CITY UNIVERSITY OF HONG KONG
香港城市大學

Development of Transgenic Marine Medaka (Oryzias melastigma) as a Sentinel Species for Biomonitoring Estrogenic Endocrine Disruptors
構建轉基因海水鰭鰭魚(Oryzias melastigma)作為敏感物種來檢測雌激素類內分泌幹擾物質

Submitted to
Department of Biology and Chemistry
生物及化學系

In Partial Fulfillment for the Requirements for the Degree of Doctor of Philosophy
哲學博士學位

By
Chen Xue Ping
陳雪平

October 2007
二零零七年十月
Abstract of thesis entitled

Development of Transgenic Marine Medaka (*Oryzias melastigma*) as a Sentinel Species for Biomonitoring Estrogenic Endocrine Disruptors

Submitted by

Chen Xueping

for the Degree of Doctor of Philosophy at the City University of Hong Kong

Endocrine-disruptor (ED) is an exogenous substance or mixture that alters function(s) of the endocrine system and consequently produces adverse health effects in an intact organism, or its progeny, or (sub) populations. Aquatic pollution by EDs, especially estrogenic EDs, has become one of the most serious environmental problems worldwide. The objective of this study is to develop a transgenic marine medaka (*Oryzias melastigma*) for accurate and prompt detection of estrogenic EDs contaminated waters and screening of new EDs.

O. melastigma is scarcely studied and its embryonic development is not reported. The transparent chorion and embryo allow clear observation of the development of inner organs under light microscope. According to the diagnostic features used to stage the freshwater medaka (*O. latipes*), the embryonic developmental process of *O. melastigma* was divided into 39 stages and showed high morphological similarity to that of *O. latipes* with minor differences. Moreover, advantageous characteristics including small body size (3-4 cm), short life cycle (2-3 months), high prolificity (20-30 embryos daily per pair...
under proper temperature, light cycle and feeding systems), and especially the habitability in both fresh water and sea water, make *O. melastigma* an ideal model for aquatic toxicology studies.

Teleost choriogenins, precursors of the inner layer subunits of egg envelope, are regarded as sensitive biomarkers for estrogenic pollutants. To select the more estrogen sensitive gene for transgenic study, full-length cDNAs—*omChgH* and *omChgL*—which encode the choriogenin H and L forms, respectively, were isolated from *O. melastigma* and their induced expression at different developmental stages were analyzed. 17β-Estradiol (E2; 10 μg/L)-dependent expression of *omChgH* and *omChgL* was observed starting at embryonic stage 34 and restricted to the liver. In hatchlings, E2 induction of *omChgH* was stronger than that of *omChgL*. Static exposure of adult fish to E2 (0, 1, 10, 100 and 500 ng/L), 17α-ethinylestradiol (EE2; 0, 1, 10, 100 and 500 ng/L), 4-nonylphenol (NP; 0, 1, 10, 100 and 200 μg/L) and bisphenol A (BPA; 0, 1, 10, 100 and 200 μg/L) in artificial seawater for 7 days resulted in dose-dependent induction of both genes in the liver. In the male livers, the sensitivity of *omChgH* to these estrogenic compounds was higher than that of *omChgL*; the lowest-observed-effect concentrations (LOECs) of E2, EE2, NP and BPA on *omChgH* were 10 ng/L, 10 ng/L, 100 μg/L and 100 μg/L, respectively, and on *omChgL* were 100 ng/L, 100 ng/L, 100 μg/L and 200 μg/L, respectively. All these observations highlighted the potential of using *omChgH* expression as a sensitive biomarker for estrogenic EDs in the developing *O. melastigma* embryos, juveniles and male adults.

Thus, *omChgH* genomic DNA sequence including ca. 5 kb 5'-upstream region and ca. 0.8 kb 3'-flanking region was cloned. *Cis*-regulatory activity analysis of different sizes of *omChgH* 5'-upstream region and the regulation effects of 3'-flanking region were analyzed.
using microinjection techniques. Results showed that 750 bp 5'-upstream region from
transcription initiation site had the highest promoter activity and homogenous 3’-flanking
region was important for obtaining high promoter activity in omChgH transgenic studies.

Based on the cis-regulatory activity analysis of omChgH 5’ and 3’-flanking region, a
transgenic O. melastigma strain harboring the reporter gene green fluorescence protein
(GFP) gene regulated by 758 bp omChgH 5’-upstream region and flanked by omChgH
3’-flanking region was established. In this strain, GFP transgene was expressed
constitutively in the liver of mature female, but could also be induced from non-expression
liver of embryos (since stage 34), juvenile and male fish in response to 17β-estradiol (E2).
GFP fluorescence quantification analysis using MetaMorph revealed that 0.63 nM E2 or
0.17 nM 17α-ethanylestradiol (EE2) significantly induced GFP expression in the livers of
larvae after 24-h exposure and the responses were dose-dependent. Additionally, this strain
was also observed to express GFP fluorescence after exposure to different estrogenic
compounds at concentrations equal to or higher than 1.8 nM estrone (E1), 1.73 nM estriol
(E3), 2000 nM 4-nonylphenol (NP), 4380 nM bisphenol A (BPA), 3670 nM genistein and
0.25 nM ethinylestradiol 3-methyl ether for 24 h. These results suggested the high estrogen
sensitivity of this transgenic O. melastigma strain and its capability to monitor a wide range
of estrogenic chemicals.

Further preliminary field study found that marine water samples collected from Hong
Kong Victoria Harbor could induce GFP expression in the liver of transgenic larvae after
exposure for 24 h. This result demonstrated the practical applicability of this transgenic O.
melastigma strain for prompt in vivo biomonitoring of estrogenic activity of aquatic
environment directly, and such high estrogen sensitivity has not been reported yet.
To conclude, this study successfully developed the first transgenic marine fish for biomonitoring estrogenic endocrine-disrupting pollutants. This strain showed quick response to a wide range of estrogenic compounds including weak EDs (e.g. NP, BPA and genistein), and could detect estrogenic activity of environmental water samples promptly and directly. All my findings indicate the great practical potential of this transgenic *O. melastigma* as a sensitive sentinel for simple, economic, rapid and accurate screening of new EDs and identification of estrogenic EDs contaminated waters. While the wide salinity adaptability to both freshwater and marine environment makes this transgenic strain more unique and powerful.
Table of Contents

Declaration 1
Abstract 2
Thesis Acceptance 6
Publications 7
Acknowledgements 8
Table of Contents 10
List of Figures 15
List of Tables 17
Abbreviations and Symbols 18

Chapter I General Introduction 22
 1.1 What are Endocrine-Disruptors (EDs) 22
 1.2 EDs in Aquatic System 23
 1.3 Typical Impact of EDs on Organisms 24
 1.4 EDs Detection Methods 27
 1.5 Transgenic Methods 31
 1.6 EDs Biomarkers 32
 1.7 Study model — *Oryzias melastigma* 34
 1.8 Hypothesis and Study Objectives 38
 1.9 Organization of This Thesis 38

Chapter II Stages of Embryo Development in *O. melastigma* 40
 2.1 Introduction 40
 2.2 Materials and Methods 40
2.2.1 Preparation of 3% Methyl Cellulose 40
2.2.2 Fish Maintenance 41
2.2.3 Embryo Collection and Incubation 41
2.2.4 Imaging 41
2.3 Observation Results and Description 41
2.4 Discussion 59

Chapter III Choriogenin mRNA as a Sensitive Molecular Biomarker for Estrogenic Chemicals in Developing Marine Medaka (Oryzias melastigma) 61
3.1 Introduction 61
3.2 Materials and Methods 64
 3.2.1 Chemicals 64
 3.2.2 Fish Maintenance and Treatment 64
 3.2.3 Preparation of cDNA 65
 3.2.4 Cloning of omChgH and omChgL Partial cDNAs 66
 3.2.5 Rapid Amplification of cDNA Ends (RACE) 66
 3.2.6 Whole-Mount in Situ Hybridization (WISH) 67
 3.2.7 End-point RT-PCR 68
 3.2.8 Real-Time RT-PCR 69
 3.2.9 Statistical Analysis 70
3.3 Results 74
 3.3.1 Characterization of Full-Length cDNAs of Choriogenin Genes 74
 3.3.2 17β-Estradiol Induced Choriogenin Genes Expression in Developing Embryos 82
 3.3.3 17β-Estradiol Induced Choriogenin Genes Expression in Yolk-sac Larvae 82
 3.3.4 Effects of Different Estrogenic EDs on Choriogenin Genes Expression 85
Chapter IV Cloning and Analysis of omChgH 5'-Upstream Region Promoter Activity and 3'-Flanking Region Regulation Effects

4.1 Introduction 94

4.2 Materials and Methods 97

4.2.1 Preparation of Genomic DNA (gDNA) 97

4.2.2 Capture of omChgH 5'-Upstream Region by Genome Walking 97

4.2.3 Cloning of omChgH Coding Region by PCR 97

4.2.4 Capturing of omChgH 3'-Flanking Region Using Inverse-PCR 99

4.2.5 Plasmids Construction 99

4.2.5.1 omChgH5'-GFP-omChgH3' Plasmids Construction 99

4.2.5.2 4827 omChgH 5'-GFP-SV40 Plasmid Construction 100

4.2.5.3 omChgH 5'-GFP-omChgH3' Plasmids Construction 100

4.2.6 Fish Maintenance 103

4.2.7 Microinjection 103

4.2.8 GFP Fluorescence Observation 103

4.3 Results 105

4.3.1 Isolation and Characterization of omChgH Genomic Sequence 105

4.3.2 Promoter Activity Analysis of omChgH 5'-Upstream Region 108

4.3.3 Regulation Effects of omChgH 3'-Flanking Region 113

4.4 Discussion 114

Chapter V Transgenic O. melastigma Establishment and Estrogen Sensitivity

Analysis Using Estrogenic Compounds and Marine Water Sample 117

5.1 Introduction 117
5.2 Materials and Methods

5.2.1 Transgenic O. melastigma Screening

5.2.2 GFP Fluorescence Expression in Transgenic O. melastigma

5.2.3 Exposure to Estrogenic Chemicals

5.2.4 Exposure to Marine Water Sample

5.2.5 Analysis of GFP Signal Intensity

5.2.6 Statistical Analysis

5.3 Results

5.3.1 GFP Expression in Transgenic O. melastigma at Different Developmental Stages

5.3.2 Determination of Exposure Stage

5.3.3 Dose-Dependent Response of Transgenic Larvae to 17\(\beta\)-Estradiol (E2) and Ethinylestradiol (EE2)

5.3.4 Time-Lapse Induction of GFP Expression in the Liver of Transgenic Hatchlings

5.3.5 Other Estrogenic Chemicals Exposure Tests

5.3.6 Marine Water Sample Exposure Test

5.4 Discussion

Chapter VI Summary and Conclusion

6.1 Summary

6.2 Limitations of Present Study and Future Study

6.3 Contributions to Our Knowledge

6.4 Overall Conclusion

References
Appendix I: Development of Transgenic Marine Medaka (*Oryzias melastigma*) for Monitoring Estrogenic Pollutants (manuscript)