COLLABORATIVE MANAGEMENT OF INVENTORY AND REPLENISHMENT STRATEGIES IN PERISHABLE PRODUCTS SUPPLY CHAINS

SHEN DONGJIE

DOCTOR OF PHILOSOPHY
CITY UNIVERSITYOF HONG KONG
August 2009
Collaborative Management of Inventory and Replenishment Strategies in Perishable Products Supply Chains
易腐產品供應鏈中庫存及補貨策略的協同管理

Submitted to
Department of Management Sciences
管理科學系
in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy
哲學博士學位

By

Shen Dongjie
沈東傑

August 2009
二零零九年八月
Abstract

One of the important characteristics of perishable products, like eggs, milk, dairy products, vegetables, etc., is their biotic energy; the period of time for which their quality remains acceptable is very short, which means they are easily perishable in the course of transportation and storage. Perishability is one of the important factors that needs to be taken into account in management of perishable products; it is crucial that management of inventory and procurement of perishable products take into consideration the perishability of the products. On one hand, the price of perishable products is time-sensitive, implying that the price decreases dramatically as the end of the product’s life approaches. On the other hand, a shortage of perishable products while there is demand for the products may result in significant loss of revenue. Establishing an efficient and effective inventory and procurement system to obtain the right quantity, of products of the right quality, from the right source, and to have the products delivered to the right place at the right time with right price can have a positive influence on a company’s profitability and competitive advantage. However, achieving this is constrained by issues of competition, profitability, product harvest and other relevant conditions.

Because of the stochastic nature of factors that affect perishable products demand and supply, it is very difficult for a simple model to improve forecasting accuracy. In this thesis, to resolve this problem, many indeterminable factors affecting the future demand for perishable products are considered in the dynamic forecasting model. Because supply and demand of perishable products are dynamic (i.e. volatile) in nature, it is advisable to use the integrated collaborative forecasting method, a CPFR (Collaborative planning, forecasting and replenishment) management method, to increase the accuracy of forecasts of supply-demand in supply chains with perishable products. The purpose of using this model is also to build a scientific strategic foundation for dealing with the inventory replenishment problem. The significance of this research is that it provides new concepts for managing perishable products procurement and inventory decisions that help improve the rationality of inventory replenishment in practical situations by accurately forecasting demand, which leads to more intelligent decision making.
First, we give an introduction of CPFR, and analyse the applicability of CPFR management strategies to perishable products supply chain management.

Second, an investment game model is built and two classifications of equilibrium, i.e. interior equilibrium and boundary equilibrium, are defined, and their existence is proved. The notion of equilibrium stability is put forward, and the stability solution of the investment game model is also given.

Third, a collaborative (between a retailer and a supplier) forecasting model is constructed. In this model, evolution of demand forecasts for perishable products is analysed, taking into consideration forecast adjustment variable $\psi_{n,i}$, correlation ρ between adjustment variables $\psi_{n,i}$ and $\psi_{n,j}$, and the forecasting capability η.

Furthermore, an inventory replenishment model is put forward by introducing collaborative forecasting model to inventory replenishment strategies of the retailer and the supplier. Simulation of this model shows that when both the supplier and the retailer follow collaborative forecasting rules, inventory level decreases and the cost of supply chain as a whole reduces significantly. Another inventory replenishment model that aims at achieving the highest profit for the whole supply chain is also studied in detail. While demand and the lead time of order are all stochastic, price discounts for perishable products are included, and shortage of goods is allowed.

Finally, a three-level supply chain model with perishable products that includes a supplier, a producer and a retailer is constructed. We introduce a cost sharing contract to achieve efficient cooperation between partners of the supply chain dealing in perishable products. Such an integrated approach can reduce each partner’s cost compared to costs incurred when partners take independent decisions. The model can help enhance collaboration in, and profitability of, supply chains.
Contents

Abstract ... i

ACKNOWLEDGMENTS ... iv

Contents ... v

List of Tables ... vii

List of Figures ... viii

1. Introduction ... 1
 1.1. Background ... 1
 1.2. Literature review .. 2
 1.3. Structure of the thesis .. 5

2. Cooperative game based on collaboration .. 7
 2.1 Cooperative game analysis ... 7
 2.1.1. The disposable game stage ... 8
 2.1.2. The infinitely repeated game stage ... 9
 2.1.3. Inventory policy analysis ... 11
 2.2 Investment game model based on CPFR ... 13
 2.2.1. Model description ... 13
 2.2.2. Model construction ... 18
 2.2.3. Equilibrium point selection and stability of the equilibrium 23
 2.2.4. Numerical study .. 26
 2.3 Conclusions ... 30

3. Modeling and analysis of inventory replenishment .. 32
 3.1. Modeling the collaboration process .. 32
 3.1.1. Model description ... 34
3.1.2. Collaborative forecasting model construction ..37
3.1.3. The relationship between forecast capacity and correlation of the
adjustments ..40
3.2. Inventory replenishment model ... 41
3.2.1. Inventory model of the retailers .. 43
3.2.2. Inventory model of the supplier .. 44
3.2.3. Numerical study .. 48
3.3. Inventory replenishment model for perishable products 50
3.3.1. Model construction ... 51
3.3.2. Solution of the Model .. 53
3.3.3. Numerical study .. 59
3.4. Conclusions ... 62
4. Production-inventory cooperation .. 64
4.1. Introduction ... 64
4.2. Model construction ... 65
4.3. Cost sharing contract .. 69
4.4. Numerical study .. 70
4.5. Sensitivity analysis .. 72
4.6. Conclusions ... 75
5. Conclusion and discussion ... 77
5.1. Summary of the full text ... 77
5.2. Research prospects .. 78
References ... 80
List of Tables

Table 2-1: Pay off matrix of supplier and retailer .. 8
Table 2-2: The inventory game matrix of supplier and retailer 11
Table 3-1: The parameters in the model .. 48
Table 3-2: The optimal order strategies and the average profits without a price 49
Table 3-3: The optimal order strategies and the average profits with a price discount 49
Table 3-4: The optimal t^*, s^* (Day) ... 60
Table 4-1: Cost comparison ... 72
Table 4-2: Sensitivity analysis when A_s, A_p and A_r are changed, 73
Table 4-3: Sensitivity analysis when c_s, c_p and c_r are changed 73
Table 4-4: Sensitivity analysis when h_s, h_p and h_r are changed 74
Table 4-5: Sensitivity analysis when θ_s, θ_p and θ_r are changed 74
Table 4-6: Sensitivity analysis when unit consumption f is changed 74
Table 4-7: Sensitivity analysis when production rate p is changed 75
Table 4-8: Sensitivity analysis when demand rate d is changed 75
List of Figures

Figure 2-1: Sequence of events in the cooperation...16
Figure 2-2: The optimal reaction functions when \(q = 1 \). ..27
Figure 2-3: The optimal reaction functions when \(q = 2 \). ...28
Figure 3-1: \(n = 1 \), the relation between TC and t ...61
Figure 3-2: \(n = 2 \), the relation between TC and t ...61
Figure 3-3: \(n = 3 \), the relation between TC and t ...62
Figure 4-1: Supplier’s inventory system..66
Figure 4-2: Producer’s inventory system..66
Figure 4-3: Retailer’s inventory system..67