UNIFORM ASYMPTOTICS OF THE MEIXNER POLYNOMIALS AND SOME q-ORTHOGONAL POLYNOMIALS

XIANG-SHENG WANG

DOCTOR OF PHILOSOPHY
CITY UNIVERSITY OF HONG KONG
MARCH 2009
Uniform Asymptotics of the Meixner Polynomials and Some q-Orthogonal Polynomials

Submitted to
Department of Mathematics
in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

by

Xiang-Sheng Wang

March 2009
Abstract

In this thesis, we study the uniform asymptotic behavior of the Meixner polynomials and some q-orthogonal polynomials as the polynomial degree n tends to infinity.

Using the steepest descent method of Deift-Zhou, we derive uniform asymptotic formulas for the Meixner polynomials. These include an asymptotic formula in a neighborhood of the origin, a result which as far as we are aware has not yet been obtained previously. This particular formula involves a special function, which is the uniformly bounded solution to a scalar Riemann-Hilbert problem, and which is asymptotically (as $n \to \infty$) equal to the constant “1” except at the origin. Numerical computation by using our formulas, and comparison with earlier results, are also given.

With some modifications of Laplace’s approximation, we obtain uniform asymptotic formulas for the Stieltjes-Wigert polynomial, the q^{-1}-Hermite polynomial and the q-Laguerre polynomial. In these formulas, the q-Airy polynomial, defined by truncating the q-Airy function, plays a significant role. While the standard Airy function, used frequently in the uniform asymptotic formulas for classical orthogonal polynomials, behaves like the exponential function on one side and the trigonometric functions on the other side of an extreme zero, the q-Airy polynomial behaves like the q-Airy function on one side and the q-Theta function on the other side. The last two special functions are involved in the local asymptotic formulas of the q-orthogonal polynomials. It seems therefore reasonable to expect that the q-Airy polynomial will play an important role in the asymptotic theory of the q-orthogonal polynomials.
Contents

1 Introduction 1
 1.1 The Meixner polynomials and some q-orthogonal polynomials . . . 1
 1.2 Method of asymptotic analysis for the Meixner polynomials 4
 1.3 Method of asymptotic analysis for some q-orthogonal polynomials 5

2 Asymptotics of the Meixner Polynomials 9
 2.1 The basic interpolation problem 9
 2.2 The equivalent Riemann-Hilbert problem 12
 2.3 The nonlinear steepest-descent method 38
 2.4 Uniform asymptotic formulas for the Meixner polynomials 58

3 Asymptotics of Some q-Orthogonal Polynomials 71
 3.1 Discrete analogues of Laplace’s approximation 71
 3.2 The q-Airy function and the q-Airy polynomial 75
 3.3 Uniform asymptotic formulas for some q-orthogonal polynomials . 81

4 Appendix 90
 4.1 Explicit formulas of some integrals 90
 4.2 The equilibrium measure of the Meixner polynomials 96
 4.3 The function $D(z)$. 99
 4.4 The parameter β of the Meixner polynomials 101
 4.5 The asymptotic formulas for the Meixner polynomials 104
 4.6 The asymptotic formulas for some q-orthogonal polynomials . . . 109

Bibliography 115
List of Figures

2.1 The transformation $Q \to R$ and the contour Σ_R. 16
2.2 The jump conditions of $S(z)$ on the contour Σ_S. 36
2.3 The region Ω_T and the contour Σ_T. 38
2.4 The transformation $S \to T$. 39
2.5 The jump conditions of $T(z)$. 41
2.6 The Airy parametrix and its jump conditions. 51
2.7 The contour Σ_K. 55
2.8 Regions of asymptotic approximations. 61