EXTENSIONS ON LONG-TERM SURVIVOR MODEL WITH RANDOM EFFECTS

LAi Xin

DOCTOR OF PHILOSOPHY
CITY UNIVERSITY OF HONG KONG
SEPTEMBER 2009
Extensions on Long-term Survivor Model with Random Effects

Submitted to
Department of Management Sciences
In Partial Fulfillment of the Requirement for the Degree of Doctor of Philosophy
by
Lai Xin
September 2009

二零零九年九月
Abstract

Cured patients (or the so called long-term survivors) are increasingly being observed in clinical trial studies. As exemplified in some data sets, a considerable portion of the patients are deemed to be cured. With the presence of random hospital/centre effects, long-term survivor model has been proposed to analyze clustered survival data with a possible portion of cured patients. Under such mixture modeling setting, several extensions on random effects cure model are investigated in this thesis to accommodate the dependence among outcomes which often originate from the multi-centre research design settings.

Firstly, by taking the possible dependence of random effects into account, the long-term survivor model with bivariate random effects is proposed to assess the covariates and random effects in both recovery probability and the instantaneous failure rate. This study extends earlier work by allowing the random effects in the cure fraction and hazard function part to follow the bivariate normal distribution, which gives a generalized model with an additional correlation parameter governing the relationship between the cure probability and the hazard rate due to the hospital/clinic effects.

Secondly, a hierarchical cure model is considered for survival data obtained from multilevel research design where the nested random effects are used to model the hierarchical structure for such kind of survival data. In the modeling framework,
multilevel random effect terms are incorporated into the Cox’s proportional hazards function and the cured probability via a logistic transform, for handling the hierarchical clustering effects presented in the observed data. The proposed model is originally developed for multilevel clustered survival data. With some modifications, it is also applicable to multilevel recurrent failure time data.

Thirdly, through the Box-Cox transformation, a generalized long-term survivor model is proposed to allow flexibility in specifying the hazard function. With the general relative risk function form, the failure rate of those at-risk patients is no longer constraint to the Cox’s proportional hazard function. In particular, a family of hazard function forms are allowed, which takes exponential and linear relative risk as two special cases. The parameter governing the power transformation could be determined by means of a modified Akaike information criterion (AIC).

Adopting the GLMM method and EM algorithm, the estimation of regression parameters can be achieved by maximizing a BLUP-type log-likelihood function at the initial step, and then used to find the REML estimation for the variance component parameters. Application to some data sets, including the carcinoma data, bone marrow transplantation data, chronic granulomatous disease data and child survival study data, illustrates the usefulness of the proposed models.

Furthermore, simulation studies are conducted for each model to evaluate the
performance of the estimators, under the proposed numerical estimation scheme. In
general, unbiased estimates for both regression and variance component parameters
are observed and the estimation of standard error is also broadly satisfactory, implying
that the proposed estimation methods perform reasonably well. Some further
discussions and remarks on these proposed models and suggestions on future research
studies are provided.

Keywords: Cured patients; EM algorithm; GLMM; Long-term survivor; Random
effects; REML
Table of Contents

Abstract... i

Acknowledgement.. v

Table of Contents .. vi

List of Tables .. ix

List of Figures ... x

Chapter 1: Random Effect Models.. 1

1.1 Introduction.. 1

1.2 Definition of Generalized Linear Mixed Model.. 5

1.3 Estimation Methods in Linear Mixed Model... 6

1.3.1 Best Linear Unbiased Prediction (BLUP) .. 7

1.3.2 Maximum Likelihood (ML) Estimation.. 8

1.3.3 Restricted Maximum Likelihood (REML) Estimation.. 9

1.4 Estimation Methods in Generalized Linear Mixed Model ... 10

1.4.1 Schall’s Method ... 10

1.4.2 Breslow and Clayton’s PQL approach.. 12

1.4.3 McGilchrist’s Conditional Likelihood Method .. 14

1.4.4 Lee and Nelder’s HGLM .. 16

1.5 Other methods in GLMM ... 19

Chapter 2: Review on Long-Term Survivor Models in Survival Analysis.. 22

2.1 Introduction.. 22
2.2 Cure Models ... 25
 2.2.1 Mixture Cure Model .. 26
 2.2.2 Non-Mixture Cure Model ... 27
2.3 Estimation Methods in Mixture Cure Models ... 28
 2.3.1 Parametric Methods ... 29
 2.3.2 Semi-Parametric Method ... 30
 2.3.3 Semi-Parametric Linear Transformation Model ... 34

Chapter 3: Long-term Survivor Model with Bivariate Random Effects 38
 3.1 Introduction ... 38
 3.2 Long-term Survivor Model with Bivariate Random Effects 40
 3.3 Estimation Procedure ... 44
 3.4 Applications .. 48
 3.4.1 Bone Marrow Transplantation for Leukemia Patients 48
 3.4.2 Multi-Centre Trial Carcinoma Data .. 51
 3.5 Simulation Study ... 55
 3.6 Discussion ... 57

Chapter 4: Multilevel Mixture Cure Models with Random Effects 67
 4.1 Introduction ... 67
 4.2 Multilevel Survival Model with Cure Fraction .. 70
 4.3 Estimation Procedure ... 73
 4.4 Numerical Examples .. 79
 4.4.1 Application to Child Survival Study Data .. 79
4.4.2 Application to CGD data ... 81

4.5 Simulation Study... 83

4.6 Discussion.. 85

Chapter 5: Random Effects Mixture Cure Model with General Relative Risk 90

5.1 Introduction.. 90

5.2. Random Effects Cure Model with General Relative Risk Function........ 91

5.3 Estimation Procedure... 93

5.4. Numerical Examples.. 97

5.4.1 Application to carcinoma data .. 97

5.4.2 Application to Bone marrow transplantation data 98

5.5. Simulation Study... 99

5.6. Discussion... 101

Chapter 6: Conclusion and Discussion ... 110

6.1 Summary of Research Findings... 110

6.2 Future Research Direction ... 114

6.2.1 Survival Model with Dependent Censoring Scheme....................... 114

6.2.2 Robust Estimation for Survival Models ... 116

References.. 118
List of Tables

Table 3.1 Parameter estimates for the bone marrow transplantation study data63
Table 3.2 Parameter estimates for the carcinoma study data64
Table 3.3 Bias and standard error of REML estimators for long-term survivor model
with bivariate random effects under censoring time C=500.......................65
Table 3.4 Bias and standard error of REML estimators for long-term survivor model
with bivariate random effects under censoring time C=1000.....................66
Table 4.1 Parameter estimates for the child survival study data88
Table 4.2 Parameter estimates for the CGD data88
Table 4.2 Estimated bias and standard error for multilevel mixture cure model with
random effects..89
Table 5.1 Parameter estimates for carcinoma study data by random effects cure model
with general relative risk...103
Table 5.2 Parameter estimates for the bone marrow transplantation study data by
random effects cure model with general relative risk.............................103
Table 5.3 Bias and standard error for the long-term survivor model with general
relative risk effects...104
List of Figures

Figure 3.1 Kaplan-Meier survival plot for the bone marrow transplantation study data………………………………………………………………………60

Figure 3.2 Kaplan-Meier survival plot for the carcinoma study data…………………61

Figure 3.3 Estimated survival function for the long-term survivor model with bivariate random effects and Kaplan-Meier survival function ……………………62