CITY UNIVERSITY OF HONG KONG 香港城市大學

Development of Transgenic Marine Medaka (*Oryzias melastigma*) as a Sentinel Species for Biomonitoring Estrogenic Endocrine Disruptors 構建轉基因海水鲭鳉鱼(*Oryzias melastigma*)作為敏 感物種來檢測雌激素類內分泌幹擾物質

Submitted to Department of Biology and Chemistry 生物及化學系

In Partial Fulfillment for the Requirements for the Degree of Doctor of Philosophy 哲學博士學位

By

Chen Xue Ping 陳雪平

October 2007 二零零七年十月

Abstract of thesis entitled

Development of Transgenic Marine Medaka (*Oryzias melastigma*) as a Sentinel Species for Biomonitoring Estrogenic Endocrine Disruptors

構建轉基因海水鲭鳉鱼(Oryzias melastigma)作為敏感物種來檢測雌 激素類內分泌幹擾物質

Submitted by

Chen Xueping

for the Degree of Doctor of Philosophy at the City University of Hong Kong

Endocrine-disruptor (ED) is an exogenous substance or mixture that alters function(s) of the endocrine system and consequently produces adverse health effects in an intact organism, or its progeny, or (sub) populations. Aquatic pollution by EDs, especially estrogenic EDs, has become one of the most serious environmental problems worldwide. The objective of this study is to develop a transgenic marine medaka (*Oryaizs melastigma*) for accurate and prompt detection of estrogenic EDs contaminated waters and screening of new EDs.

O. melastigma is scarcely studied and its embryonic development is not reported. The transparent chorion and embryo allow clear observation of the development of inner organs under light microscope. According to the diagnostic features used to stage the freshwater medaka (*O. latipes*), the embryonic developmental process of *O. melastigma* was divided into 39 stages and showed high morphological similarity to that of *O. latipes* with minor differences. Moreover, advantageous characteristics including small body size (3-4 cm), short life cycle (2-3 months), high prolificity (20-30 embryos daily per pair under proper temperature, light cycle and feeding systems), and especially the habitability in both fresh water and sea water, make *O. melastigma* an ideal model for aquatic toxicology studies.

Teleost choriogenins, precursors of the inner layer subunits of egg envelope, are regarded as sensitive biomarkers for estrogenic pollutants. To select the more estrogen sensitive gene for transgenic study, full-length cDNAs-omChgH and omChgL-which encode the choriogenin H and L forms, respectively, were isolated from O. melastigma and their induced expression at different developmental stages were analyzed. 17β -Estradiol (E2; 10 µg/L)-dependent expression of *omChgH* and *omChgL* was observed starting at embryonic stage 34 and restricted to the liver. In hatchlings, E2 induction of omChgH was stronger than that of omChgL. Static exposure of adult fish to E2 (0, 1, 10, 100 and 500 ng/L), 17α-ethinylestradiol (EE2; 0, 1, 10, 100 and 500 ng/L), 4-nonylphenol (NP; 0, 1, 10, 100 and 200 μ g/L) and bisphenol A (BPA; 0, 1, 10, 100 and 200 μ g/L) in artificial seawater for 7 days resulted in dose-dependent induction of both genes in the liver. In the male livers, the sensitivity of omChgH to these estrogenic compounds was higher than that of *omChgL*; the lowest-observed-effect concentrations (LOECs) of E2, EE2, NP and BPA on omChgH were 10 ng/L, 10 ng/L, 100 µg/L and 100 µg/L, respectively, and on omChgL were 100 ng/L, 100 ng/L, 100 µg/L and 200 µg/L, respectively. All these observations highlighted the potential of using omChgH expression as a sensitive biomarker for estrogenic EDs in the developing O. melastigma embryos, juveniles and male adults.

Thus, *omChgH* genomic DNA sequence including ca. 5 kb 5'-upstream region and ca. 0.8 kb 3'-flanking region was cloned. *Cis*-regulatory activity analysis of different sizes of *omChgH* 5'-upstream region and the regulation effects of 3'-flanking region were analyzed using microinjection techniques. Results showed that 750 bp 5'-upstream region from transcription initiation site had the highest promoter activity and homogenous 3'-flanking region was important for obtaining high promoter activity in *omChgH* transgenic studies.

Based on the *cis*-regulatory activity analysis of *omChgH* 5' and 3'-flanking region, a transgenic *O. melastigma* strain harboring the reporter gene green fluorescence protein (*GFP*) gene regulated by 758 bp *omChgH* 5'-upstream region and flanked by *omChgH* 3'-flanking region was established. In this strain, *GFP* transgene was expressed constitutively in the liver of mature female, but could also be induced from non-expression liver of embryos (since stage 34), juvenile and male fish in response to 17ß-estradiol (E2). GFP fluorescence quantification analysis using MetaMorph revealed that 0.63 nM E2 or 0.17 nM 17a-ethanylestradiol (EE2) significantly induced GFP expression in the livers of larvae after 24-h exposure and the responses were dose-dependent. Additionally, this strain was also observed to express GFP fluorescence after exposure to different estrogenic compounds at concentrations equal to or higher than 1.8 nM estrone (E1), 1.73 nM estriol (E3), 2000 nM 4-nonylphenol (NP), 4380 nM bisphenol A (BPA), 3670 nM genistein and 0.25 nM ethinylestradiol 3-methyl ether for 24 h. These results suggested the high estrogen sensitivity of this transgenic *O. melastigma* strain and its capability to monitor a wide range of estrogenic chemicals.

Further preliminary field study found that marine water samples collected from Hong Kong Victoria Harbor could induce GFP expression in the liver of transgenic larvae after exposure for 24 h. This result demonstrated the practical applicability of this transgenic *O. melastigma* strain for prompt *in vivo* biomonitoring of estrogenic activity of aquatic environment directly, and such high estrogen sensitivity has not been reported yet.

To conclude, this study successfully developed the first transgenic marine fish for biomonitoring estrogenic endocrine-disrupting pollutants. This strain showed quick response to a wide range of estrogenic compounds including weak EDs (e.g. NP, BPA and genistein), and could detect estrogenic activity of environmental water samples promptly and directly. All my findings indicate the great practical potential of this transgenic *O. melastigma* as a sensitive sentinel for simple, economic, rapid and accurate screening of new EDs and identification of estrogenic EDs contaminated waters. While the wide salinity adaptability to both freshwater and marine environment makes this transgenic strain more unique and powerful.

Table of Contents

Declaration	1
Abstract	2
Thesis Acceptance	6
Publications	7
Acknowledgements	8
Table of Contents	10
List of Figures	15
List of Tables	17
Abbreviations and Symbols	18
Chapter I General Introduction	22
1.1 What are Endocrine-Disruptors (EDs)	22
1.2 EDs in Aquatic System	23
1.3 Typical Impact of EDs on Organisms	24
1.4 EDs Detection Methods	27
1.5 Transgenic Methods	31
1.6 EDs Biomarkers	32
1.7 Study model — Oryzias melastigma	34
1.8 Hypothesis and Study Objectives	38
1.9 Organization of This Thesis	38
Chapter II Stages of Embryo Development in O. melastigma	40

2.1 Introduction	40
2.2 Materials and Methods	40
	10

2.2.1 Preparation of 3% Methyl Cellulose	40
2.2.2 Fish Maintenance	41
2.2.3 Embryo Collection and Incubation	41
2.2.4 Imaging	41
2.3 Observation Results and Description	41
2.4 Discussion	59

Chapter III Choriogenin mRNA as a Sensitive Molecular Biomarker for Estrogenic

	Chemicals in Developing Marine Medaka (Oryzias melastigma)	61
3.1 I	introduction	61
3.2 N	Materials and Methods	64
3	3.2.1 Chemicals	64
3	3.2.2 Fish Maintenance and Treatment	64
3	3.2.3 Preparation of cDNA	65
3	3.2.4 Cloning of omChgH and omChgL Partial cDNAs	66
3	3.2.5 Rapid Amplification of cDNA Ends (RACE)	66
3	3.2.6 Whole-Mount in Situ Hybridization (WISH)	67
3	3.2.7 End-point RT-PCR	68
3	3.2.8 Real-Time RT-PCR	69
3	3.2.9 Statistical Analysis	70
3.3 R	Results	74
3	3.3.1 Characterization of Full-Length cDNAs of Choriogenin Genes	74
3	3.3.2 17β-Estradiol Induced Choriogenin Genes Expression in Developing	
	Embryos	82
3	3.3.3 17β-Estradiol Induced Choriogenin Genes Expression in Yolk-sac Larvae	82
3	3.3.4 Effects of Different Estrogenic EDs on Choriogenin Genes Expression	85

Chapter IV Cloning and Analysis of omChgH 5'-Upstream Region Promoter Activity	
and 3'-Flanking Region Regulation Effects	94
4.1 Introduction	94
4.2 Materials and Methods	97

4.2.1 Preparation of Genomic DNA (gDNA)	97
4.2.2 Capture of omChgH 5'-Upstream Region by Genome Walking	97
4.2.3 Cloning of omChgH Coding Region by PCR	97
4.2.4 Capturing of omChgH 3'-Flanking Region Using Inverse-PCR	99
4.2.5 Plasmids Construction	99
4.2.5.1 omChgH5'-GFP-olChgH3' Plasmids Construction	99
4.2.5.2 – 4827 omChgH 5'- GFP-SV40 Plasmid Construction	100
4.2.5.3 omChgH 5'- GFP-omChgH3' Plasmids Construction	100
4.2.6 Fish Maintenance	103
4.2.7 Microinjection	103
4.2.8 GFP Fluorescence Observation	103
4.3 Results	105
4.3.1 Isolation and Characterization of omChgH Genomic Sequence	105
4.3.2 Promoter Activity Analysis of omChgH 5'-Upstream Region	108
4.3.3 Regulation Effects of omChgH 3'-Flanking Region	113
4.4 Discussion	114

Chapter VTransgenic O. melastigma Establishment and Estrogen Sensitivity

Analysis Using Estrogenic Compounds and Marine Water Sample	
5.1 Introduction	117

12

5.2 Materials and Methods	120
5.2.1 Transgenic O. melastigma Screening	120
5.2.2 GFP Fluorescence Expression in Transgenic O. melastigma	122
5.2.3 Exposure to Estrogenic Chemicals	122
5.2.4 Exposure to Marine Water Sample	123
5.2.5 Analysis of GFP Signal Intensity	124
5.2.6 Statistical Analysis	124
5.3 Results	124
5.3.1 GFP Expression in Transgenic O. melastigma at Different Development	al
Stages	124
5.3.2 Determination of Exposure Stage	131
5.3.3 Dose-Dependent Response of Transgenic Larvae to 17\beta-Estradiol (E2)	
and Ethinylestradiol (EE2)	134
5.3.4 Time-Lapse Induction of GFP Expression in the Liver of Transgenic	
Hatchlings	140
5.3.5 Other Estrogenic Chemicals Exposure Tests	140
5.3.6 Marine Water Sample Exposure Test	140
5.4 Discussion	145
Chapter VI Summary and Conclusion	149
6.1 Summary	149
6.2 Limitations of Present Study and Future Study	156
6.3 Contributions to Our Knowledge	158
6.4 Overall Conclusion	159

Appendix I: Development of Transgenic Marine Medaka (Oryzias melastigma) for

Monitoring Estrogenic Pollutants (manuscript)

184