CITY UNIVERSITY OF HONG KONG 香港城市大學

Adaptive Transmission in MIMO Wireless Systems with Imperfect Channel State Information 不完備信道信息下 MIMO 無線系統中的 自適應傳輸技術

Submitted to Department of Electronic Engineering 電子工程學系 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy 哲學博士學位

by

Kuang Quan 況泉

December 2010 二零一零年十二月

Abstract

Traditionally, adaptive transmission or link adaptation (LA) is a technique which dynamically adjusts the transmission parameters in time, such as modulation size and transmission power, according to the time-varying channel conditions to improve the system performance. Crucial to the LA is the requirement of the channel state information (CSI) at the transmitter (CSIT). However, it is unrealistic to assume perfect CSIT due to channel estimation errors, feedback delay, or quantization errors. The optimal design of LA algorithms with imperfect CSIT for multiple-input multiple-output (MIMO) channel links is challenging because the presence of the additional spatial domain makes either the optimization problems difficult to solve or the resulting algorithms end up with prohibitively large complexity. To bypass the difficulty, most of the existing designs have restricted the adaptation to one domain only, resulting in performance degradation.

The objective of this thesis is to study channel-adaptive techniques for multipleantenna wireless communication systems with imperfect or partial CSIT to jointly exploit the temporal and spatial dimensions. We consider space-time coded MIMO systems over flat Rayleigh fading channels with beamforming to exploit the CSIT. First, we propose low-complexity spatial power allocation schemes to minimize the bit error rate (BER) for fixed data rate transmission. We take into account the uncertainty in the received signal-to-noise ratio (SNR) by defining a new compressed SNR criterion. Compared to the existing spatial power allocation algorithms, the proposed schemes are more computationally efficient, while not sacrificing the performance.

Next, we propose novel strategies to allocate the transmit power both in the space and time domains to further reduce the BER, based on the proposed lowcomplexity spatial-only power allocation schemes. The total transmit power is subject to the long term (time) average constraint and varied from symbol to symbol according to the CSIT. The spatial-temporal power adaptation provides exponential diversity gain at moderate SNR when the imperfection in CSIT is small, making it outperform the spatial-only power strategies and the existing methods. The diversity gain asymptotically reduces to polynomial at very high SNR, due to the imperfection of the CSIT. The effects of peak-to-average power ratio (PAPR) on the power adaptation schemes are evaluated. It is shown that the proposed joint power adaptation schemes maintain the superiority over the existing ones at moderate and high PAPR.

Another important function of adaptive transmission is its ability to increase the average spectral efficiency (ASE) while maintaining the BER requirement of the quality of service. For this objective, we propose variable-rate transmission schemes combined with joint spatial-temporal power allocation, where the modulation constellation, the total (temporal) power, the spatial power allocation and the transmit beam patterns are jointly adjusted. Although the variable-rate method integrated with temporal power allocation was well established in singleinput single-output (SISO) systems, the design of variable-rate MIMO systems with spatial-temporal power adaptation remains unsolved due to the complication induced by the two-dimensional power adaptation. We solve the problem by introducing a new variable to decouple the original optimization problem into an inner and an outer one. Thanks to this transformation, a closed-form rate adaptation scheme, a closed-form temporal power control policy and a simple spatial power allocation algorithm are obtained. The complexity of the whole algorithm is reduced to one-dimensional root finding for a monotonic function. Compared to the existing methods, the proposed one greatly improves the ASE.

Contents

\mathbf{A}	bstra	\mathbf{ct}						ii
A	cknov	wledge	ements					iv
Li	st of	Table	5					ix
Li	st of	Figur	es					x
N	otati	on					3	ciii
1	Intr	oducti	ion					1
	1.1	Motiv	ation			•	•	1
	1.2	State	of art				•	3
		1.2.1	History of	of link adaptation				3
		1.2.2	Adaptive	MIMO systems				6
			1.2.2.1	MIMO signaling				6
			1.2.2.2	Combine LA with MIMO				10
	1.3	Contri	ibutions a	nd thesis outline				13
		1.3.1	Contribu	tions				13
		1.3.2	Thesis ou	ıtline	•		•	15
2	Sys	tem de	escription	L				17
	2.1	CSI m	odel				•	17

	2.2	System	1 structure	19
	2.3	Receiv	e processing	22
0	A .] -			90
3	Ada	aptive s	spatial power allocation	26
	3.1	Introd	uction \ldots	26
	3.2	Perfect	t CSI	28
	3.3	BER c	riterion with imperfect CSIT	29
	3.4	Optim	al solution with imperfect CSIT	30
		3.4.1	Solving the optimization problem $\ldots \ldots \ldots \ldots \ldots \ldots$	30
		3.4.2	Necessary and sufficient condition to determine beam number	32
		3.4.3	Asymptotic properties for high SNR and low SNR	33
		3.4.4	Comparison of the optimality criteria $\ldots \ldots \ldots \ldots$	36
	3.5	Compr	ressed SNR solution with imperfect CSIT	37
		3.5.1	Maximizing compressed SNR	37
		3.5.2	Optimizing the compression factor	39
		3.5.3	Closed-form solution of the compression factor	41
	3.6	Simula	tion results	43
	3.7	Conclu	$sion \ldots \ldots$	50
4	Joir	nt spati	ial-temporal power allocation	52
	4.1	Introd	uction	52
	4.2	Perfect	t CSI	54
	4.3	Joint d	lesign with imperfect CSIT	56
		4.3.1	Applying the optimal spatial solution	58
		4.3.2	Applying the CSNR solution	63
	4.4	Separa	te design with imperfect CSIT	65
	4.5	- Peak p	oower constraint	69
	4.6	Perform	mance analysis	71
		4.6.1	Performance comparison	71
			÷	

vi

		4.6.2	Diversity gain	78
	4.7	Conclu	usion	83
5	\mathbf{VR}	transr	mission and joint S-T power allocation	84
	5.1	Review	w of VRVP in SISO	86
		5.1.1	Continuous rate	87
		5.1.2	Discrete rate	89
	5.2	VR an	nd joint S-T power allocation with perfect CSI	91
	5.3	VR an	nd joint S-T power allocation with imperfect CSIT \ldots	92
		5.3.1	Problem Formulation	92
		5.3.2	Continuous Rate	94
		5.3.3	Discrete Rate	98
		5.3.4	Special Cases	00
			5.3.4.1 Equal spatial power allocation	00
			5.3.4.2 Constant power transmission	02
			5.3.4.3 Constant power and equal spatial allocation \ldots 1	02
	5.4	Nume	rical results \ldots \ldots \ldots 10	02
	5.5	Conclu	usion \ldots \ldots \ldots \ldots \ldots \ldots 10	07
6	Cor	clusio	ns and future work 10	09
	6.1	Conclu	usions $\ldots \ldots 10$	09
	6.2	Future	e work	12
D	eriva	tions a	and proofs 11	13
	App	endix 3	B.A Derivation of Eq.(3.10) $\ldots \ldots \ldots$	13
	App	endix 3	B.B Proof of the Theorem 1	14
	Appendix 3.C Derivation of Eq. (3.41)			15
	App	endix 4	A.A Derivation of Eq. (4.27)	16
	App	endix 4	A.B Proof of Eq.(4.22)	17
	App	endix 4	A.C Derivation of Eq. (4.45)	17

vii

Appendix 4.D Derivation of Eq. (4.56)	. 118
Appendix 5.A Solution to the optimization problem (5.28)	. 120
Appendix 5.B Proof of the Theorem 3	. 121
Appendix 5.C Numerical calculation of γ_0	. 122
Appendix 5.D Numerical calculation of μ	. 123
Bibliography	124
Publications	137

List of Tables

3.1	Complexity of the spatial power allocation methods	50
3.2	Operation time of the spatial power allocation methods	51
4.1	Number of points for numerical integration of (4.27) for the $3X1$	
	MIMO system with QPSK at different SNR , to satisfy the specific	
	accuracy in the average power constraint	62
4.2	Complexity of the spatial-temporal power allocation schemes	76
4.3	Operation time of the spatial-temporal power allocation schemes	76

List of Figures

1.1	Major functions in an adaptive system	5
1.2	Classification of different MIMO communication schemes based CSIT	7
2.1	System diagram	19
2.2	Precoder	20
3.1	Probability of choosing the beam number in a 3×3 MIMO system	
	under different SNR, $\sigma_e^2 = 0.1$, QPSK, G ₃ code	35
3.2	Plots of the objective function for an arbitrary channel realization	
	in a 3 \times 3 MIMO system, σ_e^2 = 0.1, QPSK, G ₃ code. The upper	
	subplot corresponds to case I, and the lower one corresponds to case	
	II	40
3.3	Optimal μ value at different SNR for an arbitrary channel realization	
	in a 3 × 3 MIMO system, $\sigma_e^2 = 0.1$, QPSK, G ₃ code	42
3.4	BER performance of the proposed optimal scheme and the JSO	
	scheme [JSO02], $M = 3, N = 1, \sigma_e^2 = 0.1, G_3 \text{ code} \dots \dots \dots \dots$	44
3.5	BER performance of the proposed optimal scheme and the JSO	
	scheme[JSO02], $M = 4, N = 2, \sigma_e^2 = 0.55, G_4 \text{ code } \dots \dots \dots \dots$	45
3.6	Power allocation for a random channel realization $\tilde{\boldsymbol{\beta}} = \{2.8519, 2.0133, 0.013, 0.003, 0.013, $	0},
	$M = 3, N = 2, \sigma_e^2 = 0.4, G_3 \text{ code}, 64-\text{QAM} \dots \dots \dots \dots \dots \dots$	46
3.7	BER performance of 64-QAM, $M=3, N=2, \sigma_e^2=0.4, {\rm G}_3$ code	46

3.8	BER performance of different spatial power allocation schemes, $M =$	
	2, $N = 1, \sigma_e^2 = 0.05$, QPSK, Alamouti code	48
3.9	BER performance of different spatial power allocation schemes, $M =$	
	$3, N = 1, \sigma_e^2 = 0.2, G_3 \text{ code } \dots \dots$	48
3.10	BER performance of different spatial power allocation schemes, $M =$	
	4, $N = 1, \sigma_e^2 = 0.35, 16$ -QAM, G ₄ code	49
3.11	BER performance of different spatial power allocation schemes, $M =$	
	4, $N = 2, \sigma_e^2 = 0.55, 64$ -QAM, G ₄ code	49
4.1	BER of 16-QAM versus average SNR for 3X1 MIMO system with	
	perfect CSI	57
4.2	Temporal power value against CSIT, $M = 3, N = 1, \sigma_e^2 = 0.05,$	
	QPSK, G_3 code, $SNR=2.5dB$	70
4.3	Temporal power value against CSIT, $M = 3, N = 1, \sigma_e^2 = 0.05,$	
	QPSK, G_3 code, $SNR=25dB$	70
4.4	BER evaluation by different numerical methods for the proposed	
	CSNR S-T power adaptation scheme, $M=3, N=1, \sigma_e^2=0.1, {\rm G}_3$	
	code	73
4.5	BER performance for different power adaptation schemes, σ_e^2 =	
	0.05, $M = 3, N = 1$, H ₃ code and QPSK. No power adaptation	
	means constant power in time and equal power allocation in space.	75
4.6	BER performance for different power adaptation schemes, σ_e^2 =	
	0.05, $M = 2, N = 1$, G ₂ code and BPSK. No power adaptation	
	means constant power in time and equal power allocation in space.	75
4.7	BER performance for different power adaptation schemes with dif-	
	ferent modulation, $M = 2, N = 2, \sigma_e^2 = 0.05, G_2$ code	77

xi

4.8	BER performance for different power adaptation schemes with dif-
	ferent estimation error, $M = 3, N = 1$, H ₃ code and QPSK. No
	power adaptation means constant power in time and equal power
	allocation in space
4.9	BER performance under additional peak power constraints, $M =$
	$3, N = 1, \sigma_e^2 = 0.1, H_3 \text{ code and QPSK.} \dots \dots$
4.10	Diversity analysis for spatial-temporal power adaptation under dif-
	ferent system configurations
5.1	Average spectral efficiency for different power adaptation policies,
	$M = 2, N = 1, \sigma_e^2 = 0.1, G_2 \text{ code}, BER_{tgt} = 10^{-3} \dots \dots$
5.2	BER performance of different power adaptation policies, $M = 2, N =$
	$1, \sigma_e^2 = 0.1, G_2 \text{ code}, BER_{tgt} = 10^{-3} \dots \dots$
5.3	Average spectral efficiency for different power adaptation policies,
	$M = 2, N = 1, \sigma_e^2 = 0.1, G_2 \text{ code}, BER_{tgt} = 10^{-6} \dots \dots$
5.4	Average spectral efficiency of the proposed VR-VP-NE policy under
	different estimation error, $M=2, N=1, {\rm G}_2$ code, ${\rm BER}_{\rm tgt}=10^{-3}~$. 105
5.5	BER performance of the proposed VR-VP-NE policy under different
	estimation error, $M = 2, N = 1, G_2$ code, $BER_{tgt} = 10^{-3}$ 106
5.6	Average spectral efficiency of the proposed VR-VP-NE policy for
	different antenna configurations: $M = 2, N = 2, G_2$ code; $M =$
	4, $N = 1$, H_4 code; $BER_{tgt} = 10^{-3}$
5.7	Comparison of the average spectral efficiency for the proposed 2D-
	VR-VP-NE policy with the Zhou's approach: $M = 4, N = 1$,
	${\rm BER}_{\rm tgt} = 10^{-3}, G_2$ code, only the largest two beams are used 108