STRESS-INDUCED BIREFRINGENCE ANALYSIS FOR THE EFFICIENT DESIGN OF POLYMER OPTICAL WAVEGUIDE DEVICES

HOSSAIN MD. FARUQUE

DOCTOR OF PHILOSOPHY
CITY UNIVERSITY OF HONG KONG
AUGUST 2010
CITY UNIVERSITY OF HONG KONG

Stress-induced Birefringence Analysis for the Efficient Design of Polymer Optical Waveguide Devices

Submitted to
Department of Electronic Engineering

in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

by

HOSSAIN Md. Faruque

August 2010
Abstract

With the extension of optical communication networks to homes and other premises, studies on polymer-based optical waveguide devices have received wide interest because they are relatively easy to fabricate and permit mass production at lower costs. Polymer waveguides also have the potential to achieve low power consumption compared with conventional silica-based devices. Along with these advantages, polarization dependence has emerged as a fundamental issue in the design of waveguide-based optical devices. The polarization-insensitive operations are particularly essential for applications in optical fiber communications, as they can greatly reduce the complexity of a system. One of the important sources of polarization dependence is stress, which is generated in the waveguide unavoidably during the fabrication process. Due to stress-optic effects, the generated stress perturbs the refractive index of the waveguide material and thus makes it anisotropic (i.e., birefringent). Although it is possible to design polarization-insensitive devices by tailoring waveguide geometry, such stress-induced birefringence (if not taken into account) makes their realization complicated and inefficient. Therefore, it is important to predict the stresses in the optical waveguides, and to consider its effects in the design of a new integrated optical device. This thesis focuses on the detailed investigation of stress-induced birefringence in polymer optical waveguides and demonstrates the potential design of some basic polarization-insensitive waveguide devices in relation to stress-induced effects.
The thesis begins with the determination of elastic-plastic properties of various polymers (BCB, epoxy UV11-3 and 3505) using the nanoindentation technique. The optical waveguides analyzed in this paper consist of the said polymer materials. The determined material properties are required for the stress analysis. To predict the waveguide stresses accurately, a more realistic process-modeling framework is developed in the finite-element (FE) analysis program. The developed model can incorporates important stress build-up processes, such as polymerization shrinkage, stress relaxation, and etching, over the entire history of the waveguide fabrication process. In order to validate the stress analysis model, stresses are measured for BCB thin film waveguides, and compared with the results of the process modeling.

To obtain the effect of stress on the refractive index of waveguide material, stress-optic coefficients of the polymers used are determined. In doing so, this work presents a simple method that can measure simultaneously the stress-optic and thermo-optic coefficients of thin film waveguide using a prism coupler technique. The stress-induced characteristics are investigated thoroughly for various waveguide structures, including planar (slab), strip, and rib waveguides. The characterization of BCB planar waveguide involves both experimental and numerical techniques. The potential applications of the findings are discussed in the context of an optimized design for polarization-insensitive optical waveguide devices. The analyses of channel waveguides (strip and rib) are based on numerical simulation, as stress cannot be measured in a tiny optical waveguide. Simulation results show that significant amount of stress-induced material birefringence remains in the waveguide even after etching, although most of the stresses relax in the fabrication process. The influence of waveguide geometry (height, width, etching depth, etc.) on the stress-induced birefringence is investigated.
and presented in a generalized form, which can then be applicable for other polymer materials.

The potential of this work is demonstrated through the design of a number of zero-birefringence waveguide devices, including strip and rib waveguides, and a Bragg grating filter. The design results are compared with experimental results. Highly satisfactory agreement is achieved between simulation (considering stress-effects) and experimental results; however, the results from stress-free assumption are far from agreement. These imply that our approach can provide a more accurate way for the design of polymer optical waveguide devices.

Being generic in nature, the approach described in this thesis also enables the optimized design of integrated optical devices from the standpoint of material systems, waveguide geometry, and process parameters. This thesis is expected to lay the groundwork for this effort.
Table of Contents

Abstract ... ii
Acknowledgement ... v
Table of Contents .. vii
List of Figures ... xiii
List of Tables ... xxiii

Chapter 1 Introduction ... 1

1.1. Overview ... 1
 1.1.1. Polymer optical waveguide devices 1
 1.1.2. Polarization dependence problem 2
 1.1.3. Design of polarization-insensitive devices and stress issue 3
1.2. Objectives ... 5
1.3. Major contributions .. 6
1.4. Thesis outlines ... 7
1.5. References ... 10

Chapter 2 Background Study ... 16

2.1. Introduction .. 16
2.2. Planar Optical waveguides and Devices 17
Table of Contents

2.3. Polymer materials for optical waveguides .. 20

2.4. Fabrication techniques of polymer waveguide devices 23

2.5. Stress build-up process ... 27
 2.5.1. Curing shrinkage ... 27
 2.5.2. Thermal expansion mismatch ... 29
 2.5.3. Time-dependent and plastic properties 29
 2.5.4. Etching ... 31

2.6. Stress-induced birefringence ... 32

2.7. Method of stress-birefringence analysis .. 34

2.8. Stress simulation tools and a typical analysis procedure 38

2.9. References .. 41

Chapter 3 Determination of the Elastic-Plastic Properties

of Polymer Thin Films ... 54

3.1. Introduction ... 54

3.2. Nanoindentation Technique: Theoretical background 55
 3.2.1. Basic indentation mechanics aspects 55
 3.2.2. Measuring elastic modulus ... 57
 3.2.3. Nanoindentation stress-strain curve 59

3.3. Experimental procedures ... 61

3.4. Numerical simulations .. 62

3.5. Results and discussions .. 64
 3.5.1. General features of load-displacement curves 64
 3.5.2. Elastic modulus ... 68
 3.5.3. Indentation stress-strain curve .. 71
Chapter 4 Numerical Simulation of Stress in Polymer

Optical Waveguides .. 79

4.1. Introduction ... 79
4.2. Process description and parameters ... 80
4.3. Development of process model ... 82
 4.3.1. Geometric/Finite-element model ... 83
 4.3.2. Process modeling approach ... 84
 4.3.2.1. Sequential process modeling 84
 4.3.2.2. Modeling of curing shrinkage 85
 4.3.3. Material models ... 89
 4.3.4. Loads and boundary conditions ... 95
4.4. Process modeling results and discussions 95
4.5. Model validation ... 102
4.6. Summary .. 109
4.7. References ... 110

Chapter 5 Measurement of Stress-Optic Coefficients 114

5.1. Introduction ... 114
5.2. Method of characterization ... 114
5.3. Theory .. 116
5.4. Experimental ... 118
Table of Contents

5.4.1. Sample preparation .. 118
5.4.2. Calibration of prism coupler system 118
5.4.3. Refractive index measurement 120
5.5. Finite-element simulation of film stress 121
5.6. Results and discussions .. 122
 5.6.1. Temperature dependence of refractive index 122
 5.6.2. Thermal stress and its effects 125
 5.6.3. Stress-optic coefficients 127
5.7. Summary .. 129
5.8. References .. 130

Chapter 6 Stress-Birefringence in Planar Waveguides 133
 6.1. Introduction ... 133
 6.2. Stress distribution in a planar waveguide 134
 6.3. Stress-birefringence in BCB thin film waveguides 140
 6.3.1. Experimental details 140
 6.3.2. Results and discussions 141
 6.3.2.1. Anisotropy in refractive index 144
 6.3.2.2. Anisotropy in thermo-optic (TO) coefficient 147
 6.4. Summary .. 153
 6.5. References .. 155

Chapter 7 Stress-Birefringence in Channel Waveguides 158
 7.1. Introduction ... 158
Table of Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2</td>
<td>Strip waveguide</td>
<td>158</td>
</tr>
<tr>
<td></td>
<td>7.2.1. Stress distribution</td>
<td>159</td>
</tr>
<tr>
<td></td>
<td>7.2.2. Birefringence characteristics</td>
<td>163</td>
</tr>
<tr>
<td>7.3</td>
<td>Rib waveguide</td>
<td>168</td>
</tr>
<tr>
<td></td>
<td>7.3.1. Stress distribution</td>
<td>169</td>
</tr>
<tr>
<td></td>
<td>7.3.2. Birefringence characteristics</td>
<td>172</td>
</tr>
<tr>
<td>7.4</td>
<td>Summary</td>
<td>175</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>177</td>
</tr>
</tbody>
</table>

Chapter 8 Design of Zero-Birefringence Waveguide Devices

Considering Stress Effects 178

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>8.2</td>
<td>Design approach and simulation</td>
</tr>
<tr>
<td>8.3</td>
<td>Design of strip and rib waveguides</td>
</tr>
<tr>
<td></td>
<td>8.3.1. Material birefringence</td>
</tr>
<tr>
<td></td>
<td>8.3.2. Modal birefringence</td>
</tr>
<tr>
<td>8.4</td>
<td>Design of Bragg waveguide grating</td>
</tr>
<tr>
<td></td>
<td>8.4.1. Material birefringence</td>
</tr>
<tr>
<td></td>
<td>8.4.2. Wavelength shift</td>
</tr>
<tr>
<td>8.5</td>
<td>Summary</td>
</tr>
<tr>
<td>8.6</td>
<td>References</td>
</tr>
</tbody>
</table>

Chapter 9 Conclusions 202

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>Summary</td>
</tr>
</tbody>
</table>
Table of Contents

9.2. Future works ... 204

Appendix A: Cure Reaction Parameters 206

List of Publications ... 208
List of Figures

Figure 1.1. Outline of the thesis. .. 8

Figure 2.1. Confluence of various disciplines into integrated photonics
[2.2]. ... 18

Figure 2.2. Schematic diagram of various optical waveguide structures
with their step refractive index (n) profile: (a) slab (b) strip
(c) rib and (d) embedded channel waveguide 19

Figure 2.3. Bragg grating structure on strip channel waveguide. 20

Figure 2.4. Schematic representation of a typical fabrication process of
polymer optical waveguide devices. 25

Figure 2.5. Several mechanisms contributing to the shrinkage of a
polymer film during polymerization process. 28

Figure 2.6. Stress development in drying of a polymer coating for elastic,
elasto-viscoplastic and viscoelastic materials. Adapted from
Lei et al. [2.44]. .. 31

Figure 2.7. Schematic representation of stress redistribution due to the
patterning of an optical waveguide (a) before patterning and
(b) after patterning. .. 32
Figure 2.8. The Index Ellipsoid. The coordinates \((x, y, z)\) are the principal axes and \(n_1, n_2, n_3\) are the principal refractive indices. ... 33

Figure 2.9. Block diagram of the finite element (FE) analysis procedure. 39

Figure 3.1. Schematic representation of the nanoindentation process using a spherical shaped tip with pertinent nomenclature. ... 56

Figure 3.2. A typical nanoindentation (load-displacement) curve for a polymer demonstrating the use of unloading slope to measure the material elastic stiffness. 57

Figure 3.3. A hybrid approach consisting of finite-element (FE) simulation and indentation experiment for evaluation of the true stress-strain curve. 61

Figure 3.4. Schematic of the finite-element mesh and boundary conditions in the modeling of nanoindentation. 63

Figure 3.5. A typical loading history for a maximum load of 1500 µN with holding time of 20s and loading/unloading rate of 500 µN/s. ... 65

Figure 3.6. Nanoindentation load-displacement curves of three polymers studied for a maximum load of 1500 µN with spherical tip of 5 µm in radius. The loading/unloading rate is maintained at 500 µN/s and the holding time of maximum load is 20s. 65
Figure 3.7. Nanoindentation load-displacement curve of (a) BCB and (b) epoxy 3505 for different maximum loads with a constant loading rate of 500 µN/s and holding time of 20 s. 67

Figure 3.8. The effect of loading rates on the nanoindentation curve of BCB for two different maximum loads of 1000 and 2000 µN and a constant holding time of 20 s. 68

Figure 3.9. Elastic modulus versus indentation depth for different polymers (BCB, epoxy UV11-3 and epoxy 3505) measured with a 5-µm-radius spherical tip. 69

Figure 3.10. Microscopic image of the residual indentation imprints corresponding to the maximum load of 500 µN. 69

Figure 3.11. Indentation stress-strain curves obtained from nanoindentation test and that extracted from FE simulation of indentation process for three polymers: (a) BCB, (b) epoxy UV 11-3, and (c) epoxy 3505. 72

Figure 3.12. FE simulation result of stress distribution in nanoindentation process for a load of 750 µN. The indenter used is of spherical shape with 5 µm in radius. 73

Figure 3.13. Comparison of load-displacement curves obtained from FE simulation and experimental test for (a) BCB, (b) epoxy UV11-3, and (c) epoxy 3505. The maximum load is 1000 µN with a constant loading rate of 500 µN/s. 74
Figure 4.1. Thermomechanical steps in the fabrication of polymer (BCB) channel waveguide (a) structural change in the processing steps (b) process profile. ... 82

Figure 4.2. FE model of a strip channel waveguide to simulate stress build-up during fabrication process. 83

Figure 4.3. Degree of cure as a function of curing time for BCB (Cyclotene 4024-40) films at various cure temperature. Adapted from Chan et al. [4.9]. 86

Figure 4.4. Degree of conversion and stress evolution as a function of curing time for a UV cured acrylate coating. Stress and conversion data were taken separately, but under identical conditions. Adapted from Payne et al. [4.10]. 88

Figure 4.5. Stress versus plastic strain of polymers as used in the FE simulation. ... 91

Figure 4.6. Temperature dependence of the properties of epoxy. 93

Figure 4.7. (a) Temperature and time dependent curing process (Degree of cure) and (b) Volumetric curing shrinkage of epoxy and BCB. ... 96

Figure 4.8. Degree of cure and stress development as a function of time for BCB. .. 97

Figure 4.9. Stress development in the polymer layers during the history of fabrication process. ... 99

Figure 4.10. Stress relaxation effects after curing process at 20 °C. 100
Figure 4.1. Process induced in-plane stress in the BCB waveguide (a) before etching and (b) after etching. 101

Figure 4.12. FE model of the thin film samples for stress measurement (a) rectangular wafer of 3.5 × 3.5 cm² and (b) circular wafer with 10 cm in diameter. ... 103

Figure 4.13. Photograph of stylus profilometer Ambios XP-2. 104

Figure 4.14. Measured and simulated warpage for two different sizes of BCB thin film samples (a) 3.5 × 3.5 cm² and (b) full wafer of 10 cm in diameter. ... 105

Figure 4.15. Warpage contour plots at different temperature for 6.0 µm thick BCB film on 500 µm thick silicon wafer. 107

Figure 4.16. Measured temperature dependence of BCB film stress. 107

Figure 5.1. Photograph of a Prism coupler system. 119

Figure 5.2. Schematic diagram of a prism waveguide coupler and the heating apparatus. ... 119

Figure 5.3. Measured temperature dependence of (a) refractive indices for TE and TM polarizations and (b) their birefringence for a typical sample of BCB film on quartz substrate. 123

Figure 5.4. Measured refractive indices as a function of temperature for a typical sample of epoxy film on quartz substrate. 124

Figure 6.1. Interfacial stress components in a 2-layer planar waveguide... 135

Figure 6.2. The finite-element mesh near the edge of 2-layer planar waveguide. ... 136
Figure 6.3. Contour plot of the stress distributions near the edge of a 2-layer planar waveguide: (a) in-plane stress, σ_x, (b) peel stress, σ_y, and (c) shear stress, σ_{xy}. 137

Figure 6.4. Simulated results of in-plane stresses in BCB films as a function of film thickness. .. 138

Figure 6.5. (a) Out-of-plane (peel) stress and (b) shear stress along the film/silicon interface near the edge of the structure. 139

Figure 6.6. (a) Refractive indices, n, for the TE and TM polarizations and (b) their birefringence, Δn, versus flow rate of nitrogen measured at room temperature. ... 142

Figure 6.7. Temperature dependence of measured (a) refractive indices, n and (b) birefringence, Δn, for a typical sample of BCB film corresponding to the nitrogen flow of 1 LPM. 143

Figure 6.8. Measured birefringence (Δn) versus the oxidation induced change of average refractive index (n_{av}). The numbers in the figure correspond to those of sample sets. 146

Figure 6.9. Relationship between the thermo-optic coefficient (dn/dT) and the oxidation-induced change of average refractive index (n_{av}). The numbers in the figure correspond to those of the samples. ... 152

Figure 7.1. Cross-section of a strip channel waveguide. The strip width and height are denoted by w and h respectively. The aspect ratio R is defined as w/h. 159
Figure 7.2. a) In-plane, σ_x, b) out-of-plane, σ_y and c) z component, σ_z, stress distribution in the strip waveguide consisting width, $w = 3.0 \ \mu m$ and height, $h = 3.0 \ \mu m$. The stresses are normalized by the corresponding film (i.e., before etching) stress. ... 161

Figure 7.3. Contour plots of the normal stresses, normalized by the corresponding film (before etching) stress, around the strip channel of different dimensions, (a), (b) in-plane stress σ_x, and (c), (d) out-of-plane stress σ_y. The waveguide dimensions are indicated. ... 163

Figure 7.4. Calculated normal birefringence ($\Delta n / \Delta n_{film}$), normalized by the corresponding value before etching, along the height of a strip channel (a) for different height ($h = 2–4 \ \mu m$), width $w = 3.0 \ \mu m$ and (b) for different width ($w = 2.25–4.5 \ \mu m$), height $h = 3 \ \mu m$. ... 165

Figure 7.5. Material birefringence along the width at different height of 0.5, 1.25, and 2.0 μm of a strip waveguide with dimension of $w = 3 \ \mu m$ and $h = 3 \ \mu m$. ... 166

Figure 7.6. Generalized characteristics of the stress-induced birefringence for strip channel waveguide. The birefringence is normalized by the value of that remains in the film before etching and the position along height is normalized by the maximum height of the corresponding strip channel. 167
Figure 7.7. The cross-section of a rib waveguide. The etched depth is h, the outer slab thickness is d, $(h + d)$ is the rib height, and w is the rib width. ... 168

Figure 7.8. Non-uniform stress distribution in the rib waveguide of $d = 0.65 \, \mu m$ and $w = 3.5 \, \mu m$ (a) in-plane stress, σ_x and (b) out-of-plane stress, σ_y. The stresses are normalized by the corresponding film (before etching) stress, σ_{film}. 170

Figure 7.9. Stress diagram of a two layer structure (a) before etching (b) after etching. ... 171

Figure 7.10. Material birefringence along the height of a rib waveguide for (a) different outer slab thicknesses d, and a constant width $w = 3.0 \, \mu m$ (b) different widths w, and a constant outer slab thickness $d = 1.45 \, \mu m$. The height $(h + d) = 3.1 \, \mu m$. 173

Figure 7.11. Material birefringence along the width of a rib waveguide for different heights of 0.17, 0.9, and 2.61 μm. The outer slab thickness $d = 0.65 \, \mu m$ and rib width $w = 3.5 \, \mu m$. The total height $(h + d) = 3.1 \, \mu m$. ... 175

Figure 8.1. Multiple-layered approximation of a single-rib waveguide. ... 180

Figure 8.2. Multiple-layered single-rib waveguide illustrating nomenclature for spectral index method analysis. 182
Figure 8.3. Contour plot of stress distribution in the rib waveguide of $d = 0.65 \, \mu m$ and $w = 3.5 \, \mu m$ (a) in-plane stress, σ_x, and (b) out-of-plane stress, σ_y. The total height ($h + d$) = 3.1 μm. …… 186

Figure 8.4. Material in-plane index along the height of a rib waveguide for different outer slab thickness (d), $w = 3 \, \mu m$, and total height ($h + d$) = 3.1 μm. ……………………………………… 188

Figure 8.5. Material birefringence along the height of a rib waveguide for different outer slab thickness (d), $w = 3.0 \, \mu m$, and total height ($h + d$) = 3.1 μm. ……………………………………… 188

Figure 8.6. The influence of outer slab thickness (d) on waveguide geometrical birefringence (Δn_{geo}) for different widths (w) of 3, 3.5, 4 and 5 μm. The total height of the core ($h + d$) is 3.1 μm. …………………………………………………………… 189

Figure 8.7. Stress influence on waveguide birefringence for varying outer slab thickness (d), and for different width (w) of 3, 3.5, 4 and 5 μm. …………………………………………………………… 191

Figure 8.8. Modal birefringence of strip and rib channel waveguides as a function of channel width. …………………………………………………………… 193

Figure 8.9. Contour plot of stress distribution in the strip channel with $w = 3 \, \mu m$ and $h = 2.9 \, \mu m$ (a) in-plane stress, σ_x, and (b) out-of-plane stress, σ_y. …………………………………………………………… 195
Figure 8.10. Material in-plane index (n_x) along the height of a strip channel ($h = 2.9 \, \mu m$) for different width. .. 196

Figure 8.11. Material birefringence ($n_x - n_y$) along the height of a strip channel ($h = 2.9 \, \mu m$) for different width. 196

Figure 8.12. Bragg wavelength difference ($\Delta \lambda_B$) between TE and TM polarizations as a function of core width (w), total height $h = 2.9 \, \mu m$. ... 198
List of Tables

Table 2.1. Several widely used polymer materials. 23

Table 3.1. Measured elastic modulus of the polymer films. 70

Table 4.1. Properties of silicon and fully cured polymers (BCB and Epoxy) at room temperature as used in the stress analysis. 89

Table 4.2. Degree of cure (DOC) dependence of resin modulus \(E^* \). 92

Table 4.3. Creep relaxation parameters for the polymers used (BCB and Epoxy). ... 94

Table 4.4. Comparison between calculated and measured values of warpage and stress for BCB film on silicon substrate at 20 °C... 106

Table 4.5. Simulation and measurement results of BCB film stress \(\sigma \) at 26 °C and their temperature dependence \(d\sigma /dT \). 108

Table 5.1. Material properties of the film layer and the substrates. 121

Table 5.2. Film refractive indices \(n \) measured at 26 °C, in-plane/out-of-plane anisotropy \(\Delta n \), and their temperature dependence \(dn/dT \) at the wavelength of 1536 nm. 125

Table 5.3. Calculated in-plane stresses \(\sigma_x \) at 26 °C and its temperature dependence \(\partial \sigma_x /\partial T \) for BCB films on quartz and BK7 substrates. 127
Table 5.4. Determined stress-optic \((C_1\text{ and } C_2) \) and thermo-optic \((B) \) coefficients at the wavelength of 1536 nm for BCB and epoxy films. 128

Table 6.1. Measured film refractive indices \((n) \) at room temperature, and in-plane/out-of-plane anisotropy \((\Delta n) \) at a wavelength of 1536 nm\(^*\). 144

Table 6.2. Measured temperature dependence of the film refractive indices for TE \((dn_{TE}/dT) \) and TM \((dn_{TM}/dT) \) polarizations, and their corresponding anisotropy \((d(\Delta n)/dT) \) at a wavelength of 1536 nm\(^*\). 147

Table 6.3. Calculated values of thermal expansion coefficients of BCB films \((\alpha_f) \), temperature dependence of the film stress \((d\sigma/dT) \) and birefringence \((d(\Delta n)/dT) \), and stress-free thermo-optic coefficient \((dn_{sf}/dT) \) at a wavelength of 1536 nm\(^*\). 150

Table 8.1. Measured refractive indices of epoxy for different BCB film thickness [8.6]. 187