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Abstract

In the petroleum industry, petroleum product logistics can be divided into two

phases: first logistics, which is mainly provided through pipeline transportation

or railway, refers to distribution from refineries to oil depots; and second logis-

tics, which is primarily supported by vehicles, pertains to distribution from oil

depots to oil stations. This thesis studies three petroleum product transporta-

tion problems faced by transportation practitioners in the petroleum industry:

one stems from first logistics and two from second logistics.

Oil product transportation costs currently account for a proportion of sales

fees in the Chinese petroleum industry that is considerably higher than the av-

erage international level. Hence, reducing costs incurred from the transporta-

tion of oil products has become a highly important problem for the managers of

Chinese oil companies. This thesis aims to provide a reference for oil companies

for reducing both first and second logistics expenditures. The investigation of

these problems was motivated by actual projects for China National Petroleum

Corporation (CNPC).

For first logistics, a three-phase optimization model for the transportation

of multiple petroleum products using pipelines is described. Through this
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method, we aim to ensure that all depots are able to satisfy the demand

for each petroleum product while minimizing costs. The first phase involves

solving a mixed integer programming model to create resource allocation plans.

This phase minimizes the number of products transported in each time period.

The second phase uses the output from the first phase and integrates it into a

quadratic mixed integer programming model to create a scheduling plan, which

minimizes pumping costs by selecting the optimal pumping configuration and

flow rate. We employ dynamic programming to increase the efficiency of the

algorithm, which enables a commercial linear programming solver to address

problem instances of a practical scope. Finally, the third phase post-processes

the solution from the second phase to minimize mixture costs using dynamic

programming. This research was conducted on behalf of CNPC in mainland

China, with findings resulting in annual savings exceeding 1 million Yuan.

For second logistics, we discuss a new practical variant of the vehicle rout-

ing problem with time windows (VRPTW), which originated from the regional

transportation planning for oil products at a China National Petroleum Cor-

poration (CNPC) branch in a northwest province of mainland China. Tanker

trucks are scheduled to serve each oil station in multiple periods according

to a recurring and dynamic time window setting. Refilling at an oil depot is

always required after visiting an oil station, so it is safe to assume that the

vehicles are uncapacitated. The problem is formulated into a mixed-integer

programming model and shown to be NP-hard. We found that the mixed-

integer programming model is only solvable for very small impractical cases

using exact methods, e.g., branch and cut, which is employed by the state-of-

the-art commercial solver ILOG CPLEX. Moreover, due to the floating time

windows imposed on the nodes, traditional local search-based heuristics with
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node interchange operators are not applicable. Thus, we adapt and propose

an iterative time window partitioning heuristic that discretizes time windows

into multiple time points with dynamic partition widths. Experiments show

good quality solutions can be achieved for problem cases with practical sizes.

In times of uncertainty, transportation demand changes seasonally as the

consumption of oil products fluctuates depending on season. CNPC owns a

limited number of vehicles dedicated to transportation requirements during

regular seasons. During peak seasons, they need to outsource some trans-

portation jobs to third party logistics (3PL) providers because the demand

for oil products (and correspondingly the transportation demand) at this time

is considerably higher. Therefore, the solving of two problems of oil product

transportation from oil depots to oil stations during peak seasons are neces-

sary: first, determine which of the transportation requirements of oil stations

should be outsourced to 3PL providers; second, devise the scheduling plan

that determines which of the oil stations’ transportation requirements will be

handled by the vehicles of the petroleum company. This thesis integrates the

combinatorial auction (CA) and vehicle routing problem with time windows

(VRPTW) into a single problem. The problem is formulated into a mixed

integer programming model and shown to be NP-hard. We devise a heuristic

to separate all the stations into two types (depending on whether it is out-

sourced to 3PL companies) according to distance. We then obtain an initial

solution by separately solving the CA and VRPTW problems. To improve the

initial solution, we design and test multiple heuristic operators to interactively

solve the CA and VRPTW. Experiments show that good quality solutions are

achieved for problem cases of practical scope.
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