STUDY ON RELATIONSHIP BETWEEN CATCHMENT AND BUILT ENVIRONMENT OF METRO STATIONS IN HONG KONG AND SHENZHEN

Yin Ziyuan

DOCTOR OF PHILOSOPHY
CITY UNIVERSITY OF HONG KONG
JUNE 2014
CITY UNIVERSITY OF HONG KONG
香港城市大學

Study on Relationship between Catchment and Built Environment of Metro Stations in Hong Kong and Shenzhen
港深軌道站吸引力與城市空間要素關聯研究

Submitted to
Department of Civil and Architectural Engg
土木及建築工程系
in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy
哲學博士學位

by

Yin Ziyuan
殷子淵

JUNE 2014
二零一四年六月
Abstract

After many years’ of rapid development, many cities in China are suffering from several postindustrial urban issues, such as crisis of energy and air pollution. To advocate more use of public transport is certainly one of the effective approaches to help make urban development more sustainable. To this end, constructing metro systems integrated with land use is continually made use of and discussed worldwide; specifically, many researches started to focus on the cases in North America at the end of twentieth century. With the typical urban image of high rise and high density city, MTR of Hong Kong became one of the most successful metro systems of the world. To date, nearly 50% Hong Kong people dwell within 500 meters of a MTR station, more than 30% daily travel by the metro system which is less than 180km of total route length, only half the length of Beijing. With ‘rail plus property’ (R+P) mode, MTR became one of a kind urban rail system that operated without any further subsidy from government.

This dissertation focuses on the issues of how built environmental (BE) factors impact on catchment area of metro stations, and surveyed 74 stations in Hong Kong and cases in Shenzhen, two cities, which are managed under different policies, although huge population has shaped similar high density land use pattern with same climate situation. Through quantitative analysis on the relationship between patronage and BE factors that have been suggested by early research, some significant parameters have been specified referring to building forms and spatial structures of catchment areas. Accumulating pattern of most of BE factors has been found within station catchment areas in Hong Kong; therefore, correlative relation has been characterized and thus, we found, that a station’s centralized compactness of urban spatial structure accelerates the riding intent of metro. The findings of case study in Hong Kong have been validated through comparative study of Shenzhen.

Based on quantized datasets of stations and census materials in Hong Kong, quantitative approaches of space syntax and geography information system (GIS) have been employed on the analysis of urban configuration and spatial structure. All
cases have been investigated together and examined in groups, classified by features of location, density, and patronage rate of station, through which the effect of BE dimensions can be evaluated among stations with similar spatial features.

Most of related studies have focused on inspiration on high patronage through economic or land use viewpoints. Based on general survey on BE factors related to ridership, this dissertation extends exploration to the gap of issues between urban spatial structure and riding intent, through comprehensive evaluations on urban configuration and inhabitants’ activities. These evaluations reveal that powerful station catchment relates to compactness of urban structure, wherein accumulation of activities and agglomeration of urban functions may provide highly efficient travel for inhabitants. Finally, the features of compact pattern centralized by metro catchment have been characterized in three levels, such as (a) station building form, (b) station accessibility, and (c) accumulation of daily activities in the area. Then, in conclusion, through the comparative study between cases in Hong Kong and Shenzhen, the key lessons were drawn at the different constructing stages of the metro system.
Contents

List of Figures v

List of Tables vii

Chapter One: Introduction

1.1 Introduction 1

1.2 Research Objective and Thesis Structure 2

Chapter Two: Literature Review

2.1 Land Use, Transportation, and Sustainability 6

2.1.1 Land Use Integrated with Transportation 7

2.1.2 Features of Sustainable Land Use Pattern 8

2.2 Urban Configuration and Accumulation 10

2.2.1 Accessibility and Integration 12

2.2.2 ‘Betweenness’ and Choice 13

2.3 BE Dimensions and Metro Station Catchment 15

2.3.1 Definition of Catchment Area 16

2.3.2 BE Dimensions Related to Catchment 18

2.3.2.1 BE Factors that Impacting on Transit Riding Intent 18

2.3.2.2 Urban Design Approaches and BE Dimensions 20

2.3.2.3 Features of External BE Factors 24

2.3.3 Density, Distance, and Catchment 25

Chapter Three: Methodology 28

3.1 From Qualitative to Quantitative Approach of Urban Study Researching Methods 29

3.2 To Make Unmeasured World Measurable 32

3.3 Extending the Space Syntax to GIS 37

3.4 Combined Approaches for Study on Catchment of Metro Station in Hong Kong and Shenzhen 38

Chapter Four: The Case Study on Hong Kong MTR Stations 42

4.1 The Relationship between MTR and Urban Morphology in Hong Kong 42

4.1.1 The Formation of Hong Kong’s Urban Morphology 44
4.1.2 Construction of MTR in Hong Kong 47
4.1.3 Interaction of MTR and Urban Configuration 49

4.2 Typology of MTR Stations 53
4.2.1 Classification of MTR Stations by Location Character 54
4.2.2 Categories of MTR Station Spatial Types 60
4.2.3 Building Spatial Typology and Station Catchment BE Dimensions 62
4.2.3.1 Global Correlation of ‘UPTOP’ and Density 63
4.2.3.2 A Study on the Correlation between ‘UPTOP’ and Density as Station Grouping 64
4.2.3.3 Correlation of ‘UPTOP’ and Facilities Distribution 67
4.2.4 Compact Development Leads to Compactness and Accumulation 68

4.3 Station Exits and Configuration of Street Network 69
4.3.1 Classification of MTR Station Exits 69
4.3.2 Catching Ability of MTR Outdoor Exits 71
4.3.3 MTR Exits Accumulated the City 72

4.4 Core of Accumulating? Global or Local 73

Chapter Five: BE Dimensions and Local Configuration of MTR Station Catchment Area 75

5.1 Survey of MTR Station Catchment Areas 77
5.1.1 Defining Catchment Area and Reference Background Region 77
5.1.2 Time Period of Data Set 78

5.2 MTR Patronage and Residential Density 79
5.2.1 Relationship of Ridership and Unit Density 80
5.2.2 Relationship between Patronage Rate and Residential Unit Density 82
5.2.3 How Public Unit Density Impacting on Patronage Rate 85
5.2.3.1 Affordable Housing and MTR Ridership 88
5.2.3.2 Spatial Construction and Demographic Factor of Public Houses 89
5.2.4 MTR Patronage Rate and Catchment Area Compactness 92

5.3 Riding Willingness and Spatial Compactness 93
5.3.1 Real Distance and MTR Riding Willingness 94
Chapter Five: Accessibility of Urban Accessibility

5.3 Evaluation of Spatial Compactness by Real Distance Mode

5.3.1 Real Distance and Decreasing Rate

5.3.1.1 Real Distance and Decreasing Rate

5.3.1.2 The Relationship between Real Distance and Euclid Distance

5.3.2 Evaluation of Spatial Compactness by Real Distance Mode

5.3.3 Discussion

5.4 Accessibility of Street Configuration in Catchment Area

5.4.1 Outskirt Region

5.4.1.1 Zone 1, West Part of New Territories and Tung Chung New Town

5.4.1.2 Zone 2, North Part of New Territories

5.4.2 Urban Fringe Areas

5.4.2.1 Zone 3, Sha Tin and Ma On Shan

5.4.2.2 Zone 4, Tsuen Wan

5.4.2.3 Zone 5, Tseung Kwan O

5.4.3 Developed Areas

5.4.3.1 Zone 6, From Wong Tai Sin to Kwun Tong

5.4.3.2 Zone 7, East part of Hong Kong Island

5.4.4 Urban Central Region

5.4.5 Station Centralizing Accessibility

5.5 Distribution of Urban Facilities and Travelling Behaviors

5.5.1 Urban Facilities and Residential Building

5.5.2 Urban Facilities, Up-top Building, and ‘R+P’

5.6 Compactness Supports Strong Catchment

Chapter Six: Comparative Study of Metro Catchment in Shenzhen

6.1 Distribution of Urban Facilities in Shenzhen and Hong Kong

6.1.1 Study on Stations with Lower Accumulating Values of Urban Facilities

6.1.2 Approaches to Accumulate More Activities

6.2 Pattern of Residential Density and Metro System in Nan Shan and Hong Kong

6.2.1 Survey of Accumulating Rate of Residential Buildings in Nan Shan
6.2.2 Difference of Land Use Pattern in Station Catchment Areas between Nan Shan and Hong Kong

6.3 Discussion

Chapter Seven: Conclusion

7.1 Catchment
7.2 Compact Spatial Pattern Centralized by Metro Catchment
7.3 Lessons
7.4 Limitation and Future Research

References

Appendix A: Background Statistics on MTR Stations in Hong Kong
Appendix B: Background Statistics on MTR Stations in Shenzhen
Appendix C: Index of Abbreviation of Factors Used in this Thesis
List of Figures

Figure 4-01 MTR System Map 43
Figure 4-02 Early Street Network of Hong Kong Island 44
Figure 4-03 Process of Station Areas in SHS and FAN 48
Figure 4-04 Main Global Routes of Roads Network in Hong Kong
(without MTR) 51
Figure 4-05 Main Global Routes of Roads Network in Hong Kong (with MTR) 52
Figure 4-06 Station Building Forms 61
Figure 4-07 Spatial Analysis of Station Exits 72
Figure 5-01 Distribution of PaW & Population in MTR Catchment 80
Figure 5-02 Distribution of PaW & UDen500 of 52 MTR Stations Catchment 82
Figure 5-03 Distribution of PaWR & UDen500 of 19 MTR Stations Catchment 84
Figure 5-04 Distribution of PaWR & UDen500 of 64 MTR Stations Catchment 87
Figure 5-05 Distribution of All Cases of Real Distance 96
Figure 5-06 Distribution of MTR Rate & Real Distance from 220 to 650 97
Figure 5-07 Distribution of MTR Rate of Real Distance from 650 to 1080 99
Figure 5-08 Distribution of Relationship between Euclid Distance & Detour Rate
(Dr: 220 to 650) 100
Figure 5-09 Distribution of Relationship between Euclid Distance & Real Distance

Figure 5-10 The Centrality of Street Network Effects on the Accessibility of the Region 106
Figure 5-11 The Accumulating Distribution of MTR Station Catchment 107
Figure 5-12 Index of MTR Stations (Selected) in Hong Kong 111
Figure 5-13 HK-Zone-1 MTR catchment spatial analysis (R=400) 112
Figure 5-14 HK-Zone-1 MTR catchment spatial analysis (R=800) 113
Figure 5-15 HK-Zone-1 MTR catchment spatial analysis (R=1200) 114
Figure 5-16 HK-Zone-2 MTR catchment spatial analysis (R=400) 121
Figure 5-17 HK-Zone-2 MTR catchment spatial analysis (R=800) 122
Figure 5-18 HK-Zone-2 MTR catchment spatial analysis (R=1200)
Figure 5-19 HK-Zone-3 MTR catchment spatial analysis (R=400)
Figure 5-20 HK-Zone-3 MTR catchment spatial analysis (R=800)
Figure 5-21 HK-Zone-3 MTR catchment spatial analysis (R=1200)
Figure 5-22 HK-Zone-4 MTR catchment spatial analysis (R=400)
Figure 5-23 HK-Zone-4 MTR catchment spatial analysis (R=800)
Figure 5-24 HK-Zone-4 MTR catchment spatial analysis (R=1200)
Figure 5-25 HK-Zone-5 MTR catchment spatial analysis (R=400)
Figure 5-26 HK-Zone-5 MTR catchment spatial analysis (R=800)
Figure 5-27 HK-Zone-5 MTR catchment spatial analysis (R=1200)
Figure 5-28 HK-Zone-6 MTR catchment spatial analysis (R=400)
Figure 5-29 HK-Zone-6 MTR catchment spatial analysis (R=800)
Figure 5-30 HK-Zone-6 MTR catchment spatial analysis (R=1200)
Figure 5-31 HK-Zone-7 MTR catchment spatial analysis (R=400)
Figure 5-32 HK-Zone-7 MTR catchment spatial analysis (R=800)
Figure 5-33 HK-Zone-7 MTR catchment spatial analysis (R=1200)
Figure 5-34 HK-Zone-8 MTR catchment spatial analysis (R=400)
Figure 5-35 HK-Zone-8 MTR catchment spatial analysis (R=800)
Figure 5-36 HK-Zone-8 MTR catchment spatial analysis (R=1200)
Figure 5-37 HK-Zone-9 MTR catchment spatial analysis (R=400)
Figure 5-38 HK-Zone-9 MTR catchment spatial analysis (R=800)
Figure 5-39 HK-Zone-9 MTR catchment spatial analysis (R=1200)
Figure 5-40 The Travel Distance and Distribution of Interesting Points in MTR Station Catchment
Figure 6-01 Shenzhen Metro System Map
Figure 6-02 Layout of Passage Linking to Campus of CityU in KOT Station
Figure 6-03 Layout of WOW Station
Figure 6-04 Example of Different Detour Rate with Same Euclid Distance
Figure 6-05 Layout of DLG Station
List of Tables

Table 4-01 List of 74 MTR Stations Selected in this Study 55
Table 4-02a Grouped Stations by PaW & LoR 59
Table 4-02b Grouped Stations by PaE & LoR 59
Table 4-03 Correlations of UPTOP with Seven BE Factors 64
Table 4-04 Correlations of Group HL 65
Table 4-05 Correlations of Group MM 65
Table 4-06 Correlations of Group LH 65
Table 4-07 Correlations of Group R+P 66
Table 4-08 Correlations of Group LowDensity 67
Table 4-09 Correlations of Group HighDensity 67
Table 4-10a Index of Station in ‘HighDensity’ Group (UR200) 67
Table 4-10b Index of Station in ‘LowDensity’ Group (UR200) 67
Table 4-11 Correlation of UPTOP & Facilities (R200) 68
Table 5-01 Correlation of UPTOP & Facilities (R200) 79
Table 5-02 Classification of MTR Stations by PaW & Population 81
Table 5-03 Correlations of Patronage (Weekday) & Density (N=71) 81
Table 5-04 Coefficients of Patronage (Weekday) & Density (N=52) 81
Table 5-05 Correlations of Patronage (Weekend) & Density (N=19) 82
Table 5-06a Correlations of Patronage (Weekday) & Density (N=71) 83
Table 5-06b Correlations of Patronage (Weekday) & Density (N=52) 83
Table 5-06c Correlations of Patronage (Weekday) & Density (N=19) 83
Table 5-07a Correlations of Patronage (Weekend) & Density (N=71) 83
Table 5-07b Correlations of Patronage (Weekend) & Density (N=52) 83
Table 5-07c Correlations of Patronage (Weekend) & Density (N=19) 83
Table 5-08a Correlations of Patronage (Weekday) & Density (N=64) 85
Table 5-08b Correlations of Patronage (Weekend) & Density (N=64) 85
Table 5-09 Correlations of Patronage Rate & Density (N=64) 87
Table 5-10 Correlations of Public House Density & Street Density 89
Table 5-11 Top 20% Stations with Higher Rate of Public Houses 89
Table 5-12 Correlations of MTR Rate and Distance of Building 91
Table 5-13 Correlations of MTR Rate and Distance of Building 92
Table 5-14 Correlations of MTR Patronage & Real Distance 95
Table 5-15 Correlations of Euclid Distance & Real Distance 100
Table 5-16 Real Compactness Rate of 24 Stations 103
Table 5-17 Stations with Higher Accumulation Value in All Models 108
Table 5-18 Stations with Lower Accumulation Value in All Models 108
Table 5-19 Correlations of Residential Density & Facilities 155
Table 5-20 Correlations of Building Developing Characters & Facilities 156
Table 6-01 Index of Operating Metro Stations in Shenzhen 160
Table 6-02 Accumulating Rate of Urban Facilities in HK and SZ 160
Table 6-03 Average Value of Accumulating Rate of Urban Facilities in HK and SZ 161
Table 6-04 Values of Accumulating Rate of Selected Facilities in SZ
(Lower 20 stations) 161
Table 6-05 Values of Accumulating Rate of Selected Facilities in HK
(Lower 20 stations) 162
Table 6-06 Accumulating Rate of Residential Building Area of 25 Stations in Nan Shan 166
Table 6-07 Residential Unit Accumulating Rate of 74 Stations in HK 167
Table 6-08 Average Accumulating Rate of all Stations in Nan Shan and HK 168
Table 6-09 Residential Density and Distribution of Facilities in 25 Stations in Nan Shan 169