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Abstract 
 

Wavelets are frequently used in biometric and other image processing based 

applications. Among different wavelets, Gabor wavelet is of high interest among the 

researchers. Due to the appropriateness and suitability of Gabor wavelet to explain 

image decomposition in mammalian vision from both spatial and frequency domain 

is well established. Gabor wavelet can be used in facial image processing for face 

and facial expression recognition and analysis. At the earlier part of this thesis we 

determine the discrimination characteristics of different filters of Gabor wavelet by 

the means of a face recognition system. At this stage we also study the recognition 

performance of different summation based Gabor feature representations. Later a 

facial expression intensity measurement system is implemented using Gabor wavelet 

and self organizing maps (SOM) which is able to measure intensity of an emotion 

from a facial expression image in the form of fuzzy-membership values of three 

intensity classes- less, medium and high. In another application to recognize 

American Sign Language (ASL) alphabets Gabor wavelet is used as initial feature 

extractor for hand signed alphabets recognition. Finally at the end of this thesis we 

propose a method to extract blood vessels from retinal fundus images which can then 

be used as biometric measure for human identification and authentication. We show 

that using phase congruency which is acquired applying Log-Gabor wavelet on 

images can be used to segment retinal blood vessels for human identification. As a 

whole this thesis studies different aspects of Gabor wavelet referred to different 

computer vision based human biometric applications. 
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