A PHONETIC STUDY OF THE VOWEL SYSTEM IN SUZHOU CHINESE

LING FENG

DOCTOR OF PHILOSOPHY
CITY UNIVERSITY OF HONG KONG

September 2009

CITY UNIVERSITY OF HONG KONG

香港城市大學

A Phonetic Study of the Vowel System in Suzhou Chinese

蘇州話元音系統語音學研究

Submitted to
Department of Chinese, Translation and Linguistics
中文、翻譯及語言學系
in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy
哲學博士學位

by

Ling Feng 凌鋒

September 2009 二零零九年九月

Abstract

The focus of this dissertation is the articulatory characteristics, acoustic characteristics and articulatory-acoustic relationship of the vowels in Suzhou Chinese. The investigation includes auditory and aerodynamic recording. In the articulatory section, the palatogram, linguagram and articulograph (EMA) are used.

All monophthongs and diphthongs in Suzhou Chinese are investigated to show their formant patterns, temporal structures, lingual gestures and nasality if necessary. New vowel types so-called "fricative vowels", which have not been well studied by phoneticians, are found in Suzhou Chinese. The acoustic data show that fricative vowels have lower F₂ than other plain vowel counterparts. Compared with the articulatory data, it is found that the lower F₂ cannot be explained by the retraction of constriction as a general relationship between vowel backness and F₂ height. Instead, advancing of constriction results in the lowering of F₂. Results prove to be compatible with the theory of vowel production, and can also clarify the formant pattern of apical vowels, which have not been well examined in previous study.

To provide an objective criterion for distinguishing monophthongs and diphthongs, a new method is developed in this dissertation to quantify vowel distance. Using this method, the two types of vowels are successfully distinguished. It is also found that two vowels transcribed as [ii] and [iy] in previous studies are monophthongs.

Table of Contents

Abstract	i
Acknowledgments	iii
Table of Contents	iv
List of Figures	viii
List of Tables	xiv
Chapter 1: Introduction	1
1.1 The background and purpose of this study	1
1.2 Overview of Suzhou Chinese	6
1.2.1 The vowel system of Suzhou Chinese	7
1.2.2 Consonants	8
1.2.3 Tones	9
1.2.4 Syllabic consonants	9
1.2.5 Syllable structure	10
1.3 Old accents and new accents of Suzhou Chinese	10
1.4 The objectives and an outline of the dissertation	11
Chapter 2: Vowels in (C)V syllables	13
2.1 Overview	13
2.2 Acoustic analysis for vowels in (C)V syllables	14
2.2.1 Methodology	14
2.2.1.1 Material	14
2.2.1.2 Informants	15
2.2.1.3 Recording Procedure	15
2.2.1.4 Data analysis and further processing	15
2.2.1.5 HNR analysis	16
2.2.2 Results	16
2.2.2.1 The vowel system	16
2.2.2.2 [i y ı y]	19
2.2.2.3 [1 η ø u o]	23
2.2.2.4 The remaining three vowels [$\alpha \in \alpha$]	28
2.2.2.5 Speaker variations and vowel normalization.	30
2.3 Articulatory analysis of the vowels in (C)V syllables in Suzhou	39
2.3.1 Methodology	39
2.3.1.1 Material and informants	40
2.3.1.2 EMA analysis	40
2.3.1.3 Linguagraph and palatograph	42
222 Regulte	13

Table of Contents

2.3.2.1 [i y ɪ y]	43
2.3.2.2 [1 y ø u o]	47
2.3.2.3 [εæα]	49
2.3.3 Articulatory-acoustic relationship for front close vowels [i y I Y]	49
2.3.3.1 An articulatory explanation for F ₂ differences between plain close vo	wel and
fricative vowel	50
2.3.3.2 Articulatory explanations for F ₁ and F ₃ differences between the plain fro	nt close
vowel and fricative vowel in Suzhou	54
2.3.3.3 Similar cases in other languages	57
2.3.4 Articulatory-acoustic relationship for vowel [u]	59
2.4 Frication in vowels	61
2.5 Apical vowels in different dialects	66
2.6 A comparison of the vowel systems in different dialects or languages	69
Chapter 3: Vowels in (C)VN and (C)V? syllables	73
3.1 Introduction	73
3.2 Acoustic analysis for vowels in (C)VC syllables	73
3.2.1 Methodology	73
3.2.1.1 Subjects and Recording Procedure	74
3.2.1.2 Analysis and further processing	74
3.2.2 Results	75
3.2.2.1 The spectral characteristics of the monophthongs in (C)VN and (C)V? syll-	ables 75
3.2.2.2 [ə] of [ən] [əʔ] and monophthong [ε]	78
3.2.2.3 [o] of [oŋ] [oʔ] and monophthong [o]	79
3.2.2.4 [a] of [ã] [a?] and monophthong [æ]	81
3.2.2.5 [a] of $[\tilde{a}]$ [a?] and monophthong [a]	82
3.3 Articulatory analysis of vowels in (C)VC syllables	84
3.3.1 Methodology	84
3.3.2 Results	84
3.3.2.1 [ə] of [ən] [əʔ]	84
3.3.2.2 [o] of [oŋ] [oʔ]	85
3.3.2.3 [a] of [ã] [a?]	86
3.3.2.4 [a] of [ã] [a?]	88
3.4 Aerodynamic study	89
3.4.1 Methodology	89
3.4.2 Results	92
3.5 Discussions	
3.5.1 Speaker variations between the front 'a' and back 'a'	
3.5.2 The differences between vowels in (C)VC syllables and in (C)V syllables	98
Chapter 4: Diphthongs in (C)V syllables	100
4.1 Introduction	100

Table of Contents vi

4.2 Acoustic analysis for diphthongs in (C)V syllables	101
4.2.1 Methodology	101
4.2.1.1 Material and informants	101
4.2.1.2 A method for calculating change of vowel quality	101
4.2.2 Results	107
4.2.2.1 Temporal structure of the diphthongs in Suzhou Chinese	107
4.2.2.2 The rate of change of F ₂ for diphthongs	108
4.2.2.3 The spectral characteristics of the diphthongs	110
4.2.2.4 Diphthong [iæ]	113
4.2.2.5 Diphthong [ia]	115
4.2.2.6 Diphthong [iø]	116
4.2.2.7 Diphthong [uε]	118
4.2.2.8 Diphthong [ua]	119
4.2.2.9 Diphthong [uø]	120
4.2.2.10 Diphthong [ou]	121
4.2.2.11 Diphthong [øx]	123
4.3 Articulatory analysis of diphthongs in (C)V syllables	125
4.3.1 Methodology	125
4.3.2 Results	125
4.3.2.1 Diphthong [iæ]	125
4.3.2.2 Diphthong [ia]	126
4.3.2.3 Diphthong [iø]	127
4.3.2.4 Diphthong [uε]	129
4.3.2.5 Diphthong [ua]	130
4.3.2.6 Diphthong [uø]	131
4.3.2.7 Diphthong [ou]	132
4.3.2.8 Diphthong [øv]	134
4.4 Discussion	135
4.4.1 Boundary between monophthongs and diphthongs	135
4.4.2 The difference between elements in diphthongs and monophthongs	141
Chapter 5: Diphthongs in (C)VN and (C)V? syllables	.143
5.1 Introduction	143
5.2 Methodology	143
5.3 Results	
5.3.1 The spectral characteristics of the diphthongs in (C)VN and (C)V? syllables	
5.3.2 A comparison between first elements and the monophthongs in (C)V syllables.	
5.3.2.1 The first element [i] in (C)VC syllables	
5.3.2.2 The first element [u] in (C)VC syllables	
5.3.2.3 The first element [y] in (C)VC syllables	
5.3.3 A comparison between second elements and the monophthongs in (C)VN	J and

Table of Contents vii

(C)	V?	159
5.3.3.1 T	ne second element [ə] in (C)VC syllables	159
5.3.3.2 T	ne second element [o] in (C)VC syllables	166
5.3.3.3 T	ne second element [a] in (C)VC syllables	167
5.3.3.4 T	ne second element [a] in (C)VC syllables	170
5.4 Discuss	sion	173
Chapter 6: Su	mmary and conclusion	175
6.1 The pho	onetic properties of the vowels in Suzhou Chinese	175
6.2 Articul	atory-acoustic relation for the vowels	181
References		183
1.1	Formant frequency values (in Hz) for the	
	Formant frequency values (in Hz) for the di	
	ese	
	Articulatory data (in mm) for the vowels	in Suzhou
Appendix IV: Chinese	Articulatory data (in mm) for the diphthong	2-2

List of Figures

Figure 2-1. The vowel ellipses for the 12 vowels in Suzhou Chinese in F_2/F_1 plane, data from 10
female speakers (left) and 10 male speakers (right)
Figure 2-2. Vowel ellipses in F_2/F_1 plane (left) and in F_1/F_3 plane (right) for [i] [y] [y] in Suzhou Chinese (10 female speakers)
Figure 2-3. Vowel ellipses in F_2/F_1 plane (left) and in F_1/F_3 plane (right) for [i] [y] [y] in Suzhou Chinese (data from 10 male speakers)
Figure 2-4. Vowel ellipses and data points in F_2/F_1 plane for $[1 \ \psi]$ ("*"=[1], "+"=[ψ]) in Suzhou Chinese for female (left) and male (right) speakers
Figure 2-5. Vowel ellipses for [ø u o] in Suzhou Chinese in F ₂ /F ₁ plane for male (right) and female (left) speakers
Figure 2-6. The vowel loops for Suzhou Chinese male (small font) and female speakers (large font)
Figure 2-7. The vowel loops of Suzhou Chinese from male (small font) and female speakers (large font) before (left) and after (right) normalization (A. Before normalization; B. uniform normalization; C. non uniform normalization; D. APS normalization)
Figure 2-8. Comparison of the regression lines by the three methods. (A. Before normalization; B. uniform normalization; C. non uniform normalization; D. APS normalization)
Figure 2-9. An illustration for the receiver sensors (Tongue Tip (TT), Tongue Mid (TM), Tongue Dorsum (TD), and Ref. 1, Ref. 2) attached at different locations during data collection4
Figure 2-10. a. Photographing the roof of the mouth. The arrows show how (ideally) the view from the camera is directly up into the roof of the mouth (adopted from Ladefoged, 2003); be an example of palatogram
Figure 2-11. Palatograms and linguagrams of [i i y y] from two male speakers and two female speakers
Figure 2-12. The lingual configurations for [i] [i] [y] from three male speakers (Speaker 1, 2, 3) The highest curve is the contour of the palate. The speakers were facing right46
Figure 2-13. The lingual configurations for [1] [4] and [8] from three male speakers (Speaker 1, 2 3). The highest curve is the contour of the palate. The speakers were facing right
Figure 2-14. The lingual configurations for [ε u o ø] from three male speakers (Speaker 1, 2, 3) The highest curve is the contour of the palate. The speakers were facing right48
Figure 2-15. The lingual configurations for $[\epsilon \approx \alpha]$ from three male speakers (Speaker 1, 2, 3) The curve is the contour of the palate. The speakers were facing right49
Figure 2-16. (a) The resonator configuration approximating the vocal tract for non-low vowel and (b) relations between natural frequencies and the position of the constriction for the
configuration of the left acoustic tubes (from Stevens, 1989)

List of Figures ix

theory (Fant, 1960)
Figure 2-19. Locations of velocity nodes (points of maximum velocity) of the second resonant
frequency. (Chiba and Kajiyama, 1941)
Figure 2-20. (a) variation of the height feature by moving the tongue, jaw, and lips towards an [i]
position. (b) moving away from the [i] position by raising and advancing the blade of the
tongue towards an alveolarized high front vowel. the (C) Acoustic data of the articulatory
gestures in (a) and (b). The first seven points represent variation in Height in (a), the
remaining show the acoustic data for (b) (Ladefoged and Lindau, 1989)
Figure 2-21. A comparison of the EMA results of this study and the tongue gestures presented in
the experiment of Ladefoged and Lindau (1989)
Figure 2-22. The palatogram and linguagram of [i] on the left, and those of [i] on the right56
Figure 2-23. X-ray midsagittal tracings and formant patterns of Swedish [y] and [u] (Fant, 1973)
57
Figure 2-24. Spectrograms and formants of the fricative vowel V1 and the non-fricative close
vowel V2 in Mambila
Figure 2-25. Side view and front view of the lip position for [u] for a male speaker (upper) and a
female speaker (lower)
Figure 2-26. The waveform and spectrogram of [pu44] (a female speaker)
Figure 2-27. The lingual configurations for [u] [o] [u(ϵ)] [u(α)] [u(α)] [u(α)] of a male speaker.
Figure 2-28. Narrow-band and wide-band spectrograms of (a) [i], (b) [ɪ] (a female speaker)62
Figure 2-29. Narrow-band and wide-band spectrograms of (a) [1], (b) [4], (c) [u] and (d) [y] (a
female speaker)
Figure 2-30. spectra of (a) [3] in Portuguese (Jesus and Shadle, 1999), (b) [3] in English (Soli,
1982), the (c) [i] in Suzhou Chinese
Figure 2-31. Left: Lingual configurations for [1] [4] from a Ningbo male speaker. (Hu, 2005);
right: Lingual configurations for [1] [η] from a Suzhou male speaker67
Figure 2-32. X-ray tracings of fricative [s] in Beijing Mandarin (Ladefoged and Wu, 1984)67
Figure 2-33. The tongue configurations for [1] [i] [i], and the first three formants of the three vowels (data from a male speaker)
Figure 2-34. Vowel loops for the vowels in Suzhou Chinese (broken line and small font) and
Ningbo Chinese (unbroken line and large font) for female (left) and male (right) speakers
(Data from Hu (2005))70
Figure 2-35. Vowel loops of Suzhou Chinese (broken line and small font) and Mandarin Chinese
(plain line and large font) for female (left) and male (right) speakers (Data from Lee and Zee
(2001))
Figure 2-36. Vowel loops of Suzhou Chinese (broken line and small font) and American English
(plain line and large font) for female (left) and male (right) speakers (Data from Peterson and
Barney (1952))72

List of Figures x

Figure 3-1. The spectrogram for a short syllable of [ə?]
Figure 3-2. Vowel ellipses and scatter for vowels in Suzhou Chinese in (C)VN syllables for male
(right) and female (left) speakers
Figure 3-3. Vowel ellipses and scatter for vowels in Suzhou Chinese in (C)V? syllables for male
(right) and female (left) speakers
Figure 3-4. Mean positions for vowels in (C)VN syllables (large font) with vowels in (C)V?
syllables (small font)in F ₂ /F ₁ plane overlapping for male (right) and female (left) speakers.77
Figure 3-5. Vowel ellipses in F_2/F_1 plane for $[\mathfrak{d}(n)]$ for male (right) and female (left) speakers 78
Figure 3-6. Vowel ellipses in F_2/F_1 plane for $[\mathfrak{d}(?)]$ for male (right) and female (left) speakers 79
Figure 3-7. Vowel ellipses in F_2/F_1 plane for $[o(\mathfrak{g})]$ for male (right) and female (left) speakers 80
Figure 3-8. Vowel ellipses in F_2/F_1 plane for $[o(?)]$ for male (right) and female (left) speakers 80
Figure 3-9. Vowel ellipses in F_2/F_1 plane for $[\tilde{a}]$ for male (right) and female (left) speakers82
Figure 3-10. Vowel ellipses in F_2/F_1 plane for [a(?)] for male (right) and female (left) speakers82
Figure 3-11. Vowel ellipses in F_2/F_1 plane for $[\tilde{\alpha}]$ for male (right) and female (left) speakers83
Figure 3-12. Vowel ellipses in F_2/F_1 plane for $[\alpha(?)]$ for male (right) and female (left) speakers83
Figure 3-13. The lingual configurations for $[\mathfrak{d}(n)]$ and $[\mathfrak{e}\ \mathfrak{x}]$ from three male speakers (Speaker 1,
2, 3). The curve is the contour of the palate. The speakers were facing right85
Figure 3-14. The lingual configurations for $[\mathfrak{d}(2)\ \epsilon\ \mathfrak{a}]$ from three male speakers (Speaker 1, 2, 3).
The curve is the contour of the palate. The speakers were facing right85
Figure 3-15. The lingual configurations for $[o(\eta)\ o]$ from three male speakers (Speaker 1, 2, 3).
The curve is the contour of the palate. The speakers were facing right
Figure 3-16. The lingual configurations for [o(?) o] from three male speakers (Speaker 1, 2, 3).
The curve is the contour of the palate. The speakers were facing right
Figure 3-17. The lingual configurations for $[\tilde{a} \ \text{æ} \ \alpha]$ from three male speakers (Speaker 1, 2, 3).
The curve is the contour of the palate. The speakers were facing right
Figure 3-18. The lingual configurations for $[a(?) \ \alpha]$ from three male speakers (Speaker 1, 2, 3).
The curve is the contour of the palate. The speakers were facing right87
Figure 3-19. The lingual configurations for $[\tilde{\alpha} \ \varpi \ \alpha]$ from three male speakers (Speaker 1, 2, 3).
The curve is the contour of the palate. The speakers were facing right
Figure 3-20. The lingual configurations for $[\alpha(?) \approx \alpha]$ from three male speakers (Speaker 1, 2, 3).
The curve is the contour of the palate. The speakers were facing right
Figure 3-21. The waveform, oral flow and nasal flow of a VN syllable90
Figure 3-22. Waveforms, oral flows and nasal flows of $[\mathfrak{s}n]$ (A) $[\mathfrak{o}n]$ (B) $[\mathfrak{d}]$ (C) and $[\mathfrak{d}]$ (D) (from
a male speaker)93
Figure 3-23. Vowel ellipses and scatters of F_2/F_1 plane for $[\tilde{a}]$ and $[\tilde{a}]$ for male (right) and female
(left) speakers96
Figure 3-24. Vowel ellipses and scatters of F_2/F_1 plane for $[a(?)]$ and $[a(?)]$ for male (right) and
female (left) speakers96
Figure 3-25. Scatter figures of the vowels in (C)V? syllables for three speakers96
Figure 3-26. The lingual configurations for $[\tilde{a} \ a(?)]$ from three male speakers (Speaker 1, 2, 3).

List of Figures xi

The curve is the contour of the palate. The speakers were facing right97
Figure 4-1. DVQ for two sounds. Cursor A represents the starting point of the vowel sound, and
cursor B is the ending point. DVQ from cursor A to cursor B is shown in the tables in top left
of the spectrograms. 104
Figure 4-2. The spectrogram and DVQ curve of a diphthong. Cursor A and B are the boundaries
between steady portion and transition
Figure 4-3. The spectrogram and DVQ curve of a diphthong. The position of the crossing point
and critical line is the boundary between transition and steady portion
Figure 4-4. Temporal structure of the Suzhou diphthongs (data from 20 male and female speakers)
Figure 4-5. Temporal structure in percentage of the Suzhou diphthongs (data from 20 male and
female speakers)
Figure 4-6. Diphthong arrows for the Suzhou diphthongs in F ₂ /F ₁ plane (data from 10 female
speakers)
Figure 4-7. Diphthong Arrows for the Suzhou diphthongs in F_2/F_1 plane (data from 10 male
speakers)
Figure 4-8. Diphthong arrows and target vowel ellipses for [iæ] and vowel ellipses for
monophthongs in (C)V syllables for female (left) and male (right) speakers
Figure 4-9. Diphthong arrows and target vowel ellipses for [iα] and vowel ellipses for monophthongs in (C)V syllables for female (left) and male (right) speakers116
Figure 4-10. Diphthong arrows and target vowel ellipses for [iø] and vowel ellipses for
monophthongs in (C)V syllables for female (left) and male (right) speakers117
Figure 4-11. Diphthong arrows and target vowel ellipses for [uɛ] and vowel ellipses for
monophthongs in (C)V syllables for female (left) and male (right) speakers118
Figure 4-12. Diphthong arrows and target vowel ellipses for [ua] and vowel ellipses for
monophthongs in (C)V syllables for female (left) and male (right) speakers120
Figure 4-13. Diphthong arrows and target vowel ellipses for [uø] and vowel ellipses for
monophthongs in (C)V syllables for female (left) and male (right) speakers121
Figure 4-14. Diphthong arrows and target vowel ellipses for [ou] and vowel ellipses for
monophthongs in (C)V syllables for female (left) and male (right) speakers122
Figure 4-15. Diphthong arrows and target vowel ellipses for [øy] and vowel ellipses for
monophthongs in (C)V syllables for female (left) and male (right) speakers124
Figure 4-16 .The lingual configurations for [i(æ) i 1] from three male speakers (Speaker 1, 2, 3).
The curve is the contour of the palate. The speakers were facing right
Figure 4-17. The lingual configurations for $[\epsilon \approx (i) \approx]$ from three male speakers (Speaker 1, 2, 3).
The curve is the contour of the palate. The speakers were facing right
Figure 4-18. The lingual configurations for [i(a) i 1] from three male speakers (Speaker 1, 2, 3).
The curve is the contour of the palate. The speakers were facing right
Figure 4-19. The lingual configurations for $[a]$ and $[(i)a]$ from three male speakers (Speaker 1, 2,
3). The curve is the contour of the palate. The speakers were facing right127

List of Figures xii

Figure 4-20. The lingual configurations for $[1(\emptyset)]$ if $[1]$ from three male speakers (Speaker 1, 2, 3).
The curve is the contour of the palate. The speakers were facing right
Figure 4-21. The lingual configurations for $[(i)\emptyset\ \emptyset]$ from three male speakers (Speaker 1, 2, 3).
The curve is the contour of the palate. The speakers were facing right
Figure 4-22. The lingual configurations for $[u(\epsilon)\ u\ o]$ from three male speakers (Speaker 1, 2, 3).
The curve is the contour of the palate. The speakers were facing right
Figure 4-23. The lingual configurations for [(u) ϵ from three male speakers (Speaker 1, 2, 3).
The curve is the contour of the palate. The speakers were facing right
Figure 4-24. The lingual configurations for $[u(\alpha)\ u\ o]$ from three male speakers (Speaker 1, 2, 3).
The curve is the contour of the palate. The speakers were facing right
Figure 4-25. The lingual configurations for $[(u)a\ a]$ from three male speakers (Speaker 1, 2, 3).
The curve is the contour of the palate. The speakers were facing right
Figure 4-26. The lingual configurations for [o u u(\emptyset) (u) \emptyset] from three male speakers (Speaker 1, 2,
3). The curve is the contour of the palate. The speakers were facing right132
Figure 4-27. The lingual configurations for [o α o(u)] from three male speakers (Speaker 1, 2, 3).
The curve is the contour of the palate. The speakers were facing right
Figure 4-28. The lingual configurations for [u o (o)u] from three male speakers (Speaker 1, 2, 3).
The curve is the contour of the palate. The speakers were facing right
Figure 4-29 The lingual configurations for $[\emptyset(y)\ \emptyset]$ from three male speakers (Speaker 1, 2, 3).
The curve is the contour of the palate. The speakers were facing right
Figure 4-30. The lingual configurations for $[y \ i \ (\emptyset) \ y]$ from three male speakers (Speaker 1, 2, 3).
The curve is the contour of the palate. The speakers were facing right
Figure 4-31. Boxes of the DVQ for all monophthongs and diphthongs in Suzhou Chinese136
Figure 4-32. Spectrograms of [v] from two different speakers
Figure 4-33. Spectrograms of [s1] by two speakers. DVQ for [s1] on left is 339.4, and DVQ for [s1]
on right is 6658.7
Figure 5-1. Diphthong arrows for the diphthongs in Suzhou Chinese in F_2/F_1 plane (C)VN and
(C)V? in F ₂ /F ₁ plane (data from 10 female speakers)
Figure 5-2. Diphthong arrows for the diphthongs in Suzhou Chinese in F_2/F_1 plane (C)VN and
(C)V? in F ₂ /F ₁ plane (data from 10 male speakers)
Figure 5-3. Vowel ellipses in F_2/F_1 plane for $[i(n)]$ for male (right) and female (left) speakers 148
Figure 5-4. Vowel ellipses in F_2/F_1 plane for $[i(\mathfrak{d})]$ for male (right) and female (left) speakers .148
Figure 5-5. The lingual configurations for $[i(n)]$ and $[i(n)]$ from three male speakers (Speaker 1, 2,
3). The curve is the contour of the palate. The speakers were facing right149
Figure 5-6. Vowel ellipses in F_2/F_1 plane for $[i(0\eta)]$ for male (right) and female (left) speakers. 149
Figure 5-7. Vowel ellipses in F_2/F_1 plane for [i(o?)] for male (right) and female (left) speakers .149
Figure 5-8. The lingual configurations for $[i(0\eta)]$ and $[i(0?)]$ from three male speakers (Speaker 1,
2, 3). The curve is the contour of the palate. The speakers were facing right150
Figure 5-9. Vowel ellipses in F_2/F_1 plane for $[i(\tilde{a})]$ for male (right) and female (left) speakers 151
Figure 5-10. Vowel ellipses in F_2/F_1 plane for [i(a?)] for male (right) and female (left) speakers 151

List of Figures xiii

Figure 5-11. Vowel ellipses in F_2/F_1 plane for $[i(\tilde{\alpha})]$ for male (right) and female (left) speakers .151
Figure 5-12. Vowel ellipses in F_2/F_1 plane for $[i(\alpha?)]$ for male (right) and female (left) speakers
Figure 5-13. The lingual configurations for $[i(\tilde{a})]$ $[i(a?)]$ $[i(\tilde{a})]$ and $[i(\alpha?)]$ from three male speakers (Speaker 1, 2, 3). The curve is the contour of the palate. The speakers were facing right.
Figure 5-14. Vowel ellipses in F ₂ /F ₁ plane for [u(ən)] for male (right) and female (left) speakers
Figure 5-15. Vowel ellipses in F ₂ /F ₁ plane for [u(ə?)] for male (right) and female (left) speakers
Figure 5-16. The lingual configurations for $[u(\vartheta n)]$ and $[u(\vartheta n)]$ from three male speakers (Speaker 1, 2, 3). The curve is the contour of the palate. The speakers were facing right
Figure 5-17. Vowel ellipses in F_2/F_1 plane for $[u(\tilde{a})]$ for male (right) and female (left) speakers 156 Figure 5-18. Vowel ellipses in F_2/F_1 plane for $[u(a?)]$ for male (right) and female (left) speakers 156 $[u(a?)]$ for male (right) and female (left) speakers 156 $[u(a?)]$
Figure 5-19. Vowel ellipses in F_2/F_1 plane for $[u(\tilde{\alpha})]$ for male (right) and female (left) speakers 156 Figure 5-20. The lingual configurations for $[u(\tilde{\alpha})]$ $[u(a?)]$ and $[u(\tilde{\alpha})]$ from three male speakers (Speaker 1, 2, 3). The curve is the contour of the palate. The speakers were facing right 157 Figure 5-21. Vowel ellipses in F_2/F_1 plane for $[y(\tilde{\alpha})]$ for male (right) and female (left) speakers
Figure 5-22. Vowel ellipses in F_2/F_1 plane for $[y(\mathfrak{d})]$ for male (right) and female (left) speakers 158
Figure 5-23. The lingual configurations for $[y(\ni n)]$ and $[y(\ni ?)]$ from three male speakers (Speaker 1, 2, 3). The curve is the contour of the palate. The speakers were facing right
Figure 5-24. Vowel ellipses in F ₂ /F ₁ plane for [in] for male (right) and female (left) speakers 160 Figure 5-25. Vowel ellipses in F ₂ /F ₁ plane for [(i)ə(?)] for male (right) and female (left) speakers
Figure 5-26. The lingual configurations for [i(n)] and [(i)ə(?)] from three male speakers (Speaker 1, 2, 3). The curve is the contour of the palate. The speakers were facing right161
Figure 5-27. Vowel ellipses in F_2/F_1 plane for $[(y) \ni (n)]$ for male (right) and female (left) speakers
Figure 5-28. Vowel ellipses in F ₂ /F ₁ plane for [(y)ə(?)] for male (right) and female (left) speakers
Figure 5-29. The lingual configurations for $[(y) \ni (n)]$ and $[(y) \ni (?)]$ from three male speakers (Speaker 1, 2, 3). The curve is the contour of the palate. The speakers were facing right163 Figure 5-30. Vowel ellipses in F_2/F_1 plane for $[(u) \ni (n)]$ for male (right) and female (left) speakers
Figure 5-31. Vowel ellipses in F_2/F_1 plane for [(u)ə(?)] for male (right) and female (left) speakers
Figure 5-32 The lingual configurations for [(u)a(n)] and [(u)a(2)] from three male speakers

List of Tables xiv

(Speaker 1, 2, 3). The curve is the contour of the palate. The speakers were facing right165
Figure 5-33. Vowel ellipses in F_2/F_1 plane for $[(i)o(\mathfrak{y})]$ for male (right) and female (left) speakers
Figure 5-34. Vowel ellipses in F ₂ /F ₁ plane for [(i)o(?)] for male (right) and female (left) speakers
Figure 5-35. The lingual configurations for $[(i)o(\eta)]$ and $[(i)o(\vartheta)]$ from three male speakers (Speaker 1, 2, 3). The curve is the contour of the palate. The speakers were facing right167
Figure 5-36. Vowel ellipses in F_2/F_1 plane for $[(i)\tilde{a}]$ for male (right) and female (left) speakers . 168
Figure 5-37. Vowel ellipses in F ₂ /F ₁ plane for [(i)a(?)] for male (right) and female (left) speakers
Figure 5-38. Vowel ellipses in F_2/F_1 plane for $[(u)\tilde{a}]$ for male (right) and female (left) speakers 168
Figure 5-39. Vowel ellipses in F ₂ /F ₁ plane for [(u)a(?)] for male (right) and female (left) speakers
Figure 5-40. The lingual configurations for [(i)ã] [(i)a(?)] [(u)ã] and [(u)a(?)] from three male speakers (Speaker 1, 2, 3). The curve is the contour of the palate. The speakers were facing right
Figure 5-41. Vowel ellipses in F_2/F_1 plane for $[(i)\tilde{a}]$ for male (right) and female (left) speakers. 170
Figure 5-42. Vowel ellipses in F_2/F_1 plane for $[(i)\alpha(?)]$ for male (right) and female (left) speakers
Figure 5-43. Vowel ellipses in F_2/F_1 plane for $[(u)\tilde{a}]$ for male (right) and female (left) speakers 171
Figure 5-44. The lingual configurations for $[(i)\tilde{\alpha}]$ and $[(i)\alpha(?)]$ from three male speakers (Speaker
1, 2, 3). The curve is the contour of the palate. The speakers were facing right172
Figure 5-45. The lingual configurations for $[(u)\tilde{a}]$ from three male speakers (Speaker 1, 2, 3). The
curve is the contour of the palate. The speakers were facing right
List of Tables
Table 1-1 Vowel system of Suzhou Chinese
Table 1-2. The consonant system of Suzhou Chinese (Chao, 1928)9
Table 1-3. The citation tone system of Suzhou Chinese (Wang, 1983)9
Table 2-1. Test words for target monophthongs [1 ų i y u 1 y ø ε o æ a] in Suzhou14
Table 2-2. Means and standard deviations (in Hz) of the first three formants of the vowels in Suzhou Chinese (data from 10 female speakers)
Table 2-3. Means and standard deviations (in Hz) of the first three formants of the vowels in
Suzhou Chinese (data from 10 male speakers)
Table 2-4. A comparison of the frequency values of first three formants between [i] and [ɪ], [y] and [y]
Table 2-5. The frequency values of first three formants for [i] [i] [y] [v] (male speakers) in Suzhou

OList of Tables

Chinese, Cantonese (Zee, 2000), Beijing Mandarin (Lee and Zee 2001) and English
(Peterson and Barney, 1952)
Table 2-6. The HNR (in dB) for the pairs of fricative and non-fricative vowels
Table 2-7. A comparison of the frequency values of the first three formants between [1] and [4].24
Table 2-8. The F_2 and F_3 difference between [1] and [ψ] for each speaker
Table 2-9. A comparison of the frequency values of first three formants between $[\emptyset]$ and $[\iota \ \iota]$ 26
Table 2-10. A comparison of the frequency values of first three formants between [ø] and [u], and
between [u] and [o]
Table 2-11. Values of first three formants for [u o ø] in Suzhou Chinese, Beijing Mandarin and
Ningbo Chinese (male speakers)
Table 2-12. Vowel distances between $I - \varepsilon$, $\varepsilon - \omega$, $I - \omega$
Table 2-13. Values of first three formants for [ε æ α] in Suzhou Chinese, and English (male speakers)
Table 2-14. Percentage differences (PD) between female and male formants (F ₁ , F ₂ and F ₃)31
Table 2-15. The first three formants of the female speakers scaled to those of the males of Suzhou
Chinese using uniform normalization
Table 2-16. The first three formants of the female speakers scaled to those of the males of Suzhou
Chinese using non-uniform normalization
Table 2-17. The three coordinate values for the vowels of male and female speakers of Suzhou
Chinese in the auditory-perceptual space (APS)
Table 2-18. The mean distance and width of the constriction in the palatogram and linguagram45
Table 2-19. Place of articulation of the four vowels for different speakers
Table 2-20 Means (in Hz) of the first three formants for [1 i] in Suzhou Chinese (data from 10
female speakers and 10 male speakers)
Table 2-21. Formant structures for [u i i]61
Table 2-22. Means of HNR in five frequency ranges for the all close vowels [1 η i y u $_{\rm I}$ $_{\rm Y}$] in
Suzhou Chinese
Table 2-23. The frequency values of the first three formants for the apical vowels for male
speakers in Suzhou Chinese, Ningbo Chinese (Hu, 2005), Beijing Mandarin (Lee and Zee,
2001)68
Table 3-1. Test (C)VC syllables74
Table 3-2. Means and standard deviations (in Hz) of the frequency values of the first three
formants of the vowels in (C)VN and (C)V? syllables (data from 10 female speakers)76
Table 3-3. Means and standard deviations (in Hz) of the frequency values of the first three
formants of the vowels in (C)VN and (C)V? syllables (data from 10 male speakers)76
Table 3-4. Comparison of the first three formants for [ə] of [ən] [əʔ] and monophthong [ϵ]78
Table 3-5. Comparison of the first three formants for [o] of [oŋ] [oʔ] and monophthong [o]80
Table 3-6. Comparison of the first three formants for [a] of $[\tilde{a}]$ [a?] and monophthong $[\mathfrak{x}]$ 81
Table 3-7. Comparison of the first three formants for $[a]$ of $[\tilde{a}]$ $[a?]$ and those for $[a]$ in open
syllables (data from 10 male speakers)

OList of Tables xvi

Table 3-8. PNV and PNN of the monophthongs in (C)VN syllables
Table 3-9. Comparison of the first three formants for front 'a' and those for back 'a' in (C)VN
syllables and (C)V? syllables95
Table 4-1. Test words for diphthongs
Table 4-2. The range of F ₂ change and rate of change of F ₂ for the diphthongs in Suzhou Chinese.
Table 4-3. Mean values (in Hz) and standard deviations of the first three formants for the
diphthongs in Suzhou Chinese (data from 10 female speakers)
Table 4-4. Mean values (in Hz) and standard deviations of the first three formants for the
diphthongs in Suzhou Chinese (data from 10 male speakers)
Table 4-5. Comparison of the first three formants of the two elements of [iæ] and those for the
monophthongs [i ɪ æ]
Table 4-6. Comparison of the first three formants of the two elements of [ia] and those for the
monophthongs [i ɪ a]115
Table 4-7. Comparison of the first three formants of the two elements of [iø] and those for the
monophthongs [i i v ø]117
Table 4-8. Comparison of the first three formants of the two elements of $[u\epsilon]$ and those for the
monophthongs [u o ϵ].
Table 4-9. Comparison of the first three formants of the two elements of [ua] and those for the
monophthongs [u o a]119
Table 4-10. Comparison of the first three formants of the two elements of [uø] and those for the
monophthongs [u o ø]
Table 4-11. Comparison of the first three formants of the two elements of [ou] and those for the
monophthongs [o u]
Table 4-12. Comparison of the first three formants of the two elements of [øv] and those for the
monophthongs [ø y y]
Table 4-13. Means of DVQ and standard deviations for all monophthongs and diphthongs in
Suzhou Chinese
Table 4-14. DVQ for [uø] and [ø] for 10 male and 10 female speakers in Suzhou
Table 4-15. The mean DVQ for [y] for each individual speaker
Table 5-1. Test words for target diphthongs of (C)VC syllables in Suzhou
Table 5-2. Means in Hz and standard deviations for the first three formants of the diphthongs in
(C)VN (data from 10 female speakers)
Table 5-3. Means in Hz and standard deviations for the first three formants of the diphthongs in
(C)VN (data from 10 male speakers)
Table 5-4. Means in Hz and standard deviations for the first three formants of the diphthongs in
(C)V? (data from 10 female speakers)
Table 5-5. Means in Hz and standard deviations for the first three formants of the diphthongs in
(C)V? (data from 10 male speakers)
Table 5-6. Comparison of F3 (in Hz) among [i(o ₁)] [i(o ₂)] [i] and [y] for both male and female

OList of Tables xvii

speakers	150
Table 5-7. Comparison of F1 (in Hz) between low vowels in DN and D? syllables	174
Table 6-1. Vowels in (C)V syllables of Suzhou Chinese	176
Table 6-2. Diphthongs in (C)V syllables of Suzhou Chinese	176
Table 6-3. The vowels in (C)VC syllables of Suzhou Chinese	177
Table 6-4. The vowels in (C)VC syllables of Suzhou Chinese	178
Table 6-5. The previous transcriptions and phonetic transcriptions for the monophthongs	and
diphthongs in (C)V syllables	180
Table 6-6. Previous transcriptions and phonetic transcriptions for the monophthongs	and
diphthongs in (C)VC syllables	181