CITY UNIVERSITY OF HONG KONG
香港城市大學

Stabilization of Linear Switched Systems
線性切換系統的鎮定

Submitted to
Department of Mechanical and Biomedical Engineering
機械與生物醫學工程系
in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy
哲學博士學位

by
Zheng Yan
鄭燕

August 2012
二零一二年八月
Abstract

Switched systems have received much attention for a long time due to their practical and theoretical significance. As a result of great effort from control community, many results on the stability and the stabilization of switched systems have been obtained. However, stability or stabilization conditions in many existing results are either conservative or hard to be verified. Moreover, stability or stabilization results on positive switched systems are rarely reported in literature. This thesis aims to address these issues. A number of new stability/stabilization results, which are either less conservative or more easily to be verified, have been developed for some classes of linear switched systems and positive switched systems. It is noted that these new results benefit mostly from the following aspects: the structural property of special switched systems, the application of new kinds of Lyapunov functions and the geometric properties of second order positive switched systems.

The stabilization of linear switched systems is firstly considered in terms of design of controllers. Two easily verifiable conditions, which guarantee the feedback stabilization of one kind of special switched systems under arbitrary switching, are provided based on a common diagonal quadratic Lyapunov function and switched diagonal quadratic Lyapunov functions. In addition, a less conservative condition for the feedback stabilization of switched systems under asynchronous switching is provided in terms of linear matrix inequalities.

Then, the stabilization of second order positive switched systems is considered in terms of the construction of switching laws. A necessary and sufficient condition, which guarantees the stabilization of second order positive switched systems with two unstable subsystems, is provided by considering the vector fields and geometric
characteristics. In addition, the types of second order positive switched systems that can be stabilized are further characterized via that condition.

Finally, stabilizing switching laws for more general positive switched systems are further explored. New stabilization conditions of state dependent switching laws based on DQLFs are provided for positive switched systems. The relationship among state dependent switching laws based on different Lyapunov functions is also considered. Besides, two new slow switching laws for the stabilization of discrete time positive switched systems are proposed based on a diagonal quadratic Lyapunov function and a linear copositive Lyapunov function, respectively. When the states of positive switched systems are not available, the observer and positive observer in particular are constructed, and two observer based stabilizing switching laws are also proposed.
Table of Contents

Abstract i

Acknowledgement iii

List of Figures viii

List of Tables x

Nomenclature xi

1 Introduction 1
 1.1 Background and Motivation .. 1
 1.1.1 Research Background ... 1
 1.1.2 Motivation .. 6
 1.2 Lyapunov Theory .. 7
 1.3 Literature Review for Switched Systems 9
 1.3.1 Stability of Switched Systems 10
 1.3.2 Stabilization of Switched Systems 14
 1.4 Literature Review for Positive Switched Systems 18
 1.4.1 Stability of Positive Switched Systems 19
 1.4.2 Stabilization of Positive Switched Systems 21
 1.5 Thesis Outline and Contributions 22

2 Controller Design of A Class of Single Input Discrete Time Switched Systems 24
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Introduction</td>
<td>24</td>
</tr>
<tr>
<td>2.2 Model Description of A Class of Discrete Time Switched Systems</td>
<td>25</td>
</tr>
<tr>
<td>2.3 Diagonal Stabilization Based On A Common DQLF</td>
<td>28</td>
</tr>
<tr>
<td>2.4 Diagonal Stabilization Based On SDQLFs</td>
<td>32</td>
</tr>
<tr>
<td>2.5 Numerical Examples</td>
<td>36</td>
</tr>
<tr>
<td>2.6 Conclusions</td>
<td>40</td>
</tr>
<tr>
<td>3 Dynamical Output Feedback H_∞ Controller Design of Switched Systems Under Asynchronous Switching</td>
<td>42</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>42</td>
</tr>
<tr>
<td>3.2 Model Description and Problem Formulation</td>
<td>44</td>
</tr>
<tr>
<td>3.3 Main Results</td>
<td>47</td>
</tr>
<tr>
<td>3.4 An Illustrative Example</td>
<td>60</td>
</tr>
<tr>
<td>3.5 Conclusions</td>
<td>61</td>
</tr>
<tr>
<td>4 Conic Switching Law for Second Order LTI Positive Switched Systems</td>
<td>63</td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>63</td>
</tr>
<tr>
<td>4.2 Preliminaries and A Lemma</td>
<td>65</td>
</tr>
<tr>
<td>4.3 Main Results</td>
<td>67</td>
</tr>
<tr>
<td>4.4 A Numerical Example</td>
<td>79</td>
</tr>
<tr>
<td>4.5 Conclusions</td>
<td>80</td>
</tr>
<tr>
<td>5 State Dependent Switching Law for Discrete Time Positive Switched Systems</td>
<td>81</td>
</tr>
<tr>
<td>5.1 Introduction</td>
<td>81</td>
</tr>
<tr>
<td>5.2 Preliminaries</td>
<td>82</td>
</tr>
<tr>
<td>5.3 Main Results</td>
<td>83</td>
</tr>
<tr>
<td>5.4 A Numerical Example</td>
<td>89</td>
</tr>
<tr>
<td>5.5 Conclusions</td>
<td>90</td>
</tr>
</tbody>
</table>
Table of Contents

6 Two Slow Switching Laws for Discrete Time Positive Switched Systems 92

6.1 Introduction .. 92
6.2 Slow Switching Strategies 93
6.3 Robustness of Switching Strategies 99
6.4 Observer Based Switching Strategies 103
6.5 Illustrative Examples 107
6.6 Conclusions .. 112

7 Concluding Remarks 115

Bibliography ... 118

Curriculum Vitae 132
List of Figures

1.1 The diagram of a multi-controller system. 2
1.2 PWM-driven boost converter. 5
1.3 State dependent switching laws based on different LFs. 21

2.1 $N+1$ agents interconnected through a weighted directed network where
the green agent is a leader. .. 26
2.2 Two directed interconnection graphs of 4 agents with agent 0 is a leader. 37
2.3 State trajectories of the closed loop system (2.1) with parameters (2.22). 41

3.1 Plant index and the controller index ($t_0 = 0$). 45
3.2 State $\bar{x}(k)$ when $w(k) = 0$. 62
3.3 State $\bar{x}(k)$ when $w(k) = \frac{\text{rand}(1)}{1+k}$. 62

4.1 The conic switching law. The yellow region is $E_{c,ac}$ or $E_{ac,c}$. The gray
region is the region M. .. 66
4.2 Partitioned regions. The red solid (dotted) lines are eigenvectors of
$A_1(A_2)$. .. 68
4.3 The trajectories of the system (4.5) from A to B and A' to B' respec-
tively in the region $E_{c,ac}$ (the yellow region). 70
4.4 The vectors F_1 and F_2 in the region $int(E_{c,ac} \cap \bar{\Omega}_1)$. 74
4.5 Region partition cases of the state space when a second order positive switched system is composed of one subsystem with a saddle point and the other with unstable nodes. In (a)-(f), the red solid (dotted) lines are eigenvectors of $A_1(A_2)$, while in (g) and (h), the red dash and dot lines are eigenvectors of A_1 and A_2, respectively. 75

4.6 The scenarios of vectors F_1 and F_2 in the boundaries of region $E_{c,ac}$ of Figure 4.5 (c). The red solid line is the eigenvector of A_1, the red dotted line is the eigenvector of A_2, the red dash and dot lines are eigenvectors of A_1 and A_2, respectively. 78

4.7 State trajectory of the system (4.31) with the initial point $(10, 25)^T$. 80
4.8 State trajectory of the system (4.31) with the initial point $(30, 1)^T$. 80

5.1 The relationship of different conditions. 86
5.2 State dependent switching laws based on different LFs. 86
5.3 State trajectories of the system (5.1) with parameters (5.19). 91

6.1 One switching circle for $m(m > 2)$ subsystems. 95
6.2 One switching circle for two subsystems. 97
6.3 State of (6.1) with parameters (6.5) under slow switching law 1. 108
6.4 State of (6.16) with parameters (6.5) under slow switching law 1. 109
6.5 The state x_1 of (6.31) and the state \overline{x}_1 of (6.32) under observer based switching law 1 with gains (6.50). 110
6.6 The state x_2 of (6.31) and the state \overline{x}_2 of (6.32) under observer based switching law 1 with gains (6.50). 111
6.7 The state x_1 of (6.31) and the state \overline{x}_1 of (6.32) under observer based switching law 2 with gains (6.54). 112
6.8 The state x_2 of (6.31) and the state \overline{x}_2 of (6.32) under observer based switching law 2 with gains (6.54). 113
6.9 The state x_3 of (6.31) and the state \overline{x}_3 of (6.32) under observer based switching law 2 with gains (6.54). 114
List of Tables

3.1 Minimal γ for different methods when $\alpha = 0.0008, \beta = 0.0003, \delta = \frac{1}{2}$. 60