PERFORMANCE EVALUATION OF WATER-FLOW WINDOW GLAZING

LI CHUNYING

DOCTOR OF PHILOSOPHY
CITY UNIVERSITY OF HONG KONG
FEBRUARY 2012
CITY UNIVERSITY OF HONG KONG

Performance Evaluation of Water-flow Window Glazing

Submitted to
Department of Civil and Architectural Engineering

in partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

by

LI CHUNYING

FEBRUARY 2012
Abstract

The study is to evaluate the performance of an innovative water-flow glazed window system. It is a combination of both active and passive solar designs that can be utilized in most circumstances where hot water is in need. Not only that this glazing can absorb solar radiance and output energy in the form of hot water, it also helps to reduce the indoor heat gain and therefore air-conditioning (AC) system energy consumption. Considering the current climate change and fossil fuel depletion problems, there is great potential for wide application of this system.

In this study, two experiments have been completed. The first experiment related to tests on a scale-down water-flow glazing system through the use of a solar box. Afterwards, a full-size water-flow glazing system was tested by means of an environmental chamber with two identical test cells. Its performance under real building condition was compared with an adjacent room provided with normal glazing. The system thermal performances in terms of water heat gain in both experiments were analyzed. The influence to indoor visual environment was also examined in the full-size experiment.

Numerical models for the water-flow glazing system have been developed, and demonstrated to be of good quality by comparing the simulation results with the experimental data. The models were then used in year-
round performance prediction and system design optimization.

The overall building energy performance with water-flow glazed window was also analyzed via the ESP-r building energy simulation platform. By the combined use of ESP-r with the visual environment simulation software Radiance, the indoor luminance condition was simulated and the daylighting control was then applied to the numerical computation. The integrated contribution to the AC system and water heating system energy consumptions were calculated for three room types, including gym, office and canteen. The economical pay-back period of the water-flow glazed window was also estimated. From the simulation results, the water-flow glazed window can help reduce energy consumption in building considerably, and has great potential for building applications where there are substantial hot water demands.
Contents

Abstract ... ii

Acknowledgment .. iv

Contents ... v

List of figures .. viii

List of tables ... xvii

Nomenclature ... xxii

1 Background ... 1

1.1 Climate change and building energy ... 1

1.2 Solar energy utilization and active solar design .. 4

1.3 Passive solar design in buildings ... 11

1.4 Water-flow glazing system ... 15

1.5 Objectives and methodology of this study .. 17

1.6 Outline of this thesis ... 19

2 Literature review .. 21

2.1 Solar radiation and glazing performance .. 21

2.2 Single-glazed windows ... 25

2.3 Double-glazed windows .. 34

2.4 Numerical research of advanced glazing design .. 41

2.5 Daylight utilization ... 50

2.6 Summary .. 53
3. Experimental tests on water-flow glazing systems ... 56
 3.1 Experiment of scale-down water-flow glazing at inclined surface of solar box .. 56
 3.2 Experiment of full-size water-flow glazing at vertical façade of environmental chamber ... 68
4. Numerical modeling of water-flow glazing systems ... 81
 4.1 Models development ... 81
 4.2 Program validation .. 98
5. Year-round performance prediction and system design evaluation 114
 5.1 Full-size experimental water-flow glazing system year-round performance prediction .. 114
 5.2 Influence factors of the experimental system performance 117
6. Integrated energy performance simulation ... 145
 6.1 ESP-r ... 145
 6.2 Radiance .. 149
 6.3 ESP-r and Radiance integrated simulation .. 150
 6.4 Validation of integrated simulation of ESP-r & Radiance 153
7. Water-flow glazing system annual performance prediction 164
 7.1 Sport complex model .. 164
 7.2 Simulation method and settings .. 168
 7.3 Year-round performance of water-flow glazing system 171
 7.4 System performance during typical summer week 176
7.5 Year-round AC system load .. 184
7.6 Effect of Daylighting control .. 197
7.7 Overall effects on building energy consumption 200
8. Conclusions and future works .. 204
 8.1 Summary of studying approach and findings 204
 8.2 Conclusions ... 209
 8.3 Recommendations on future works 210
References ... 215
Appendix - Operating schedules for the office, gym and canteen 232
List of figures

Fig. 1-1 The energy cube [15]...5

Fig. 1-2 Standard thermosyphon solar water heater with outdoor tank [16].. 6

Fig. 1-3 Types of solar collectors: (a) flat-plate collector, (b) vacuum-tube collector, (c) concentrating collector, and (d) air collector [17]..............7

Fig. 1-4 One piece of solar cell [20]..8

Fig. 1-5 BiPV/T experimental set-up at City University of Hong Kong: (a) BiPV/T system and the environmental chamber; (b) Schematic diagram of water-heating circuit [23]...10

Fig. 1-6 Water-flow glazed window as water preheating device16

Fig. 1-7 Energy flow paths at water-flow window....................................17

Fig. 2-1 Sun spectrum with AM=0 (in space) and AM=1.5 (on the earth with a sun elevation of 41.8°) [41]...22

Fig. 2-2 PV windows in a commercial building [47]............................30

Fig. 2-3 Views through absorptive glazing (left) and semitransparent PV glazing (right) [48] ...30

Fig. 2-4 Schematic diagram of a five-layer electrochromic coating [42]....32

Fig. 2-5 Sketch map of multiple glass sheet glazing unit [66]...............35

Fig. 2-6 An illustrative diagram of vacuum glazing [73].....................36

Fig. 2-7 Experimental assessment of a PCM-filled window [80].............39

Fig. 2-8 Schematic drawing of SOLVENT window in winter configuration
and summer configuration [83] .. 40

Fig. 2-9 Model for numerical and analytical calculation [90] 43

Fig. 2-10 Model geometry and coordinate system 45

Fig. 2-11 Configuration of a PV ventilated window [88] 46

Fig. 3-1 The experimental rig with an inclined water-flow glazing system .. 57

Fig. 3-2 The flow circuits of the experimental water-flow glazing system .. 58

Fig. 3-3 The temperatures measuring points at the heat exchanger 63

Fig. 3-4 Solar radiation and ambient temperature during Oct 31st-Nov 2nd . 64

Fig. 3-5 Glazing constructions in the experimental rig: (a) normal double-
glazed window; (b) water-flow window ... 64

Fig. 3-6 Glazing surface temperatures comparison of the two windows 65

Fig. 3-7 Water temperature of close circuit at inlet and outlet of the heat
exchanger .. 66

Fig. 3-8 Water temperature of open circuit at inlet and outlet of the heat
exchanger .. 66

Fig. 3-9 Front-view of the environmental chamber with two windows
installed at individual test cells .. 71

Fig. 3-10 Outlook view from a half-filled water-flow window (with the
arrow pointing at the boundary of water and air in the cavity) 71

Fig. 3-11 The Ultrasonic Anemometer Model 81000 weather station 73

Fig. 3-12 Lux meters in the test cell ... 73

Fig. 3-13 Plan view showing the lux-meter positions in the test cell 74
Fig. 3-14 Solar radiation and ambient temperature during the experiment. 75

Fig. 3-15 Glazing surface temperature comparison for two windows during experiment: (a) Outer glazing; (b) Inner glazing 76

Fig. 3-16 Inlet and outlet water temperature of cold feed water circuit 77

Fig. 3-17 Indoor lux level at working plane with IGU window during experiment ... 79

Fig. 3-18 Indoor lux level at working plane with water-flow window during experiment ... 79

Fig. 3-19 Indoor lux meter readings at working plane (the left-side lux sensor) ... 80

Fig. 3-20 Indoor lux meter readings at working plane (the right-side lux sensor) ... 80

Fig. 4-1 The schematic diagram of water flow in window circuit 90

Fig. 4-2 Simplified flow-chart of the simulation program 93

Fig. 4-3 Outer glazing surface temperature at 12am on Nov 1st for 6561 simulation cases ... 101

Fig. 4-4 Water layer temperature at 12am on Nov 1st for 6561 simulation cases ... 101

Fig. 4-5 Inner glazing surface temperature at 12am on Nov 1st for 6561 simulation cases ... 102

Fig. 4-6 Outlet water temperature of open circuit at 12am on Nov 1st for 6561 cases ... 102
Fig. 4-7 Outer glazing surface temperature comparison between simulation and experiment with error band of 3.7°C ... 104

Fig. 4-8 Water layer temperature comparison between simulation and experiment with error band of 3.8°C ... 104

Fig. 4-9 Inner glazing surface temperature comparison between simulation and experiment with error band of 3.8°C ... 105

Fig. 4-10 Outlet water temperature of the cold feed water circuit comparison between simulation and experiment with error band of 1.9°C 105

Fig. 4-11 Outer glazing surface temperature at 12am on Nov 1st for the 2187 simulation cases (non-water side) ... 108

Fig. 4-12 Inner glazing surface temperature at 12am on Nov 1st for the 2187 simulation cases (non-water side) ... 108

Fig. 4-13 Outer glazing surface temperature comparison with error band of 2.9°C .. 109

Fig. 4-14 Inner glazing surface temperature comparison with error band of 2.1°C .. 109

Fig. 4-15 Outer glazing surface temperature comparison with error band of 3.7°C .. 110

Fig. 4-16 Water layer temperature comparison with error band of 3.8°C . 110

Fig. 4-17 Inner glazing surface temperature comparison with error band of 3.8°C .. 111

Fig. 4-18 Outlet water temperature of cold feed water circuit comparison
with error band of 1.9°C ... 111

Fig. 4-19 Outer glazing surface temperature comparison between simulation and experiment with error band of 2.9°C 113

Fig. 4-20 Inner glazing surface temperature comparison between simulation and experiment with error band of 2.1°C 113

Fig. 5-1 Predicted monthly incident solar radiation, indoor/water heat gain of the experimental system... 115

Fig. 5-2 Monthly water heat gain of the experimental water-flow glazing system with different heat exchanger outer pipe diameter 124

Fig. 5-3 Monthly system efficiency of the experimental water-flow glazing system with different heat exchanger outer pipe diameter 125

Fig. 5-4 Hourly incident solar radiation, ambient temperature, and water temperature at the top of the window cavity during typical winter week in Hong Kong (heat exchanger effectiveness 100%; double absorptive glazing panes).. 135

Fig. 5-5 Hourly incident solar radiation, indoor/water heat gain during typical winter week in Hong Kong (heat exchanger effectiveness 100%; double absorptive glazing panes)... 136

Fig. 5-6 Hourly water-flow glazing system efficiency during typical winter week in Hong Kong (heat exchanger effectiveness 100%; double absorptive glazing panes).. 136

Fig. 5-7 Hourly incident solar radiation, ambient temperature, and water
temperature at the top of the window cavity during typical summer week
(heat exchanger effectiveness 100%; double absorptive glazing panes) ... 137

Fig. 5-8 Hourly incident solar radiation, indoor/water heat gain during
typical summer week in Hong Kong (heat exchanger effectiveness 100%;
double absorptive glazing panes) ... 138

Fig. 5-9 Hourly water-flow glazing system efficiency during typical
summer week in Hong Kong (heat exchanger effectiveness 100%; double
absorptive glazing panes) ... 139

Fig. 5-10 Schematic design of a centralized solar water-heating system for
the high-rise residential building development [120] 140

Fig. 6-1 Example of ESP-r interfaces .. 146

Fig. 6-2 Structure of ESP-r simulation platform 146

Fig. 6-3 Direct combination of ESP-r and Radiance in simulation 151

Fig. 6-4 Indirect combination of ESP-r and Radiance in simulation 152

Fig. 6-5 Test cell model in ESP-r ... 155

Fig. 6-6 Outlet water temperature comparison between experiment and
simulation (window cavity) .. 157

Fig. 6-7 Glass surface temperature comparison between experiment and
simulation ... 157

Fig. 6-8 Solar box model in ESP-r ... 158

Fig. 6-9 Water temperature comparison at the outlet of the window cavity
between simulation and experiment measurement 159
Fig. 6-10 Outer glazing surface temperature comparison between simulation and experiment measurement .. 160

Fig. 6-11 Inner glazing surface temperature comparison between simulation and experiment measurement .. 160

Fig. 6-12 Indoor lux level comparison between experiment and ESP-r simulation for the test cell with IGU window (left-side sensor) 162

Fig. 6-13 Indoor lux level comparison between experiment and ESP-r simulation for the test cell with IGU window (right-side sensor) 162

Fig. 6-14 Indoor lux level comparison between experiment and ESP-r simulation for the test cell with water-flow window (left-side sensor) 163

Fig. 6-15 Indoor lux level comparison between experiment and ESP-r simulation for the test cell with water-flow window (right-side sensor) ... 163

Fig. 7-1 The perspective view of a sport center with water-flow glazing system ... 164

Fig. 7-2 The plane and side-view of office and canteen with a luminance sensor: (a) plane view; (b) side-view ... 165

Fig. 7-3 The plane and side-view of gym with two luminance sensors: (a) plane view; (b) side-view ... 166

Fig. 7-4 Monthly incident solar radiation on vertical and inclined windows ... 172

Fig. 7-5 Monthly water heat gains for inclined water-flow glazing system 173

Fig. 7-6 Monthly water heat gains for vertical water-flow glazing system 174
Fig. 7-7 Monthly thermal efficiency for inclined water-flow glazing system
... 176

Fig. 7-8 Monthly thermal efficiency for vertical water-flow glazing system
... 176

Fig. 7-9 Inlet and outlet water temperatures of window circuit and open circuit at the heat exchanger during typical summer week in gym 178

Fig. 7-10 Indoor solar heat gains through the window during typical summer week in gym ... 179

Fig. 7-11 Indoor lighting system load during typical summer week in gym (kW) ... 180

Fig. 7-12 AC system load during typical summer week in gym (kW)..... 181

Fig. 7-13 Inner glazing surface temperature of inclined window during typical summer week in gym ... 183

Fig. 7-14 Monthly indoor solar energy transmission with different glazing constructions... 185

Fig. 7-15 Monthly indoor lighting system load with different glazing constructions (kWh) .. 189

Fig. 7-16 Monthly indoor AC system load with different glazing constructions with daylighting control 195

Fig. 7-17 Monthly lighting system load for different rooms without daylighting control .. 197

Fig. 7-18 Monthly indoor AC system load with different glazing
constructions without daylighting control in gym (kWh) 200

Fig. 8-1 Abnormal light refraction of water-flow window 213

Fig. 8-2 Abnormal glare in the room with water-flow glazed window 213
List of tables

Table 3-1 Properties of glass panes used in the experiment.......................... 57
Table 3-2 Daily weather condition and system efficiency during the test period ... 67
Table 3-3 The optical properties of glazing panes used in the experiment 70
Table 3-4 Open circuit water flow rate during experiment 78
Table 4-1 Physical properties of the scale-down solar box experiment........... 82
Table 4-2 Physical properties of the full-size test cell experiment 82
Table 4-3 Daily system efficiency comparison between experiment and simulation.. 106
Table 4-4 Daily system efficiency comparison between experiment and simulation for the full-size experiment ... 112
Table 5-1 Monthly incident solar radiation, indoor/water heat gain of the experimental system.. 116
Table 5-2 Optical properties of the glazing panes used in the comparative study ... 119
Table 5-3 Monthly indoor heat gain through the experimental water-flow window with different glazing properties in Hong Kong (kWh) 121
Table 5-4 Monthly water heat gain of the water-flow glazing system with different glazing constructions in Hong Kong (kWh) 121
Table 5-5 Monthly system efficiency of the water-flow glazing system with
different glazing constructions in Hong Kong (%) ... 122

Table 5-6 Monthly water heat gain of the experimental water-flow glazing system with different heat exchanger outer pipe diameter (kWh) 125

Table 5-7 Monthly system efficiency of the water-flow glazing system with different heat exchanger outer pipe diameter (kWh) ... 126

Table 5-8 Monthly indoor heat gain through the water-flow glazing system with different heat exchanger outer pipe diameter in Hong Kong (kWh) 127

Table 5-9 Monthly water heat gain of the water-flow glazing system with different glazing length in Hong Kong (heat exchanger effectiveness 100%; kWh/m²) .. 129

Table 5-10 Monthly system efficiency of the water-flow glazing system with different glazing length in Hong Kong (heat exchanger effectiveness 100%; %) ... 130

Table 5-11 Year-round water heat gain over the entire window frame with different glazing length in Hong Kong (heat exchanger effectiveness 100%) ... 131

Table 5-12 Monthly indoor heat gain through the experimental water-flow window with different glazing length in Hong Kong (heat exchanger effectiveness 100%; kWh/m²) ... 132

Table 5-13 Daily incident solar radiation, indoor/water heat gain and system efficiency of 1.2m height water-flow glazing system with double absorptive glazing panes during typical winter week (heat exchanger effectiveness 100%)
Table 5-14 Daily incident solar radiation, indoor/water heat gain and system efficiency of 1.2m height water-flow window with double absorptive glazing panes during typical summer week in Hong Kong (heat exchanger effectiveness 100%) ... 135

Table 5-15 Year-round incident solar radiation on the water-flow window when facing different directions and inclination angles in Hong Kong (kWh; S=0.96m²) .. 142

Table 5-16 Year-round indoor heat gain through the water-flow window when facing different directions and inclination angles in Hong Kong (kWh; S=0.96m²) .. 143

Table 5-17 Year-round water heat gain of the water-flow window when facing different directions and inclination angles in Hong Kong (kWh; S=0.96m²) 144

Table 5-18 Year-round thermal efficiency of the water-flow window when facing different directions and inclination angles in Hong Kong (%) ; S=0.96m²) .. 144

Table 7-1 Space occupancy, fresh air requirement, lighting/equipment density and occupants’ heat emission ... 167

Table 7-2 Incident solar energy and thermal performance for inclined system ... 173

Table 7-3 Incident solar energy and thermal performance for vertical system ... 174
Table 7-4 Hourly AC system load on Sep 3rd in gym with different glazing constructions (kW) ... 182

Table 7-5 Monthly indoor solar energy transmission with different glazing constructions in gym (kWh) ... 186

Table 7-6 Monthly indoor solar gain with different glazing constructions in office and canteen (kWh) ... 187

Table 7-7 Monthly indoor lighting system load with different glazing constructions in gym (kWh) ... 188

Table 7-8 Monthly indoor lighting system load with different glazing constructions in office (kWh) ... 190

Table 7-9 Monthly indoor lighting system load with different glazing constructions in canteen (kWh) ... 190

Table 7-10 Monthly indoor AC system load with different glazing constructions in gym (kWh) ... 194

Table 7-11 Monthly indoor AC system load with different glazing constructions in office (kWh) ... 196

Table 7-12 Monthly indoor AC system load with different glazing constructions in canteen (kWh) ... 196

Table 7-13 Monthly lighting system load without daylighting control (kWh) .. 199

Table 7-14 Monthly indoor AC system load with different glazing constructions without daylighting control in gym (kWh) 199
Table 7-15 Monthly AC plus DHW systems electricity savings by using water-flow window in office ... 201

Table 7-16 AC plus DHW systems electricity savings by using water-flow window in gym.. 202

Table 7-17 AC plus DHW systems electricity savings by using water-flow window in canteen.. 203