CITY UNIVERSITY OF HONG KONG

香港城市大學

From Heterogeneous IEEE 802.11 DCF Networks to IEEE 802.11e EDCA Networks: Modeling, Differentiation, Optimization and Quality-of-Service Guarantee 從異構 IEEE 802.11 DCF 網絡到 IEEE 802.11e EDCA 網絡:建模,分化,優化和服務質量保證

Submitted to Department of Electronic Engineering 電子工程系 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy 電子工程學哲學博士學位

by

Gao Yayu 高雅璵

February 2014 二零一四年二月

Abstract

IEEE 802.11 Wireless Local Area Networks (WLANs) have gained worldwide popularity in the past decade. Due to the explosive growth of multimedia applications, it is of crucial interest to provide quality-of-service (QoS) guarantee in WLANs. The medium access control (MAC) scheme in the IEEE 802.11 standard, Distributed Coordination Function (DCF), however, only provides best-effort services. To meet the soaring demand of QoS support, Enhanced Distributed Channel Access (EDCA) has been proposed as an extension of DCF by the IEEE 802.11 Working Task Group E to provide QoS enhancements for WLANs.

Over the last few years, a great deal of efforts have been made on the analytical modeling and performance evaluation of IEEE 802.11e EDCA networks. The modeling complexity is, however, much higher than that of the legacy IEEE 802.11 DCF networks due to varying traffic patterns, differentiated backoff parameter settings and the diverse QoS requirements of various traffic types, which makes it extremely difficult, if not impossible, to further optimize the network performance. A number of fundamental issues, such as the maximum network throughput and how to properly adjust the system parameters to achieve it and satisfy the diverse QoS requirements of distinct multimedia applications, remain largely unknown.

This thesis is devoted to modeling and throughput optimization of heterogeneous IEEE 802.11 DCF networks and IEEE 802.11e EDCA networks. It begins from throughput analysis of a heterogeneous IEEE 802.11 DCF network, where nodes are divided into different traffic groups and distinct groups have varying arrival rates and backoff parameters. The maximum network throughput is derived as an explicit function of the holding time of the Head-of-Line (HOL) packets in successful transmission and collision states, which is shown to be achieved by carefully adjusting the input rates of the unsaturated groups and the backoff parameters of the saturated groups. The analysis is further applied to address the optimal downlink/uplink throughput allocation issue. The optimal initial backoff window sizes of the access point and mobile stations are obtained to achieve the maximum network throughput and a target downlink/uplink throughput ratio simultaneously.

The analytical framework is extended to IEEE 802.11e EDCA networks with backoff window size differentiation and arbitration interframe space (AIFS) differentiation. The maximum network throughput of an IEEE 802.11e EDCA network is shown to be equal to that of an IEEE 802.11 DCF network, which is independent of the differentiation schemes. The optimal backoff parameter settings to achieve the maximum network throughput while satisfying pre-specified throughput differentiation requirements are obtained in both differentiation modes. It is revealed that the backoff window size differentiation could be a more preferable option as it requires fewer tuning parameters and provides better precision than the AIFS differentiation.

Finally, the analysis is extended to address a QoS provision issue for IEEE 802.11e EDCA networks, that is, how to adaptively tune the system parameters to maximize the aggregate throughput of non-real-time nodes with a certain mean access delay constraint on the real-time nodes. The maximum aggregate throughput of non-real-time nodes and the optimal initial backoff window sizes are obtained. It is further demonstrated that there exists a minimum achievable mean access delay for the real-time nodes, which increases as the number of real-time nodes grows. Therefore, to satisfy a given mean access delay requirement of the real-time nodes, the number of real-time nodes needs to be carefully controlled. An admission control scheme is further proposed, with which the maximum number of real-time nodes that can be enrolled increases linearly with its mean access delay constraint. The analysis offers important insights into performance optimization, QoS guarantee and network design for IEEE 802.11 WLANs.

Contents

Li	st of	figure	S	vi		
Li	st of	tables	3	xiii		
A	bbre	viation	IS	xiv		
N	otati	ons	х	cviii		
1	Inti	roduct	ion	1		
	1.1	Wirele	ess Random Access Network	1		
		1.1.1	Wireless Era	1		
		1.1.2	Medium Access Control: Centralized vs Distributed	2		
		1.1.3	Random Access: From ALOHA to CSMA	4		
	1.2	IEEE	802.11 Wireless Local Area Network	7		
		1.2.1	IEEE 802.11 Standard Family	8		
		1.2.2	Evolution of MAC in IEEE 802.11: From Homogeneous to			
			Heterogeneous, From Best-Effort to Quality-of-Service	10		
		1.2.3	Performance Evaluation of IEEE 802.11 Networks	12		
	1.3	Thesis	S Contributions and Outline	15		
2	\mathbf{Thr}	roughp	out Optimization of Heterogeneous IEEE 802.11 DCF	ק		
	Net	works		19		
	2.1	IEEE	802.11 DCF Standard	20		
		2.1.1	Protocol Description	20		
		2.1.2	Previous Work	22		
	2.2	Prelin	ninary Analysis	25		
	2.3	2.3 Throughput Optimization of Heterogeneous IEEE 802.11 DC				
		Netwo	orks	28		
		2.3.1	Steady-state Operating Point	29		
		2.3.2	Network Throughput	38		
		2.3.3	Group Throughput	41		

	2.4 Simulation Results and Discussions		ation Results and Discussions	45		
		2.4.1	Partially-saturated Two-group Network	47		
		2.4.2	Fully-saturated Two-group Network	49		
	2.5	5 Implications to DCF Design: Optimal Downlink/Uplink Through-				
		put Allocation				
		2.5.1	Previous Work	52		
		2.5.2	Optimal Downlink/Uplink Throughput Allocation	53		
		2.5.3	Simulation Results and Discussions	56		
	2.6	Summ	ary	59		
3	IEF	E 802	.11e EDCA Networks: Modeling, Differentiation and	l		
	Opt	imizat	ion	61		
	3.1	IEEE	802.11e EDCA Standard \ldots	61		
		3.1.1	Protocol Description	62		
		3.1.2	Previous Work	65		
	3.2	System Model				
	3.3	3 Throughput Optimization of Saturated IEEE 802.11e EDCA Net				
		works		73		
		3.3.1	Steady-state Operating Point under Saturated Conditions	73		
		3.3.2	Node Throughput	77		
		3.3.3	Throughput Optimization and Differentiation	82		
	3.4	Simulation Results and Discussions		87		
		3.4.1	Backoff Window Size Differentiation	88		
		3.4.2	AIFS Differentiation	91		
	3.5	Summ	ary	94		
4	\mathbf{Thr}	oughp	ut Optimization of Non-real-time Flows with Delay	r		
	Gua	arantee	e of Real-time Flows in IEEE 802.11e EDCA Networks	97		
	4.1	Previo	ous Work	98		
	4.2	System Model and Problem Formulation				
	4.3	Throu	ghput Optimization of Non-real-time Flows with Delay Guar-			
		antee	of Real-time Flows	101		
	4.4	Simula	ation Results and Discussions	106		

		4.4.1 Standard Setting	106							
		4.4.2 Optimal Setting	108							
	4.5	Summary	110							
5	Con	Conclusion and Future Work 111								
	5.1	Conclusion	111							
	5.2	Future Work	114							
	5.3	Epilogue	116							
A	Roo	ots of (2.25)	121							
в	Stea	$\mathbf{ady-state\ Point}\ p_L^B$	123							
С	Pro	oof of Theorem 1	127							
D	Pro	oof of Corollary 1	129							
\mathbf{E}	Pro	oof of Corollary 2	131							
\mathbf{F}	Pro	oof of Theorem 2	133							
G	Pro	oof of Corollary 3	135							
н	Pro	oof of Corollary 4	137							
Ι	Pro	oof of Theorem 3	139							
Bi	Bibliography									
Lis	List of Publications									