[25] L. Lu, H. Zhang, and S. Li. Content-based audio classification and segmentation

by using support vector machines.Multimedia Systems, 8(6):482–492, 2003.

[26] M. Mandel and D. Ellis. Song-level features and supportvector machines for music

classification. InProc. ISMIR, pages 594–599, 2005.

[27] C. McKay and I. Fujinaga. Automatic genre classification using large high-level

musical feature sets. InProceedings of the International Conference on Music

Information Retrieval, volume 525, page 30, 2004.

[28] A. Meng, P. Ahrendt, and J. Larsen. Improving music genre classification by short

time feature integration. InIEEE International Conference on Acoustics, Speech,

and Signal Processing, 2005. Proceedings.(ICASSP’05), volume 5, 2005.

[29] R. Michelson, M. Merzenich, C. Pettit, and R. Schindler. A cochlear prosthesis:

Further clinical observations; preliminary results of physiological studies. The

Laryngoscope, 83(7):1116–1122, 1973.

[30] J. Movshon, I. Thompson, and D. Tolhurst. Spatial summation in the recep-

tive fields of simple cells in the cat’s striate cortex.The Journal of Physiology,

283(1):53, 1978.

[31] C. Müller. Speaker Classification I: Fundamentals, Features, and Methods.Lecture

Notes In Artificial Intelligence; Vol. 4343, 2007.

[32] F. Pachet and J. Aucouturier. Improving timbre similarity: How high is the sky?

Journal of negative results in speech and audio sciences, 1(1), 2004.

[33] D. Pearce and H. Hirsch. The AURORA experimental framework for the perfor-

mance evaluation of speech recognition systems under noisyconditions. InSixth

International Conference on Spoken Language Processing, 2000.



61
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