ACTIVITY-BAED TRAVEL DEMAND MODELING SYSTEM IN SUBURBAN AREA

LIN HONG ZHI

DOCTOR OF PHILOSOPHY
CITY UNIVERSITY OF HONG KONG
OCTOBER 2009
CITY UNIVERSITY OF HONG KONG
香港城市大學

Activity-Based Travel Demand
 Modeling System In Suburban Area
 基於活動的郊區交通需求建模體系

Submitted to
管理科學系

Department of Management Sciences

in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

哲學博士學位

By

Lin Hong Zhi
林宏志

October 2009
二零零九年十月
Abstract

Transportation problems such as congestion and air pollution are attracting more attention than ever. Transportation strategies such as congestion pricing and construction of infrastructure have been adopted to alleviate the problems. However, these strategies all involve great cost. Therefore, accurate forecasting of the response of travel demand to changes in the transportation system is required in planning and evaluating future transportation strategy. The present research sought to develop a comprehensive activity-based travel demand modeling system in order to make travel demand forecasting more accurate and realistic as well as easy to use. The modeling system comprises four sequential steps: lifestyle basis of activity decisions, activity generation, destination and mode choice, and departure time choice.

Numerous attempts have been made, especially in the last ten years, to model decision processes more realistically in formulating activity-travel patterns. Many of these approaches are very complex and there is always the issue of trade-offs between behavioral realism and complexity. Due to the potential heterogeneous responses to transportation policy and land-use planning and the diverse lifestyles of a population, it is often advantageous to first divide individuals of a study area into several lifestyle clusters before the development of separate activity-based travel demand models. By doing so, the complexity of the models can be greatly reduced and, at the same time, the activity and travel patterns can be implicitly considered.
There has been considerable research conducted over the last 20 years focused on trip/activity generation. The statistical models commonly applied are of two main types. One is discrete choice models and the other is count data models. There is little discussion in the literature comparing different statistical modeling approaches or identifying which statistical models are most appropriate for modeling trip/activity generation data. The current dissertation compares the two model systems to identify which one can give a more realistic representation of the patterns of activities performed by suburban residents.

Once an individual has decided on his/her activity type, choosing a suitable destination and transportation mode follows. People are assumed to select a destination first and then choose a particular transportation mode to the destination. In the current dissertation, the destination choice and mode choice given the destination are modeled by using a generalized logit model and a binary logit model separately. Finally, a Bayesian theorem is used to develop an activity-based travel demand model that incorporates the interrelationship between activity-type, destination and mode choices.

Departure time is the next decision. The current study formulates and applies a random-coefficients Cox hazard model to analyze departure time choice for non-workers in the context of daily activity schedules. The model recognizes the presence of unobserved heterogeneity affecting departure time decisions by means of random-coefficients.
A special note of thanks is due to the City University of Hong Kong for the graduate scholarship and the Department of Management Sciences for providing a very pleasant studying environment. In particular, I wish to express my thanks to all the support staff from the MS department and the Suzhou institute who have helped make the environment harmonious and conducive to research.

Finally, I would like to give my deepest thanks to my parents for their support, patience and unconditional love.
Table of Contents

Chapter 1 Introduction.. - 1 -
 1.1 Theory of activity-based travel demand - 1 -
 1.2 Lifestyle basis of activity decisions.. - 3 -
 1.3 Activity generation decisions..- 4 -
 1.4 Transportation mode and destination choices.........................- 5 -
 1.5 Temporal distribution of travel decisions- 5 -
 1.6 Outline of the dissertation... - 6 -

Chapter 2 Lifestyle basis of activity decisions................................... - 9 -
 2.1 Literature review... - 9 -
 2.2 Methodologies ..- 11 -
 2.2.1 Lifestyle clustering with activity-travel patterns- 11 -
 2.2.2 Lifestyle classification without activity-travel patterns- 13 -
 2.3 Empirical analysis... - 22 -
 2. 3.1 Data source and sample formation- 22 -
 2.3.2 Phase one: Lifestyle clustering with activity-travel patterns.. - 24 -
 2.3.3 Phase two: Lifestyle classification without activity-travel patterns.. - 33 -
 2.3.4 Applied to the census data ...- 37 -
 2.4 Summary... - 39 -

Chapter 3 Activity generation decisions... - 43 -
 3.1 Literature review... - 43 -
 3.2 Methodologies ..- 46 -
 3.2.1 Ordered mixed logit (OML) model- 46 -
 3.2.2 Truncated negative binomial mixed (TNBM) model - 48 -
 3.2.3 Two model systems: OML-ML and TNBM-ML......- 50 -
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Variables used for the lifestyle clustering in phase one</td>
<td>25</td>
</tr>
<tr>
<td>2.2</td>
<td>Rotated component matrix (factor loadings)</td>
<td>27</td>
</tr>
<tr>
<td>2.3</td>
<td>Cluster size and center for each lifestyle</td>
<td>28</td>
</tr>
<tr>
<td>2.4</td>
<td>Summary statistics of each lifestyle</td>
<td>30</td>
</tr>
<tr>
<td>2.5</td>
<td>Cross tabulation of individuals using cluster analysis and SVM</td>
<td>35</td>
</tr>
<tr>
<td>2.6</td>
<td>Cluster size and center for each lifestyle</td>
<td>36</td>
</tr>
<tr>
<td>2.7</td>
<td>Summary statistics of each lifestyle</td>
<td>37</td>
</tr>
<tr>
<td>2.8</td>
<td>Summary statistics and group size of lifestyle groups using census data</td>
<td>39</td>
</tr>
<tr>
<td>3.1</td>
<td>Activity type aggregate table</td>
<td>55</td>
</tr>
<tr>
<td>3.2</td>
<td>Count and percentage of individuals in each activity frequency category by primary activity type choice</td>
<td>55</td>
</tr>
<tr>
<td>3.3</td>
<td>Independent variables used in the empirical analysis</td>
<td>56</td>
</tr>
<tr>
<td>3.4</td>
<td>Model comparison between OML-ML and TNBM-ML</td>
<td>58</td>
</tr>
<tr>
<td>3.5</td>
<td>Estimated results of TNBM-ML model system</td>
<td>58</td>
</tr>
<tr>
<td>4.1</td>
<td>Activity type aggregate table of Survey2</td>
<td>73</td>
</tr>
<tr>
<td>4.2</td>
<td>Independent variables used in the empirical analysis</td>
<td>74</td>
</tr>
<tr>
<td>4.3</td>
<td>Model fit statistics for destination choice</td>
<td>75</td>
</tr>
<tr>
<td>4.4</td>
<td>Analysis of maximum likelihood estimates for destination choices</td>
<td>75</td>
</tr>
<tr>
<td>4.5</td>
<td>Estimated probability of choosing destination d</td>
<td>76</td>
</tr>
<tr>
<td>4.6</td>
<td>Model fit statistics for mode choice given destination urban area</td>
<td>77</td>
</tr>
<tr>
<td>4.7</td>
<td>Analysis of maximum likelihood estimates for mode choice</td>
<td></td>
</tr>
</tbody>
</table>
given destination urban area .. - 77 -

Table 4.8 Estimated conditional probability of mode choice given destination .. - 78 -

Table 4.9 Estimated primary activity generation - 78 -

Table 4.10 The proportion of choosing activity a given that destination d is chosen .. - 79 -

Table 4.11 Estimated probability of choosing destination d given that activity a is participated in .. - 80 -

Table 4.12 Estimated conditional probability of using mode m to destination d given the activity a is performed .. - 81 -

Table 4.13 The proportion of doing primary activity a at destination d by mode m ... - 82 -

Table 5.1 Variables used in departure time choice - 95 -

Table 5.2 Comparison tests of standard Cox model with intercept model ... - 96 -

Table 5.3 Fit statistics for random-coefficient Cox model - 97 -

Table 5.4 Estimated heterogeneity distributions - 98 -

Table 5.5 Rotated component matrix (factor loadings) - 101 -

Table 5.6 Estimated heterogeneity distribution - 102 -