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Abstract

Optical waveguides are structures that guide the propagation of light. They are

the fundamental components in communications systems and integrated optical

circuits. In recent years, many optical waveguides with complicated structures

have appeared. As a special class of optical waveguides, photonic crystal fibers

(PCFs) have been extensively studied because of their many unique properties

which are not available in traditional waveguides. The propagation of light in a

PCF is strongly controlled by the geometry of its cross section. Periodic struc-

tures, such as diffraction gratings and photonic crystals (PhCs) are important

optical components that can be used to control and manipulate light. Accurate

and efficient numerical methods are essential in the analysis, design and opti-

mization of optical waveguides and periodic structures.

For a given optical waveguide or PCF, numerical methods that discretize

the cross section of the structure give rise to linear matrix eigenvalue problems.

The discretization can be obtained by using the finite difference method, the finite

element method (FEM), the multi-domain pseudospectral method, etc. However,

for PCFs with many holes and complicated geometries and for general optical

waveguides with high-index contrast, sharp corners and complex micro-structures,

the resulting matrices can be very large and the matrix eigenvalue problem can

only be solved by iterative methods and the accuracy may be limited. A better

approach is to formulate a nonlinear eigenvalue problem of which the resulting

matrix is much smaller. Numerical methods using the nonlinear approach include

the film mode matching method, the multipole method and the boundary integral

equation (BIE) method. The film mode matching method is quite successful, but
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it is only applicable to optical waveguides with vertical and horizontal refractive

index discontinuities. The multipole method is accurate for PCFs with well-

separated and circular inclusions, but it cannot be easily extended to other optical

waveguides.

For diffraction gratings, existing numerical methods include general-purpose

methods such as the finite-difference time-domain (FDTD) method and the FEM,

and more special methods such as the analytic modal method, numerical modal

methods, the BIE methods, etc. Although FDTD and FEM are extremely ver-

satile, they are typically less efficient than the special methods. Analytic and

numerical modal methods require that the structure consists of uniform layer-

s. For gratings with high index-contrast and sharp corners in their profiles, all

modal methods converge slowly and may even fail to converge, due to the possible

field singularity at the corners. And for two dimensional (2D) PhCs with circu-

lar cylinders, existing numerical methods such as the FDTD method, the FEM

method, the multipole method, the scattering matrix method and the Dirichlet-

to-Neumann map method are effective. However, if the cylinder in each unit

cell contains corners, the above methods still suffer from a considerable loss of

accuracy in the presence of the field singularity at corners.

In this thesis, high order boundary integral equation methods are developed

for analyzing optical waveguides including PCFs, diffraction gratings and pho-

tonic crystals of arbitrary unit cells. The methods rely on a standard Nyström

method for discretizing integral operators and they do not require analytic prop-

erties of the electromagnetic field (which are singular) at the corners. For PCFs

with smooth interfaces, we develop a new high order BIE mode solver. The

method solves two functions on the interfaces and is more efficient than existing

BIE methods. The key step is to use the kernel-splitting technique for discretizing

the hyper-singular boundary integral operators. For optical waveguides with high

index-contrast and sharp corners, a new full-vectorial waveguide mode solver is

developed based on a new formulation of boundary integral equations and the so-

called Neumann-to-Dirichlet (NtD) maps for sub-domains of constant refractive
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index. The method uses the normal derivatives of the two transverse magnetic

field components as the basic unknown functions, and it offers higher order of

accuracy where the order depends on a parameter used in a graded mesh for

handling the corners. For diffraction gratings, we present a high order BIE-NtD

method which is an improved-version of a BIE-NtD method in earlier works. The

improvements include a revised formulation that is more stable numerically, and

more accurate methods for computing tangential derivatives along material in-

terfaces and for matching boundary conditions with the homogeneous top and

bottom regions. For 2D PhCs of arbitrary unit cells, a new BIE-NtD method is

used to calculate the NtD map for each unit cell. We study two basic problems

encountered in the analysis of 2D PhCs. A projection technique is used for fur-

ther reducing the size of the reduced NtD map for each unit cell, and it makes

our method more effective.

Keywords: Optical Waveguide, Photonic Crystal Fiber, Diffraction Grating,

Photonic Crystal, Boundary Integral Equation, Neumann-to-Dirichlet Map,

Dirichlet-to-Neumann Map
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