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Abstract

Traditionally, adaptive transmission or link adaptation (LA) is a technique
which dynamically adjusts the transmission parameters in time, such as modula-
tion size and transmission power, according to the time-varying channel conditions
to improve the system performance. Crucial to the LA is the requirement of the
channel state information (CSI) at the transmitter (CSIT). However, it is unreal-
istic to assume perfect CSIT due to channel estimation errors, feedback delay, or
quantization errors. The optimal design of LA algorithms with imperfect CSIT for
multiple-input multiple-output (MIMO) channel links is challenging because the
presence of the additional spatial domain makes either the optimization problems
difficult to solve or the resulting algorithms end up with prohibitively large com-
plexity. To bypass the difficulty, most of the existing designs have restricted the
adaptation to one domain only, resulting in performance degradation.

The objective of this thesis is to study channel-adaptive techniques for multiple-
antenna wireless communication systems with imperfect or partial CSIT to jointly
exploit the temporal and spatial dimensions. We consider space-time coded MIMO
systems over flat Rayleigh fading channels with beamforming to exploit the CSIT.
First, we propose low-complexity spatial power allocation schemes to minimize the
bit error rate (BER) for fixed data rate transmission. We take into account the un-
certainty in the received signal-to-noise ratio (SNR) by defining a new compressed
SNR criterion. Compared to the existing spatial power allocation algorithms, the
proposed schemes are more computationally efficient, while not sacrificing the per-
formance.

Next, we propose novel strategies to allocate the transmit power both in the
space and time domains to further reduce the BER, based on the proposed low-
complexity spatial-only power allocation schemes. The total transmit power is
subject to the long term (time) average constraint and varied from symbol to

symbol according to the CSIT. The spatial-temporal power adaptation provides
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exponential diversity gain at moderate SNR when the imperfection in CSIT is
small, making it outperform the spatial-only power strategies and the existing
methods. The diversity gain asymptotically reduces to polynomial at very high
SNR, due to the imperfection of the CSIT. The effects of peak-to-average power
ratio (PAPR) on the power adaptation schemes are evaluated. It is shown that
the proposed joint power adaptation schemes maintain the superiority over the
existing ones at moderate and high PAPR.

Another important function of adaptive transmission is its ability to increase
the average spectral efficiency (ASE) while maintaining the BER requirement
of the quality of service. For this objective, we propose variable-rate transmis-
sion schemes combined with joint spatial-temporal power allocation, where the
modulation constellation, the total (temporal) power, the spatial power allocation
and the transmit beam patterns are jointly adjusted. Although the variable-rate
method integrated with temporal power allocation was well established in single-
input single-output (SISO) systems, the design of variable-rate MIMO systems
with spatial-temporal power adaptation remains unsolved due to the complication
induced by the two-dimensional power adaptation. We solve the problem by intro-
ducing a new variable to decouple the original optimization problem into an inner
and an outer one. Thanks to this transformation, a closed-form rate adaptation
scheme, a closed-form temporal power control policy and a simple spatial power
allocation algorithm are obtained. The complexity of the whole algorithm is re-
duced to one-dimensional root finding for a monotonic function. Compared to the

existing methods, the proposed one greatly improves the ASE.
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