AGENT-ORIENTED DECISION MAKING FRAMEWORK, CONCEPTUAL SEMANTIC MODEL, AND ARCHITECTURE DEVELOPMENT FOR INTELLIGENT FINANCIAL DECISION SUPPORT SYSTEMS

WANG YINGFENG

DOCTOR OF PHILOSOPHY
CITY UNIVERSITY OF HONG KONG
APRIL 2010
Agent-oriented decision making framework, conceptual semantic model, and architecture development for intelligent financial decision support systems

Submitted to
Department of Information Systems
for the Degree of Doctor of Philosophy

By

Wang Yingfeng

April 2010
The demand for computer-based decision support services is rising dramatically in modern financial world. Human life is heavily dependent on technology, as people are facing all kinds of complicated, dynamic and distributed problems all the time. Under this circumstance, numerous different kinds of decision support systems (DSSs) have been researched, designed and implemented in almost every financial aspect, including portfolio risk management, automated securities trading, family financial planning, anti-money laundering, target selection in hedge fund activism and etc. However, existing financial DSSs (FDSSs) are suffering from certain drawbacks such as ineffective thresholds, insufficient data processing capability, lack of popularity, flexibility, adaptability and collaboration, and insufficient data processing capability. Some existing intelligent financial decision support systems (IFDSSs), which are claimed to be intelligent enough to overcome these common problems, are constructed without solid theoretical foundation. In order to solve these problems, intelligent agent technology is applied in this research to deal with the complex, uncertain, and inevitable real world financial problems. Agent-oriented conceptual models are proposed for providing a unified framework for analysis, design and implementation of IFDSSs. Furthermore, a multi-agent system architecture is also designed by applying the model.

Modeling is an essential aspect of information systems development. Indeed, an information system can be viewed as a representation, or a model, of another system (usually termed the real system). Modeling is especially important in the analysis stage of systems development when abstract models of the represented system and its organizational environment are created. A conceptual model should reflect knowledge
Abstract

about the application domain rather than about the implementation of the information system. Conceptual modeling has been defined as a formal description of “some aspects of the physical or social reality for the purpose of understanding and communicating” (Mylopoulos, 1992). This study depicts the conceptual models for IFDSSs, including the more general and high-level decision making process model, and the derived conceptual model for IFDSSs in semantic schema containing the overall knowledge representations.

To demonstrate the usability and effectiveness of the model and the system architecture proposed, and possible development mechanism is discussed. Moreover applications in two applicable financial domains are presented in the study, including family financial planning system (Gao, Wang, and et al., 2004; Gao, Wang, and et al., 2005; Gao, Wang, and et al., 2006a; Gao, Wang, and et al., 2006c), anti-money laundering system (Gao, Wang, and et al., 2006b; Wang et al., 2006; Wang et al., 2007; Wang et al., 2008), and target selection in hedge fund activism (Lai, Wang, and et al., 2009). In each application domain, mapping model and architecture are provided and discussed in detail, and prototype system is designed and implemented, and evaluated.

The major contributions of this research are the theoretical investigations of the decision making process in different financial domains and the general framework for design and implementation of intelligent financial decision support systems. This study starts from the high-level conceptual modeling of the domain knowledge, on basis of the knowledge representation and in-depth understanding of the general financial problems, and then develops the system architecture. Afterward, applications in different applicable domains are discussed so that the conceptual models and system architecture are validated and evaluated.
TABLE OF CONTENTS

ABSTRACT ... I

ACKNOWLEDGEMENTS .. III

TABLE OF CONTENTS ... V

LIST OF FIGURES .. VIII

LIST OF TABLES ... X

CHAPTER 1. INTRODUCTION ... 1

1.1 RESEARCH QUESTION .. 1

1.2 RESEARCH OBJECTIVES ... 3

 1.2.1 General Objectives .. 3

 1.2.2 Demonstration in Specific Domains .. 4

1.3 RESEARCH METHODOLOGIES .. 8

 1.3.1 Design Science Methodology ... 10

 1.3.2 Agent-oriented Analysis and Design .. 13

1.4 ORGANIZATION OF THESIS ... 15

CHAPTER 2. LITERATURE REVIEW .. 17

2.1 INTELLIGENT AGENT TECHNOLOGY .. 17

 2.1.1 Intelligent Agents .. 17

 2.1.2 Multi-Agent Systems ... 21

2.2 AGENT-ORIENTED CONCEPTUAL MODEL ... 23

 2.2.1 Conceptual Model ... 23

 2.2.2 Agent-oriented Modeling ... 26

2.3 INTELLIGENT FINANCIAL DECISION SUPPORT SYSTEMS (IFDSSs) 29
Table of Contents

2.3.1 Financial Planning Systems .. 30
2.3.2 Anti-Money Laundering Systems .. 31
2.3.3 Target Selection System in Hedge Fund Activism 32
2.3.4 Research Opportunities ... 32

2.4 Summary ... 34

CHAPTER 3. AGENT-ORIENTED CONCEPTUAL MODELS AND ARCHITECTURE DEVELOPMENT FOR IFDSS

3.1 Overview ... 37
3.2 Decision Making Framework for IFDSS .. 38
3.3 Agent-oriented Conceptual Semantic Model for IFDSS 42
3.4 Multi-agent System Architecture for IFDSS 44
3.5 General System Implementation and Deployment 46
 3.5.1 Web-Services Incorporating Agents ... 46
 3.5.2 System Implementation Architecture ... 50
 3.5.3 General System Development .. 51
3.6 Summary ... 58

CHAPTER 4. INTELLIGENT FAMILY FINANCIAL PLANNING SYSTEM (IFFPS)

4.1 Background ... 60
4.2 Decision Making Framework for FFP .. 66
4.3 Agent-Oriented Conceptual Semantic Model for FFP 70
4.4 Multi-agent System Architecture for IFFPS 76
4.5 System Implementation and Deployment ... 80
4.6 System Operation .. 82
4.7 Result of Empirical Investigation ... 85
4.7.1 Variables and Hypotheses ... 86
4.7.2 Results ... 88
4.7.3 Discussion ... 91

4.8 SUMMARY .. 92

CHAPTER 5. INTELLIGENT MONEY LAUNDERING MONITORING AND DETECTION SYSTEM (MLMDS)...........94

5.1 BACKGROUND ... 96
5.2 DECISION MAKING FRAMEWORK FOR MLMDP 101
5.3 AGENT-ORIENTED CONCEPTUAL SEMANTIC MODEL FOR MLMDP 106
5.4 MULTI-AGENT SYSTEM ARCHITECTURE FOR MLMDS 114
5.5 SYSTEM IMPLEMENTATION AND DEPLOYMENT 120
5.6 SYSTEM OPERATION ... 124
5.7 SUMMARY .. 126

CHAPTER 6. INTELLIGENT TARGET SELECTION SYSTEM FOR SHAREHOLDER ACTIVISM (TSSSA)128

6.1 BACKGROUND ... 130
6.2 DECISION MAKING FRAMEWORK FOR TSP .. 136
6.3 AGENT-ORIENTED CONCEPTUAL SEMANTIC MODEL FOR TARGET SELECTION ... 141
6.4 MULTI-AGENT SYSTEM ARCHITECTURE FOR TSSSA 147
6.5 SYSTEM IMPLEMENTATION AND DEPLOYMENT 157
6.6 SYSTEM OPERATION ... 158
6.7 SUMMARY .. 160

CHAPTER 7. CONCLUSIONS ...163
7.1 THESIS SUMMARY ... 163
7.2 FUTURE RESEARCH .. 170
REFERENCES ... 172
LIST OF FIGURES

FIGURE 1. INFORMATION SYSTEMS RESEARCH FRAMEWORK (ADAPTED FROM HEVNER ET AL., 2004) .. 9

FIGURE 2 DESIGN SCIENCE RESEARCH METHODOLOGY APOTED IN THIS RESEARCH .. 12

FIGURE 2. AN ABSTRACT VIEW OF AGENT .. 18

FIGURE 4. DECISION MAKING PROCESS MODEL FOR IFDSS ... 41

FIGURE 5. A PARTIAL SEMANTIC SCHEMA FOR IFDSS .. 44

FIGURE 6. MULTI-AGENT SYSTEM ARCHITECTURE FOR IFDSS ... 45

FIGURE 7. PROTOTYPE IMPLEMENTATION ARCHITECTURE FOR IFDSS 51

FIGURE 8. THE PROTOTYPE SYSTEM ... 52

FIGURE 9. THE FAMILY FINANCIAL PLANNING PROCESS ... 62

FIGURE 10. DECISION MAKING PROCESS MODEL OF FFP .. 69

FIGURE 11. A PARTIAL SEMANTIC SCHEMA FOR FFP – ENVIRONMENT PART 71

FIGURE 12. A PARTIAL CLIENT CLASS DIAGRAM ... 72

FIGURE 13. A PARTIAL INVESTMENT CLASS DIAGRAM .. 74

FIGURE 14. A PARTIAL SEMANTIC SCHEMA FOR FFP – AGENT PART 76

FIGURE 15. MULTI-AGENT SYSTEM ARCHITECTURE FOR FFP 77

FIGURE 16. IFFPS PROTOTYPE IMPLEMENTATION ARCHITECTURE 81

FIGURE 17. PROTOTYPE INTERFACE ... 82

FIGURE 18. OPERATION SEQUENCE WITHIN IFFPS WEB-SERVICES AGENTS 83

FIGURE 19. PARTIAL MONEY LAUNDERING MECHANISMS .. 95

FIGURE 21. DECISION MAKING PROCESS MODEL OF MLMDP 105
FIGURE 22. A PARTIAL SEMANTIC SCHEMA FOR MLMDP – ENVIRONMENT PART 107
FIGURE 23. A PARTIAL STATIC RISK ASSESSMENT CLASS DIAGRAM 109
FIGURE 24. A PARTIAL DYNAMIC RISK ASSESSMENT CLASS DIAGRAM 111
FIGURE 25. A PARTIAL SEMANTIC SCHEMA FOR MLMDP – AGENT PART 114
FIGURE 26. MULTI-AGENT SYSTEM ARCHITECTURE FOR IMLMDS 115
FIGURE 27. IMLMDS PROTOTYPE IMPLEMENTATION ARCHITECTURE 121
FIGURE 28. PROTOTYPE MONITORING INTERFACE .. 122
FIGURE 29. PROTOTYPE DETECTING INTERFACE ... 122
FIGURE 30. PROTOTYPE REPORTING INTERFACE .. 123
FIGURE 31. OPERATION SEQUENCE WITHIN IMLMDS WEB-SERVICES AGENTS ... 124
FIGURE 32. WORKFLOW OF SHAREHOLDER ACTIVISM 133
FIGURE 33. DECISION MAKING PROCESS MODEL OF TARGET SELECTION 139
FIGURE 34. A PARTIAL SEMANTIC SCHEMA FOR TSP – ENVIRONMENT PART 142
FIGURE 35. A PARTIAL ASSESSMENT CRITERIA CLASS DIAGRAM 143
FIGURE 36. A PARTIAL FINANCIAL CRITERIA CLASS DIAGRAM 145
FIGURE 37. A PARTIAL SEMANTIC SCHEMA FOR TSP – AGENT PART 147
FIGURE 38. MULTI-AGENT SYSTEM ARCHITECTURE FOR ITSSSA 149
FIGURE 39. BBN STRUCTURE FOR THE CRITERIA INTEGRATION AGENT 154
FIGURE 40. HYPERTREE FOR TWO ACTIVIST JOINT FORCE 155
FIGURE 41. ITSSSA PROTOTYPE IMPLEMENTATION ARCHITECTURE 157
FIGURE 42. OPERATION SEQUENCE WITHIN ITSSSA WEB-SERVICES AGENTS ... 159
LIST OF TABLES

TABLE 1. SAMPLE CODE: SENDING AND RECEIVING ACL MESSAGE54
TABLE 2. SAMPLE CODE: A JESS RULE ...54
TABLE 3. SAMPLE CODE: INTERACTION BETWEEN JADE AGENT AND JESS55
TABLE 4. SAMPLE CODE: SENDING AND RECEIVING SOAP OBJECT BY JAXM56
TABLE 5 SAMPLE CODE: WSDL ...57
TABLE 6. SAMPLE CODE: UDDI ...58
TABLE 7. OUTCOME COMPARISON ...88
TABLE 8. PROCESS COMPARISON ..88
TABLE 9. USER PERCEPTION: ANOVA RESULTS ..89
TABLE 10. PRE- AND POST- KNOWLEDGE COMPARISON90
TABLE 11 SUMMARY OF TARGET SELECTION CRITERIA135
TABLE 12. SAMPLE TARGET SELECTION DECISION FACTORS152
TABLE 13. BASIS OF DSS EVALUATION CRITERIA ...166
TABLE 14. CRITERIA-BASED COMPARATION OF DSSS167