CITY UNIVERSITY OF HONG KONG 香港城市大學

Output Consensus of Heterogeneous Linear Multi-Agent Systems 異構線性多智能體系統的輸出一致性

Submitted to Department of Mechanical and Biomedical Engineering 機械及生物醫學工程學系 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy 哲學博士學位

by

Li Shaobao 李紹宝

August 2014 二零一四年八月

Abstract

Multi-agent systems are usually used to describe a class of systems consisting of multiple subsystems, which have independent capabilities of computing, sensing, communicating, and are connected by communication networks, such as multi-robot systems, networked micro-satellite systems, mobile sensor networks, and so on. Benefiting from their advantages such as good scalability, high working efficiency, and fault tolerance, multi-agent systems have attracted great attention in their cooperative control from control community. Consensus is one of the cooperative control problems of multi-agent systems, and can be widely applied in the fields of formation control of Unmanned Aerial Vehicles (UAVs), environment surveillance, networking of multiple satellites, and so on.

In the past decade, great progress has been made for consensus of multi-agent systems. However, heterogeneity of agents, time-varying topology, disturbances, and system uncertainty still present some challenges for consensus protocol design. This thesis focuses on the cooperative output regulation problem and output consensus problem of heterogeneous multi-agent systems subject to different disturbances for individual agents under fixed or switching topology. General dynamics of high-order linear multi-agent systems are considered, and some novel distributed control laws are proposed. Furthermore, adaptive control techniques are applied to design feedback gains such that they will be independent of Laplacian matrix of the underlying system topology, and internal model principle is used to solve robust output consensus of discrete-time multi-agent systems with structural uncertainty. The main contributions of this thesis are summarized as follows:

Firstly, the cooperative linear output regulation problem of a class of heterogeneous multi-agent systems subject to different disturbances for individual agents is investigated. A novel distributed control law is presented based on dynamic measurement output feedback. It is shown that the overall networked closed-loop control system is asymptotically stable and the output regulation errors asymptotically approach zero as time goes to infinity under a sufficient and necessary condition.

Secondly, since the feedback gains of high-order multi-agent systems are usually dependent on the Laplacian matrix of the underlying system topology, which is of global nature, we further apply adaptive control techniques to investigate the cooperative output regulation problem of heterogeneous multi-agent systems subject to different disturbances for individual agents. Two classes of distributed adaptive control laws are presented based on state feedback and dynamic output feedback respectively. It is shown that the outputs of all agents can track the reference input asymptotically under the proposed adaptive control laws.

Thirdly, we further investigate the cooperative output regulation problem of heterogeneous multi-agent systems with periodic switching topology, which has only a subgroup of agents accessing to the information of the exosystem. A novel distributed adaptive control law is presented based on dynamic state feedback with the feedback gain independent of the Laplacian matrix of the underlying system communication topology. It is shown that the overall networked closed-loop control system is asymptotically stable and the regulation errors approach zero as time goes to infinity.

Fourthly, the output consensus problem of heterogeneous multi-agent systems without a common reference input is further studied. A distributed control law is first presented for leaderless output consensus based on internal reference models, which are designed to generate a virtual reference input. It is shown that the internal reference models of agents can achieve consensus to a common trajectory which is determined by the underlying system topology and the initial states of the internal reference models. Then a necessary and sufficient condition is presented for the leaderless output consensus. Moreover, the approach is extended to leader-following output consensus of heterogeneous linear multi-agent systems with the leader also being subject to a disturbance.

Finally, the output consensus problem of heterogeneous discrete-time multiagent systems with individual agents subject to structural uncertainty and different disturbances is investigated. A novel distributed control law based on internal reference models is first presented for output consensus of heterogeneous discrete-time multi-agent systems without structural uncertainty, where internal reference models embedded in controllers are designed with the objective of reduced communication costs. Then based on the internal reference models and the well-known internal model principle, a distributed control law is further presented for output consensus of heterogeneous discrete-time multi-agent systems with structural uncertainty. It is shown in both cases that the consensus trajectory of the internal reference models determines the output trajectories of agents.

Table of Contents

A	bstra	let	i											
A	ckno	wledgement	iv											
Li	st of	Figures	ix											
N	otati	ons	xi											
1	Intr	roduction	1											
	1.1	Background	1											
	1.2	Literature Review	2											
		1.2.1 Consensus of Homogeneous Multi-Agent Systems	2											
		1.2.2 Output Consensus of Heterogeneous Multi-Agent Systems	5											
	1.3 Thesis Organization and Contributions													
	1.4	Graph Notations	9											
2	Cooperative Linear Output Regulation Based on Dynamic Mea-													
	surement Output Feedback													
	2.1	Introduction	11											
	2.2	Problem Formulation	12											
	2.3	Dynamic Measurement Output Feedback Control	14											
	2.4	A Numerical Example	20											
	2.5	Conclusion	21											
3	Adaptive Control for Cooperative Linear Output Regulation													
	3.1	Introduction	23											
	3.2	Problem Formulation	24											

	3.3	Adaptive Control Laws	25								
		3.3.1 Adaptive Control with State Feedback	25								
		3.3.2 Adaptive Control with Dynamic Output Feedback	28								
	3.4	A Numerical Example	32								
	3.5	Conclusion	34								
4	Ada	aptive Control for Cooperative Linear Output Regulation of									
	Mu	lti-Agent Systems with Periodic Switching Topology	35								
	4.1	Introduction	35								
	4.2	Problem Formulation	37								
	4.3	Partial Adaptive Dynamic State Feedback	38								
	4.4	A Numerical Example	47								
	4.5	Conclusion	47								
5	Out	tput Consensus of Multi-Agent Systems Subject to Different									
	Disturbances										
	5.1	Introduction	49								
	5.2	Problem Formulation	50								
	5.3	Output Consensus Protocols Based on Internal Reference Models	51								
		5.3.1 Leaderless Output Consensus	52								
		5.3.2 Extension to Leader-Following Output Consensus	57								
	5.4	Numerical Examples	59								
		5.4.1 Example for Leaderless Output Consensus	60								
		5.4.2 Example for Leader-Following Output Consensus	61								
	5.5	Conclusion	61								
6	Out	tput Consensus of Linear Discrete-time Multi-Agent Systems									
	with Structural Uncertainty 6										
	6.1	Introduction	63								
	6.2	Problem Statement	65								
	6.3	Output Consensus without Structural Uncertainty	67								
	6.4	Output Consensus with Structural Uncertainty	75								
	6.5	Simulations	80								
		6.5.1 Output Consensus without uncertainty	81								

		6.5.2 Output Consensus with Structural Uncertainty														 83						
	6.6	Conclu	usior	ı									•				•	•	•	•		 84
7	Con	clusior	ns a	nd I	Futu	ıre '	Wo	rks														86
Bibliography												89										
Curriculum Vitae												103										