A PHONETIC STUDY OF THE VOWEL SYSTEM IN SUZhou CHINESE

LING FENG

DOCTOR OF PHILOSOPHY
CITY UNIVERSITY OF HONG KONG
September 2009
A Phonetic Study of the Vowel System in Suzhou Chinese
蘇州話元音系統語音學研究

Submitted to
Department of Chinese, Translation and Linguistics
中文、翻譯及語言學系
in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy
哲學博士學位

by

Ling Feng
凌鋒

September 2009
二零零九年九月
Abstract

The focus of this dissertation is the articulatory characteristics, acoustic characteristics and articulatory-acoustic relationship of the vowels in Suzhou Chinese. The investigation includes auditory and aerodynamic recording. In the articulatory section, the palatogram, linguagram and articulograph (EMA) are used.

All monophthongs and diphthongs in Suzhou Chinese are investigated to show their formant patterns, temporal structures, lingual gestures and nasality if necessary. New vowel types so-called “fricative vowels”, which have not been well studied by phoneticians, are found in Suzhou Chinese. The acoustic data show that fricative vowels have lower F₂ than other plain vowel counterparts. Compared with the articulatory data, it is found that the lower F₂ cannot be explained by the retraction of constriction as a general relationship between vowel backness and F₂ height. Instead, advancing of constriction results in the lowering of F₂. Results prove to be compatible with the theory of vowel production, and can also clarify the formant pattern of apical vowels, which have not been well examined in previous study.

To provide an objective criterion for distinguishing monophthongs and diphthongs, a new method is developed in this dissertation to quantify vowel distance. Using this method, the two types of vowels are successfully distinguished. It is also found that two vowels transcribed as [iː] and [iː] in previous studies are monophthongs.
Table of Contents

Abstract ... i
Acknowledgments .. iii
Table of Contents .. iv
List of Figures .. viii
List of Tables .. xiv

Chapter 1: Introduction ... 1
1.1 The background and purpose of this study ... 1
1.2 Overview of Suzhou Chinese .. 6
1.2.1 The vowel system of Suzhou Chinese ... 7
1.2.2 Consonants .. 8
1.2.3 Tones .. 9
1.2.4 Syllabic consonants ... 9
1.2.5 Syllable structure ... 10
1.3 Old accents and new accents of Suzhou Chinese ... 10
1.4 The objectives and an outline of the dissertation ... 11

Chapter 2: Vowels in (C)V syllables ... 13
2.1 Overview .. 13
2.2 Acoustic analysis for vowels in (C)V syllables .. 14
2.2.1 Methodology .. 14
2.2.1.1 Material .. 14
2.2.1.2 Informants ... 15
2.2.1.3 Recording Procedure .. 15
2.2.1.4 Data analysis and further processing ... 15
2.2.1.5 HNR analysis .. 16
2.2.2 Results ... 16
2.2.2.1 The vowel system .. 16
2.2.2.2 [i y i y] ... 19
2.2.2.3 [ɪ u o o] ... 23
2.2.2.4 The remaining three vowels [æ e a] ... 28
2.2.2.5 Speaker variations and vowel normalization ... 30
2.3 Articulatory analysis of the vowels in (C)V syllables in Suzhou 39
2.3.1 Methodology ... 39
2.3.1.1 Material and informants ... 40
2.3.1.2 EMA analysis .. 40
2.3.1.3 Linguagraph and palatograph ... 42
2.3.2 Results .. 43
Table of Contents

2.3.2.1 [i y ɪ v] ...43
2.3.2.2 [u ʊ oʊ o] ...47
2.3.2.3 [ɛ æ ɑ] ..49

2.3.3 Articulatory-acoustic relationship for front close vowels [i ɪ ʏ]

2.3.3.1 An articulatory explanation for F2 differences between plain close vowel and fricative vowel ..50
2.3.3.2 Articulatory explanations for F1 and F3 differences between the plain front close vowel and fricative vowel in Suzhou ..54
2.3.3.3 Similar cases in other languages ..57

2.3.4 Articulatory-acoustic relationship for vowel [u] ..59

2.4 Frication in vowels

2.5 Apical vowels in different dialects

2.6 A comparison of the vowel systems in different dialects or languages

Chapter 3: Vowels in (C)VN and (C)Vʔ syllables

3.1 Introduction ..73
3.2 Acoustic analysis for vowels in (C)VC syllables ...73
 3.2.1 Methodology ..73
 3.2.1.1 Subjects and Recording Procedure ..74
 3.2.1.2 Analysis and further processing ..74
 3.2.2 Results ..75
 3.2.2.1 The spectral characteristics of the monophthongs in (C)VN and (C)Vʔ syllables 75
 3.2.2.2 [ə] of [ən] [əʔ] and monophthong [ɛ] ..78
 3.2.2.3 [o] of [on] [oʔ] and monophthong [o] ..79
 3.2.2.4 [a] of [ã] [aʔ] and monophthong [æ] ..81
 3.2.2.5 [ɑ] of [ɑ̃] [ɑʔ] and monophthong [ɑ] ..82

3.3 Articulatory analysis of vowels in (C)VC syllables ...84
 3.3.1 Methodology ..84
 3.3.2 Results ..84
 3.3.2.1 [ə] of [ən] [əʔ] ..84
 3.3.2.2 [o] of [on] [oʔ] ...85
 3.3.2.3 [a] of [ã] [aʔ] ...86
 3.3.2.4 [ɑ] of [ɑ̃] [ɑʔ] ...88

3.4 Aerodynamic study ..89
 3.4.1 Methodology ..89
 3.4.2 Results ..92

Chapter 4: Diphthongs in (C)V syllables ...100

4.1 Introduction ..100
4.2 Acoustic analysis for diphthongs in (C)V syllables

4.2.1 Methodology

4.2.1.1 Material and informants

4.2.1.2 A method for calculating change of vowel quality

4.2.2 Results

4.2.2.1 Temporal structure of the diphthongs in Suzhou Chinese

4.2.2.2 The rate of change of F_2 for diphthongs

4.2.2.3 The spectral characteristics of the diphthongs

4.2.2.4 Diphthong $[\text{ia}]$

4.2.2.5 Diphthong $[\text{iø}]$

4.2.2.6 Diphthong $[\text{u} \varepsilon]$

4.2.2.7 Diphthong $[\text{u} \alpha]$

4.2.2.8 Diphthong $[\text{u} \alpha]$

4.2.2.9 Diphthong $[\text{u} \alpha]$

4.2.2.10 Diphthong $[\text{ou}]$

4.2.2.11 Diphthong $[\text{ø} \text{ʏ}]$

4.3 Articulatory analysis of diphthongs in (C)V syllables

4.3.1 Methodology

4.3.2 Results

4.3.2.1 Diphthong $[\text{iæ}]$

4.3.2.2 Diphthong $[\text{iø}]$

4.3.2.3 Diphthong $[\text{u} \varepsilon]$

4.3.2.4 Diphthong $[\text{u} \alpha]$

4.3.2.5 Diphthong $[\text{u} \alpha]$

4.3.2.6 Diphthong $[\text{u} \alpha]$

4.3.2.7 Diphthong $[\text{ou}]$

4.3.2.8 Diphthong $[\text{ø} \text{ʏ}]$

4.4 Discussion

4.4.1 Boundary between monophthongs and diphthongs

4.4.2 The difference between elements in diphthongs and monophthongs

5.1 Introduction

5.2 Methodology

5.3 Results

5.3.1 The spectral characteristics of the diphthongs in (C)VN and (C)Vʔ syllables

5.3.2 A comparison between first elements and the monophthongs in (C)V syllables

5.3.2.1 The first element $[\text{i}]$ in (C)VC syllables

5.3.2.2 The first element $[\text{u}]$ in (C)VC syllables

5.3.2.3 The first element $[\text{y}]$ in (C)VC syllables

5.3.3 A comparison between second elements and the monophthongs in (C)VN and
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3.3.1</td>
<td>The second element [ə] in (C)VC syllables</td>
<td>159</td>
</tr>
<tr>
<td>5.3.3.2</td>
<td>The second element [o] in (C)VC syllables</td>
<td>166</td>
</tr>
<tr>
<td>5.3.3.3</td>
<td>The second element [a] in (C)VC syllables</td>
<td>167</td>
</tr>
<tr>
<td>5.3.3.4</td>
<td>The second element [ɑ] in (C)VC syllables</td>
<td>170</td>
</tr>
<tr>
<td>5.4</td>
<td>Discussion</td>
<td>173</td>
</tr>
<tr>
<td>Chapter 6</td>
<td>Summary and conclusion</td>
<td>175</td>
</tr>
<tr>
<td>6.1</td>
<td>The phonetic properties of the vowels in Suzhou Chinese</td>
<td>175</td>
</tr>
<tr>
<td>6.2</td>
<td>Articulatory-acoustic relation for the vowels</td>
<td>181</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>183</td>
</tr>
<tr>
<td>Appendix I</td>
<td>Formant frequency values (in Hz) for the vowels in Suzhou Chinese</td>
<td>211</td>
</tr>
<tr>
<td>Appendix II</td>
<td>Formant frequency values (in Hz) for the diphthongs in Suzhou Chinese</td>
<td>227</td>
</tr>
<tr>
<td>Appendix III</td>
<td>Articulatory data (in mm) for the vowels in Suzhou Chinese</td>
<td>267</td>
</tr>
<tr>
<td>Appendix IV</td>
<td>Articulatory data (in mm) for the diphthongs in Suzhou Chinese</td>
<td>272</td>
</tr>
</tbody>
</table>
List of Figures

Figure 2-1. The vowel ellipses for the 12 vowels in Suzhou Chinese in F2/F1 plane, data from 10 female speakers (left) and 10 male speakers (right) ... 18

Figure 2-2. Vowel ellipses in F2/F1 plane (left) and in F1/F3 plane (right) for [i] [ɪ] [y] [ʏ] in Suzhou Chinese (10 female speakers) ... 21

Figure 2-3. Vowel ellipses in F2/F1 plane (left) and in F1/F3 plane (right) for [i] [ɪ] [y] [ʏ] in Suzhou Chinese (data from 10 male speakers) ... 21

Figure 2-4. Vowel ellipses and data points in F2/F1 plane for [ɿ] [ʮ] (“*”=[ɿ], “+”=[ʮ]) in Suzhou Chinese for female (left) and male (right) speakers ... 24

Figure 2-5. Vowel ellipses for [ø u o] in Suzhou Chinese in F2/F1 plane for male (right) and female (left) speakers ... 27

Figure 2-6. The vowel loops for Suzhou Chinese male (small font) and female speakers (large font) ... 30

Figure 2-7. The vowel loops of Suzhou Chinese from male (small font) and female speakers (large font) before (left) and after (right) normalization (A. Before normalization; B. uniform normalization; C. non uniform normalization; D. APS normalization) .. 37

Figure 2-8. Comparison of the regression lines by the three methods. (A. Before normalization; B. uniform normalization; C. non uniform normalization; D. APS normalization) 38

Figure 2-9. An illustration for the receiver sensors (Tongue Tip (TT), Tongue Mid (TM), Tongue Dorsum (TD), and Ref. 1, Ref. 2) attached at different locations during data collection 41

Figure 2-10. a. Photographing the roof of the mouth. The arrows show how (ideally) the view from the camera is directly up into the roof of the mouth (adopted from Ladefoged, 2003); b. an example of palatogram .. 42

Figure 2-11. Palatograms and linguagrams of [i i y y] from two male speakers and two female speakers ... 44

Figure 2-12. The lingual configurations for [i] [ɪ] [y] from three male speakers (Speaker 1, 2, 3). The highest curve is the contour of the palate. The speakers were facing right 46

Figure 2-13. The lingual configurations for [i] [ɿ] and [ʘ] from three male speakers (Speaker 1, 2, 3). The highest curve is the contour of the palate. The speakers were facing right 47

Figure 2-14. The lingual configurations for [ɛ u o ø] from three male speakers (Speaker 1, 2, 3). The curve is the contour of the palate. The speakers were facing right 48

Figure 2-15. The lingual configurations for [ɛ æ æ Æ] from three male speakers (Speaker 1, 2, 3). The curve is the contour of the palate. The speakers were facing right 49

Figure 2-16. (a) The resonator configuration approximating the vocal tract for non-low vowels and (b) relations between natural frequencies and the position of the constriction for the configuration of the left acoustic tubes (from Stevens, 1989) .. 51

Figure 2-17. The lingual configurations for [ɪ i ɪ] from three male speakers (Speaker 1, 2, 3). The curve is the contour of the palate. The speakers were facing right 52
Figure 2-18. Nomograms relating the formants and the location of constriction in source-filter theory (Fant, 1960)...53
Figure 2-19. Locations of velocity nodes (points of maximum velocity) of the second resonant frequency. (Chiba and Kajiyama, 1941) ...53
Figure 2-20. (a) variation of the height feature by moving the tongue, jaw, and lips towards an [i] position. (b) moving away from the [i] position by raising and advancing the blade of the tongue towards an alveolarized high front vowel. the (C) Acoustic data of the articulatory gestures in (a) and (b). The first seven points represent variation in Height in (a), the remaining show the acoustic data for (b) (Ladefoged and Lindau, 1989) ...54
Figure 2-21. A comparison of the EMA results of this study and the tongue gestures presented in the experiment of Ladefoged and Lindau (1989)...55
Figure 2-22. The palatogram and linguagram of [i] on the left, and those of [i] on the right........56
Figure 2-23. X-ray midsagittal tracings and formant patterns of Swedish [y] and [u] (Fant, 1973) ..57
Figure 2-24. Spectrograms and formants of the fricative vowel V1 and the non-fricative close vowel V2 in Mambila ..58
Figure 2-25. Side view and front view of the lip position for [u] for a male speaker (upper) and a female speaker (lower)..58
Figure 2-26. The waveform and spectrogram of [pu44] (a female speaker)60
Figure 2-27. The lingual configurations for [u] [o] [u(e)] [u(o)] [u(ə)] [u(ɔ)] of a male speaker. ..60
Figure 2-28. Narrow-band and wide-band spectrograms of (a) [i], (b) [i] (a female speaker)62
Figure 2-29. Narrow-band and wide-band spectrograms of (a) [i], (b) [u], (c) [u] and (d) [y] (a female speaker) ...63
Figure 2-30. Spectra of (a) [ʒ] in Portuguese (Jesus and Shadle, 1999), (b) [ʒ] in English (Soli, 1982), the (c) [i] in Suzhou Chinese ..66
Figure 2-31. Left: Lingual configurations for [ɿ] [ɿ] from a Ningbo male speaker. (Hu, 2005); right: Lingual configurations for [ɿ] [ɿ] from a Suzhou male speaker67
Figure 2-32. X-ray tracings of fricative [s] in Beijing Mandarin (Ladefoged and Wu, 1984)......67
Figure 2-33. The tongue configurations for [ɿ] [ɿ] [ɿ], and the first three formants of the three vowels (data from a male speaker) ..69
Figure 2-34. Vowel loops for the vowels in Suzhou Chinese (broken line and small font) and Ningbo Chinese (unbroken line and large font) for female (left) and male (right) speakers (Data from Hu (2005))..69
Figure 2-35. Vowel loops of Suzhou Chinese (broken line and small font) and Mandarin Chinese (plain line and large font) for female (left) and male (right) speakers (Data from Lee and Zee (2001))..70
Figure 2-36. Vowel loops of Suzhou Chinese (broken line and small font) and American English (plain line and large font) for female (left) and male (right) speakers (Data from Peterson and Barney (1952))..71
Figure 3-1. The spectrogram for a short syllable of [əʔ] ..75
Figure 3-2. Vowel ellipses and scatter for vowels in Suzhou Chinese in (C)VN syllables for male
(right) and female (left) speakers ..77
Figure 3-3. Vowel ellipses and scatter for vowels in Suzhou Chinese in (C)Vʔ syllables for male
(right) and female (left) speakers ..77
Figure 3-4. Mean positions for vowels in (C)VN syllables (large font) with vowels in (C)Vʔ
syllables (small font) in F2/F1 plane overlapping for male (right) and female (left) speakers.77
Figure 3-5. Vowel ellipses in F2/F1 plane for [ə(n)] for male (right) and female (left) speakers78
Figure 3-6. Vowel ellipses in F2/F1 plane for [əʔ] for male (right) and female (left) speakers79
Figure 3-7. Vowel ellipses in F2/F1 plane for [o(ŋ)] for male (right) and female (left) speakers80
Figure 3-8. Vowel ellipses in F2/F1 plane for [oʔ] for male (right) and female (left) speakers80
Figure 3-9. Vowel ellipses in F2/F1 plane for [ä] for male (right) and female (left) speakers.......82
Figure 3-10. Vowel ellipses in F2/F1 plane for [a(ʔ)] for male (right) and female (left) speakers ..82
Figure 3-11. Vowel ellipses in F2/F1 plane for [â] for male (right) and female (left) speakers83
Figure 3-12. Vowel ellipses in F2/F1 plane for [a(ʔ)] for male (right) and female (left) speakers ..83
Figure 3-13. The lingual configurations for [ə(n)] and [ɛ æ] from three male speakers (Speaker 1, 2, 3). The curve is the contour of the palate. The speakers were facing right85
Figure 3-14. The lingual configurations for [ə(ʔ) ɛ æ] from three male speakers (Speaker 1, 2, 3). The curve is the contour of the palate. The speakers were facing right..................85
Figure 3-15. The lingual configurations for [o(ŋ) o] from three male speakers (Speaker 1, 2, 3). The curve is the contour of the palate. The speakers were facing right86
Figure 3-16. The lingual configurations for [o(ʔ) o] from three male speakers (Speaker 1, 2, 3). The curve is the contour of the palate. The speakers were facing right86
Figure 3-17. The lingual configurations for [ä æ ɑ] from three male speakers (Speaker 1, 2, 3). The curve is the contour of the palate. The speakers were facing right87
Figure 3-18. The lingual configurations for [a(ʔ) æ ɑ] from three male speakers (Speaker 1, 2, 3). The curve is the contour of the palate. The speakers were facing right87
Figure 3-19. The lingual configurations for [ä æ ɑ] from three male speakers (Speaker 1, 2, 3). The curve is the contour of the palate. The speakers were facing right88
Figure 3-20. The lingual configurations for [a(ʔ) æ ɑ] from three male speakers (Speaker 1, 2, 3). The curve is the contour of the palate. The speakers were facing right88
Figure 3-21. The waveform, oral flow and nasal flow of a VN syllable ..90
Figure 3-22. Waveforms, oral flows and nasal flows of [ən] (A) [oŋ] (B) [ä] (C) and [ã] (D) (from
a male speaker) ...93
Figure 3-23. Vowel ellipses and scatters of F2/F1 plane for [ä] and [ã] for male (right) and female
(left) speakers ..96
Figure 3-24. Vowel ellipses and scatters of F2/F1 plane for [a(ʔ)] and [a(ʔ)] for male (right) and
female (left) speakers ..96
Figure 3-25. Scatter figures of the vowels in (C)Vʔ syllables for three speakers96
Figure 3-26. The lingual configurations for [ã æ ɑ] from three male speakers (Speaker 1, 2, 3).
Figure 4-1. DVQ for two sounds. Cursor A represents the starting point of the vowel sound, and
cursor B is the ending point. DVQ from cursor A to cursor B is shown in the tables in top left
of the spectrograms...104

Figure 4-2. The spectrogram and DVQ curve of a diphthong. Cursor A and B are the boundaries
between steady portion and transition......................................105

Figure 4-3. The spectrogram and DVQ curve of a diphthong. The position of the crossing point
and critical line is the boundary between transition and steady portion......................106

Figure 4-4. Temporal structure of the Suzhou diphthongs (data from 20 male and female speakers)
...108

Figure 4-5. Temporal structure in percentage of the Suzhou diphthongs (data from 20 male and
female speakers)..108

Figure 4-6. Diphthong arrows for the Suzhou diphthongs in F2/F1 plane (data from 10 female
speakers) ..112

Figure 4-7. Diphthong Arrows for the Suzhou diphthongs in F2/F1 plane (data from 10 male
speakers) ..112

Figure 4-8. Diphthong arrows and target vowel ellipses for [iæ] and vowel ellipses for
monophthongs in (C)V syllables for female (left) and male (right) speakers............114

Figure 4-9. Diphthong arrows and target vowel ellipses for [i] and vowel ellipses for
monophthongs in (C)V syllables for female (left) and male (right) speakers............116

Figure 4-10. Diphthong arrows and target vowel ellipses for [iø] and vowel ellipses for
monophthongs in (C)V syllables for female (left) and male (right) speakers............117

Figure 4-11. Diphthong arrows and target vowel ellipses for [uœ] and vowel ellipses for
monophthongs in (C)V syllables for female (left) and male (right) speakers............118

Figure 4-12. Diphthong arrows and target vowel ellipses for [ua] and vowel ellipses for
monophthongs in (C)V syllables for female (left) and male (right) speakers............120

Figure 4-13. Diphthong arrows and target vowel ellipses for [uo] and vowel ellipses for
monophthongs in (C)V syllables for female (left) and male (right) speakers............121

Figure 4-14. Diphthong arrows and target vowel ellipses for [ou] and vowel ellipses for
monophthongs in (C)V syllables for female (left) and male (right) speakers............122

Figure 4-15. Diphthong arrows and target vowel ellipses for [œ] and vowel ellipses for
monophthongs in (C)V syllables for female (left) and male (right) speakers............124

Figure 4-16. The lingual configurations for [i(æ) iɪ] from three male speakers (Speaker 1, 2, 3).
The curve is the contour of the palate. The speakers were facing right......................125

Figure 4-17. The lingual configurations for [e æ (i)æ] from three male speakers (Speaker 1, 2, 3).
The curve is the contour of the palate. The speakers were facing right......................126

Figure 4-18. The lingual configurations for [i(α) iɪ] from three male speakers (Speaker 1, 2, 3).
The curve is the contour of the palate. The speakers were facing right......................126

Figure 4-19. The lingual configurations for [œ] and [œɪ] from three male speakers (Speaker 1, 2,
3). The curve is the contour of the palate. The speakers were facing right.................127
Figure 4-20. The lingual configurations for [i(ø) i i] from three male speakers (Speaker 1, 2, 3).
The curve is the contour of the palate. The speakers were facing right..............................127
Figure 4-21. The lingual configurations for [i(ø) ø] from three male speakers (Speaker 1, 2, 3).
The curve is the contour of the palate. The speakers were facing right..............................128
Figure 4-22. The lingual configurations for [u(ɛ) u ø] from three male speakers (Speaker 1, 2, 3).
The curve is the contour of the palate. The speakers were facing right..............................129
Figure 4-23. The lingual configurations for [i(ø) ø] from three male speakers (Speaker 1, 2, 3).
The curve is the contour of the palate. The speakers were facing right..............................129
Figure 4-24. The lingual configurations for [u(α) u ø] from three male speakers (Speaker 1, 2, 3).
The curve is the contour of the palate. The speakers were facing right..............................130
Figure 4-25. The lingual configurations for [(u)α ø] from three male speakers (Speaker 1, 2, 3).
The curve is the contour of the palate. The speakers were facing right..............................131
Figure 4-26. The lingual configurations for [o u(ø) (u)ø] from three male speakers (Speaker 1, 2, 3).
The curve is the contour of the palate. The speakers were facing right..............................132
Figure 4-27. The lingual configurations for [o α o(u)] from three male speakers (Speaker 1, 2, 3).
The curve is the contour of the palate. The speakers were facing right..............................133
Figure 4-28. The lingual configurations for [u o (o)u] from three male speakers (Speaker 1, 2, 3).
The curve is the contour of the palate. The speakers were facing right..............................134
Figure 4-29. The lingual configurations for [ø(ʏ) ø] from three male speakers (Speaker 1, 2, 3).
The curve is the contour of the palate. The speakers were facing right..............................135
Figure 4-30. The lingual configurations for [y ɪ (ø)ʏ] from three male speakers (Speaker 1, 2, 3).
The curve is the contour of the palate. The speakers were facing right..............................135
Figure 4-31. Boxes of the DVQ for all monophthongs and diphthongs in Suzhou Chinese........136
Figure 4-32. Spectrograms of [ɣ] from two different speakers...139
Figure 4-33. Spectrograms of [sɿ] by two speakers. DVQ for [sɿ] on left is 339.4, and DVQ for [sɿ] on right is 6658.7..140
Figure 5-1. Diphthong arrows for the diphthongs in Suzhou Chinese in F2/F1 plane (C)VN and (C)Vʔ in F2/F1 plane (data from 10 female speakers).................................144
Figure 5-2. Diphthong arrows for the diphthongs in Suzhou Chinese in F2/F1 plane (C)VN and (C)Vʔ in F2/F1 plane (data from 10 male speakers).................................145
Figure 5-3. Vowel ellipses in F2/F1 plane for [i(ø)] for male (right) and female (left) speakers...148
Figure 5-4. Vowel ellipses in F2/F1 plane for [i(αʔ)] for male (right) and female (left) speakers.148
Figure 5-5. The lingual configurations for [i(ø)] and [i(αʔ)] from three male speakers (Speaker 1, 2, 3). The curve is the contour of the palate. The speakers were facing right..............................149
Figure 5-6. Vowel ellipses in F2/F1 plane for [i(ø)] for male (right) and female (left) speakers.149
Figure 5-7. Vowel ellipses in F2/F1 plane for [i(αʔ)] for male (right) and female (left) speakers.149
Figure 5-8. The lingual configurations for [i(ø)] and [i(αʔ)] from three male speakers (Speaker 1, 2, 3). The curve is the contour of the palate. The speakers were facing right..............................150
Figure 5-9. Vowel ellipses in F2/F1 plane for [i(αʔ)] for male (right) and female (left) speakers...151
Figure 5-10. Vowel ellipses in F2/F1 plane for [i(αʔ)] for male (right) and female (left) speakers151
Figure 5-11. Vowel ellipses in F2/F1 plane for [i(ã)] for male (right) and female (left) speakers. 151
Figure 5-12. Vowel ellipses in F2/F1 plane for [i(αʔ)] for male (right) and female (left) speakers
.. 152
Figure 5-13. The lingual configurations for [i(ã)] [i(αʔ)] [i(ã)] and [i(αʔ)] from three male speakers (Speaker 1, 2, 3). The curve is the contour of the palate. The speakers were facing right. 153
Figure 5-14. Vowel ellipses in F2/F1 plane for [u(ən)] for male (right) and female (left) speakers
.. 154
Figure 5-15. Vowel ellipses in F2/F1 plane for [u(əʔ)] for male (right) and female (left) speakers
.. 154
Figure 5-16. The lingual configurations for [u(ən)] and [u(əʔ)] from three male speakers (Speaker 1, 2, 3). The curve is the contour of the palate. The speakers were facing right. 155
Figure 5-17. Vowel ellipses in F2/F1 plane for [u(ã)] for male (right) and female (left) speakers 156
Figure 5-18. Vowel ellipses in F2/F1 plane for [u(αʔ)] for male (right) and female (left) speakers
.. 156
Figure 5-19. Vowel ellipses in F2/F1 plane for [u(ã)] for male (right) and female (left) speakers 156
Figure 5-20. The lingual configurations for [u(ã)] [u(αʔ)] and [u(ã)] from three male speakers (Speaker 1, 2, 3). The curve is the contour of the palate. The speakers were facing right. 157
Figure 5-21. Vowel ellipses in F2/F1 plane for [y(ən)] for male (right) and female (left) speakers
.. 158
Figure 5-22. Vowel ellipses in F2/F1 plane for [y(əʔ)] for male (right) and female (left) speakers
.. 158
Figure 5-23. The lingual configurations for [y(ən)] and [y(əʔ)] from three male speakers (Speaker 1, 2, 3). The curve is the contour of the palate. The speakers were facing right. 159
Figure 5-24. Vowel ellipses in F2/F1 plane for [in] for male (right) and female (left) speakers ... 160
Figure 5-25. Vowel ellipses in F2/F1 plane for [(i)ə(ʔ)] for male (right) and female (left) speakers
.. 160
Figure 5-26. The lingual configurations for [(i)n] and [(i)ə(ʔ)] from three male speakers (Speaker 1, 2, 3). The curve is the contour of the palate. The speakers were facing right. 161
Figure 5-27. Vowel ellipses in F2/F1 plane for [(y)ə(n)] for male (right) and female (left) speakers
.. 162
Figure 5-28. Vowel ellipses in F2/F1 plane for [(y)ə(ʔ)] for male (right) and female (left) speakers
.. 162
Figure 5-29. The lingual configurations for [(y)ə(n)] and [(y)ə(ʔ)] from three male speakers (Speaker 1, 2, 3). The curve is the contour of the palate. The speakers were facing right. 163
Figure 5-30. Vowel ellipses in F2/F1 plane for [(u)ə(n)] for male (right) and female (left) speakers
.. 164
Figure 5-31. Vowel ellipses in F2/F1 plane for [(u)ə(ʔ)] for male (right) and female (left) speakers
.. 164
Figure 5-32. The lingual configurations for [(u)ə(n)] and [(u)ə(ʔ)] from three male speakers
(Speaker 1, 2, 3). The curve is the contour of the palate. The speakers were facing right...165

Figure 5-33. Vowel ellipses in F2/F1 plane for [(i)o(ŋ)] for male (right) and female (left) speakers
.. 166

Figure 5-34. Vowel ellipses in F2/F1 plane for [(i)o(?)] for male (right) and female (left) speakers
.. 166

Figure 5-35. The lingual configurations for [(i)o(ŋ)] and [(i)o(?)] from three male speakers
(Speaker 1, 2, 3). The curve is the contour of the palate. The speakers were facing right...167

Figure 5-36. Vowel ellipses in F2/F1 plane for [(i)ā] for male (right) and female (left) speakers.168

Figure 5-37. Vowel ellipses in F2/F1 plane for [(i)a(?)] for male (right) and female (left) speakers
.. 168

Figure 5-38. Vowel ellipses in F2/F1 plane for [(u)ā] for male (right) and female (left) speakers 168

Figure 5-39. Vowel ellipses in F2/F1 plane for [(u)a(?)] for male (right) and female (left) speakers
.. 169

Figure 5-40. The lingual configurations for [(i)ā] [(i)a(?)] [(u)ā] and [(u)a(?)] from three male
speakers (Speaker 1, 2, 3). The curve is the contour of the palate. The speakers were facing
right.. 170

Figure 5-41. Vowel ellipses in F2/F1 plane for [(i)ā] for male (right) and female (left) speakers.170

Figure 5-42. Vowel ellipses in F2/F1 plane for [(i)a(?)] for male (right) and female (left) speakers
.. 171

Figure 5-43. Vowel ellipses in F2/F1 plane for [(u)ā] for male (right) and female (left) speakers 171

Figure 5-44. The lingual configurations for [(i)ā] and [(i)a(?)] from three male speakers (Speaker
1, 2, 3). The curve is the contour of the palate. The speakers were facing right..............172

Figure 5-45. The lingual configurations for [(u)ā] from three male speakers (Speaker 1, 2, 3). The
curve is the contour of the palate. The speakers were facing right...............................173

List of Tables

Table 1-1 Vowel system of Suzhou Chinese... 8
Table 1-2. The consonant system of Suzhou Chinese (Chao, 1928).............................. 9
Table 1-3. The citation tone system of Suzhou Chinese (Wang, 1983)......................... 9
Table 2-1. Test words for target monophthongs [ɿi y ү у ʊ ø ɛ o æ ɑ] in Suzhou..............14
Table 2-2. Means and standard deviations (in Hz) of the first three formants of the vowels in
Suzhou Chinese (data from 10 female speakers)...18
Table 2-3. Means and standard deviations (in Hz) of the first three formants of the vowels in
Suzhou Chinese (data from 10 male speakers)..18
Table 2-4. A comparison of the frequency values of first three formants between [i] and [i], [y]
and [y]...20
Table 2-5. The frequency values of first three formants for [i] [i] [y] [y] (male speakers) in Suzhou
Chinese, Cantonese (Zee, 2000), Beijing Mandarin (Lee and Zee 2001) and English (Peterson and Barney, 1952)..22
Table 2-6. The HNR (in dB) for the pairs of fricative and non-fricative vowels.............................23
Table 2-7. A comparison of the frequency values of the first three formants between [i] and [u]. 24
Table 2-8. The F2 and F3 difference between [i] and [u] for each speaker......................................25
Table 2-9. A comparison of the frequency values of first three formants between [o] and [u]...........26
Table 2-10. A comparison of the frequency values of first three formants between [u] and [o], and 27
between [u] and [o]..27
Table 2-11. Values of first three formants for [u o ø] in Suzhou Chinese, Beijing Mandarin and 28
Ningbo Chinese (male speakers)...28
Table 2-12. Vowel distances between i - e, e - æ, i - æ ...29
Table 2-13. Values of first three formants for [ɛ æ ə] in Suzhou Chinese, and English (male 30
speakers)..30
Table 2-14. Percentage differences (PD) between female and male formants (F1, F2 and F3)....31
Table 2-15. The first three formants of the female speakers scaled to those of the males of Suzhou 32
Chinese using uniform normalization...33
Table 2-16. The first three formants of the female speakers scaled to those of the males of Suzhou 34
Chinese using non-uniform normalization..35
Table 2-17. The three coordinate values for the vowels of male and female speakers of Suzhou 36
Chinese in the auditory-perceptual space (APS)..36
Table 2-18. The mean distance and width of the constriction in the palatogram and linguagram..45
Table 2-19. Place of articulation of the four vowels for different speakers..................................45
Table 2-20 Means (in Hz) of the first three formants for [i i] in Suzhou Chinese (data from 10 45
female speakers and 10 male speakers)...54
Table 2-21. Formant structures for [u i i i]..61
Table 2-22. Means of HNR in five frequency ranges for the all close vowels [i u i u i y] in 64
Suzhou Chinese..64
Table 2-23. The frequency values of the first three formants for the apical vowels for male 68
speakers in Suzhou Chinese, Ningbo Chinese (Hu, 2005), Beijing Mandarin (Lee and Zee, 68
2001)..68
Table 3-1. Test (C)VC syllables..74
Table 3-2. Means and standard deviations (in Hz) of the frequency values of the first three 76
formants of the vowels in (C)VN and (C)Vʔ syllables (data from 10 female speakers).............76
Table 3-3. Means and standard deviations (in Hz) of the frequency values of the first three 76
formants of the vowels in (C)VN and (C)Vʔ syllables (data from 10 male speakers)..............76
Table 3-4. Comparison of the first three formants for [a] of [an] [aʔ] and monophthong [ɛ]........78
Table 3-5. Comparison of the first three formants for [o] of [on] [oʔ] and monophthong [o].......80
Table 3-6. Comparison of the first three formants for [a] of [ã] [aʔ] and monophthong [æ].......81
Table 3-7. Comparison of the first three formants for [a] of [ã] [aʔ] and those for [a] in open 83
syllables (data from 10 male speakers)...83
Table 3-8. PNV and PNN of the monophthongs in (C)VN syllables ...92
Table 3-9. Comparison of the first three formants for front ‘a’ and those for back ‘a’ in (C)VN syllables and (C)Vʔ syllables...95
Table 4-1. Test words for diphthongs ...101
Table 4-2. The range of F_2 change and rate of change of F_2 for the diphthongs in Suzhou Chinese. ..109
Table 4-3. Mean values (in Hz) and standard deviations of the first three formants for the diphthongs in Suzhou Chinese (data from 10 female speakers) ..111
Table 4-4. Mean values (in Hz) and standard deviations of the first three formants for the diphthongs in Suzhou Chinese (data from 10 male speakers) ..112
Table 4-5. Comparison of the first three formants of the two elements of [iæ] and those for the monophthongs [i ɪ æ]. ...114
Table 4-6. Comparison of the first three formants of the two elements of [iɑ] and those for the monophthongs [i ɪ ɑ]. ...115
Table 4-7. Comparison of the first three formants of the two elements of [iɔ] and those for the monophthongs [i ɪ ɔ]...117
Table 4-8. Comparison of the first three formants of the two elements of [uɛ] and those for the monophthongs [u ʊ ɛ]. ...118
Table 4-9. Comparison of the first three formants of the two elements of [uɑ] and those for the monophthongs [u ʊ ɑ]...119
Table 4-10. Comparison of the first three formants of the two elements of [uø] and those for the monophthongs [u ʊ ø]...121
Table 4-11. Comparison of the first three formants of the two elements of [ou] and those for the monophthongs [o ʊ ø]...122
Table 4-12. Means of DVQ and standard deviations for all monophthongs and diphthongs in Suzhou Chinese...136
Table 4-13. DVQ for [uø] and [ʊ] for 10 male and 10 female speakers in Suzhou138
Table 4-14. The mean DVQ for $[v]$ for each individual speaker ...138
Table 5-1. Test words for target diphthongs of (C)VC syllables in Suzhou144
Table 5-2. Means in Hz and standard deviations for the first three formants of the diphthongs in (C)VN (data from 10 female speakers)..145
Table 5-3. Means in Hz and standard deviations for the first three formants of the diphthongs in (C)VN (data from 10 male speakers)..146
Table 5-4. Means in Hz and standard deviations for the first three formants of the diphthongs in (C)Vʔ (data from 10 female speakers)..146
Table 5-5. Means in Hz and standard deviations for the first three formants of the diphthongs in (C)Vʔ (data from 10 male speakers)..147
Table 5-6. Comparison of F_3 (in Hz) among [i(ɨn)] [i(ɨʔ)] [i] and $[v]$ for both male and female
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-7</td>
<td>Comparison of F1 (in Hz) between low vowels in DN and Dʔ syllables</td>
<td>150</td>
</tr>
<tr>
<td>6-1</td>
<td>Vowels in (C)V syllables of Suzhou Chinese</td>
<td>174</td>
</tr>
<tr>
<td>6-2</td>
<td>Diphthongs in (C)V syllables of Suzhou Chinese</td>
<td>176</td>
</tr>
<tr>
<td>6-3</td>
<td>The vowels in (C)VC syllables of Suzhou Chinese</td>
<td>176</td>
</tr>
<tr>
<td>6-4</td>
<td>The vowels in (C)VC syllables of Suzhou Chinese</td>
<td>177</td>
</tr>
<tr>
<td>6-5</td>
<td>The previous transcriptions and phonetic transcriptions for the monophthongs and diphthongs in (C)V syllables</td>
<td>178</td>
</tr>
<tr>
<td>6-6</td>
<td>Previous transcriptions and phonetic transcriptions for the monophthongs and diphthongs in (C)VC syllables</td>
<td>180</td>
</tr>
</tbody>
</table>