BAYESIAN INVERSE ANALYSIS IN
GEOTECHNICAL SITE CHARACTERIZATION

HUANG KAI

DOCTOR OF PHILOSOPHY
CITY UNIVERSITY OF HONG KONG
AUGUST 2014
CITY UNIVERSITY OF HONG KONG
香港城市大學

Bayesian Inverse Analysis in Geotechnical Site Characterization
岩土工程勘探貝葉斯反分析研究

Submitted to
Department of Architecture and Civil Engineering
土木及建築工程系
in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy
哲學博士學位

by

Huang Kai
黃凱

August 2014
二零一四年八月
Abstract

Determining the underground stratigraphy (i.e., number of soil layers and their thicknesses underground) and estimating soil properties are two important aspects in geotechnical site characterization. In general, the determination of underground conditions relies on several in-situ and/or laboratory tests (e.g., cone penetration test (CPT)). Interpretation of the results from these tests (e.g., cone tip resistance from CPT) is needed to determine the underground stratigraphy and estimate soil properties. It is well-recognized that site characterization data contains various uncertainties (e.g., inherent variability). Such uncertainties have not been explicitly considered in traditional geotechnical site characterization, which has been mainly deterministic. On the other hand, with the recent development of reliability-based design methods around the world, probabilistic interpretation of site characterization data are necessary to quantify these uncertainties in a rational and transparent manner.

To address this problem, a Bayesian inverse analysis framework is developed for proper characterization of uncertainties in the interpretation of site observation data. Various uncertainties arising in the data interpretation are considered explicitly in the Bayesian inverse analysis framework. The interpretation of site characterization data is treated as an inverse analysis problem, in which the data are used as the input of the inverse analysis for identifying the underground stratigraphy and estimating soil properties in each soil layer. The Bayesian inverse analysis framework is applied in the classification of soil type, liquefaction severity analysis and subdivision of soil strata in London Clay Formation (LCF).

Bayesian approaches are developed for identification of underground soil stratification and soil classification based on the Robertson chart using the Bayesian inverse analysis framework and CPT tests. The uncertainty in CPT-based soil classification using the Robertson chart is modeled explicitly in the Bayesian approaches. The proposed approaches
are illustrated and validated using a set of real-life CPT data obtained from a site at the National Geotechnical Experimentation Sites (NGES) of the Texas A&M University, USA and a series of simulated data, respectively. They are shown to properly identify the underground soil strata and classify the soil type of each layer.

Bayesian approaches are then developed for identifying the statistically homogeneous soil layers and characterizing the cyclic resistance ratio (CRR) in each layer using CPT tests, in which the inherent variability of the CRR is considered explicitly. The proposed approaches are illustrated and validated using a set of real-life CPT data collected from a site at the Dodd Farm, USA and a number of simulated data sets, respectively. It is shown that the proposed approaches provide proper identification of statistically homogeneous soil layers and characterization of the CRR. The estimated statistically homogeneous soil layers and soil properties (i.e., the CRR) from the Bayesian approaches are subsequently used to identify the liquefiable soil strata and quantify their liquefaction severity using Monte Carlo Simulations. In this way, various uncertainties in the interpretation of CPT data are incorporated into the liquefaction severity analysis properly. The proposed approaches are illustrated using a set of real CPT data collected from a site at the Dodd Farm, USA. It is shown that the proposed approach identifies the liquefiable soil strata and quantifies their liquefaction severity properly. In addition, a sensitivity study is performed to explore the effect of spatial variability on the soil liquefaction severity.

The Bayesian inverse analysis framework is also used for determining the layering structure in LCF based on water content data. The uncertainties in the scattersness of water content data are considered properly. The proposed approaches are illustrated and validated using a water content profile at St James’s Park, London and a number of simulated data sets, respectively. They are shown to correctly identify the soil strata in LCF. In addition, a sensitivity study is performed to explore the effect of data quantity on soil strata identification.
2.1.2 In-situ investigation and laboratory testing ... 11

2.1.3 Interpretation of observation data and estimation of the site subsurface conditions ... 12

2.1.4 Challenges in estimating subsurface conditions ... 15

2.2 Uncertainties in Soil Properties ... 15

2.2.1 Aleatory uncertainty in estimating soil properties .. 15

2.2.2 Epistemic uncertainty in estimating soil properties .. 21

2.3 Bayesian Approach for the Interpretation of Site Characterization Data 23

2.3.1 Updating of model parameters based on observation data 23

2.3.2 Prior distribution ... 25

2.3.3 Likelihood function... 26

2.3.4 Posterior distribution ... 27

2.3.5 Updating the occurrence probability of an event .. 29

2.4 CPT-based Soil Classification ... 29

2.4.1 Deterministic approaches .. 29

2.4.2 Probabilistic approaches ... 35

2.5 Soil Liquefaction Potential Analysis ... 37

2.5.1 Deterministic approaches .. 38

2.5.2 Probabilistic approaches ... 45

2.6 London Clay Formation and its Stratigraphy ... 51

Chapter 3 Bayesian Inverse Analysis Framework for Estimating Subsurface Conditions... 54

3.1 Introduction .. 54

3.2 Uncertainty Modeling in the Bayesian Inverse Analysis .. 55

3.2.1 Inherent spatial variability ... 55
3.2.2 Transformation uncertainty ... 56
3.3 Bayesian Inverse Analysis Framework .. 58
3.4 The Most Probable Number of Soil Layers ... 60
 3.4.1 Bayesian model class selection method ... 60
 3.4.2 Calculation of the evidence and prior probability 61
3.5 Summary and Conclusions .. 62

Chapter 4 Probabilistic Identification of Underground Soil Stratification
Using Cone Penetration tests ... 64
4.1 Introduction ... 64
4.2 Interpretation of CPT data ... 65
4.3 Probabilistic Framework for Soil Stratum Identification 68
4.4 Probabilistic Soil Classification Based on the Robertson Chart 71
4.5 Bayesian Inverse Analysis of the Thicknesses/Boundaries of Soil Strata 76
4.6 The Most Probable Number of Soil Strata .. 80
4.7 Implementation Procedure ... 82
4.8 Illustrative Example ... 85
 4.8.1 The most probable number of soil strata ... 86
 4.8.2 The most probable thicknesses or boundaries 87
 4.8.3 Results comparisons .. 89
4.9 Validation Using Simulated Data ... 92
4.10 Discussion of Limitations of the Analysis .. 96
4.11 Summary and Conclusions ... 96

Chapter 5 Bayesian Characterization of the Cyclic Resistance Ratio Using Cone
Penetration Tests .. 98
5.1. Introduction ... 98
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4 Illustrative Example</td>
<td>144</td>
</tr>
<tr>
<td>7.5 Validation Using Simulated Data</td>
<td>146</td>
</tr>
<tr>
<td>7.6 Effect of the Data Quantity on Soil Stratum Identification</td>
<td>148</td>
</tr>
<tr>
<td>7.6.1 Effect of the measurement interval</td>
<td>149</td>
</tr>
<tr>
<td>7.6.2 Effect of the number of measurements at the same depth</td>
<td>151</td>
</tr>
<tr>
<td>7.7 Integration with Other Sources of Information</td>
<td>153</td>
</tr>
<tr>
<td>7.8 Discussion of Limitations of the Analysis</td>
<td>154</td>
</tr>
<tr>
<td>7.9 Summary and Conclusions</td>
<td>155</td>
</tr>
<tr>
<td>Chapter 8 Summary and Conclusions</td>
<td>157</td>
</tr>
<tr>
<td>8.1 Introduction</td>
<td>157</td>
</tr>
<tr>
<td>8.2 Bayesian Inverse Analysis Framework for Estimating Subsurface</td>
<td>157</td>
</tr>
<tr>
<td>Conditions</td>
<td>157</td>
</tr>
<tr>
<td>8.3 Probabilistic Identification of Underground Soil Stratification Using Cone Penetration Tests</td>
<td>158</td>
</tr>
<tr>
<td>8.4 Bayesian Characterization of the Cyclic Resistance Ratio Using Cone Penetration Tests</td>
<td>159</td>
</tr>
<tr>
<td>8.5 Probabilistic Liquefaction Severity Analysis Using Cone Penetration Tests</td>
<td>159</td>
</tr>
<tr>
<td>8.6 Subdivision of Soil Strata in London Clay Using Water Content Data</td>
<td>160</td>
</tr>
<tr>
<td>8.7 Future Work</td>
<td>161</td>
</tr>
<tr>
<td>Appendix A: MATLAB Code for the Bayesian Approaches for Underground</td>
<td></td>
</tr>
<tr>
<td>Soil Stratum Identification and Soil Classification Using Cone Penetration Tests</td>
<td>162</td>
</tr>
<tr>
<td>Appendix B: MATLAB Code for the Bayesian Approaches for Characterizing</td>
<td></td>
</tr>
<tr>
<td>the Cyclic Resistance Ratio Using Cone Penetration Tests</td>
<td>174</td>
</tr>
</tbody>
</table>
Appendix C: MATLAB Code for the Monte Carlo Simulation Method in the Liquefaction Severity Analysis Using Cone Penetration Tests181

Appendix D: MATLAB Code for the Bayesian Approaches for Identifying Soil Strata in London Clay Using Water Content Data ..184

Reference ... 191