CITY UNIVERSITY OF HONG KONG

香港城市大學

Methods for the Detection of Apoptosis in

Cultured Mammalian Cells: A Critique

哺乳動物細胞凋亡檢測方法:評論

Submitted to Department of Biology and Chemistry 生物及化學系 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy 哲學博士學位

by

Cheung Ting Wai 張庭瑋

March 2014 二零一四年三月

Abstract

Apoptosis is an essential physiological process, instrumental to the maintenance homeostasis in multicellular organisms. Deregulations of apoptosis lead to a diverse spectrum of pathological conditions, including autoimmune, neurodegenerative diseases, and cancers. In the past decades, huge progress has been made in the understanding of the molecular mechanisms that regulate apoptosis, and in the identification of mediators that prevent or trigger this process. Pathways connected to apoptosis emerged as key therapeutic targets, and cell-based cytotoxicity assays are commonly used for testing the apoptosis-inducing properties of small molecules. The compatibility of these assays with high-throughput screening allows the rapid discovery of potential apoptotic compounds. However, very few of these compounds have progressed to successful clinical application. The relatively poor rate of clinical translation is in part attributed to the intrinsic shortcomings of these assays.

This PhD work contains four loosely connected studies, each addressing a previously uncharacterized aspect of the existing in vitro apoptosis detection methods. First, in order to assess the general quality of these assays, I have conducted a meta-analysis on the published cytotoxicity data of well-established drugs, namely etoposide (ETP), stauroporine (STS), and TRAIL, on two commonly used cell lines, HeLa and MCF 7 cells. I discovered that an unexpected level of inconsistency in the data among publications. Based on published information, experimental parameters including apoptosis detection methods, cell culture media, glutamine concentration used, and source of drugs have been examined as potential sources of such data inconsistency, and found that none can be attributed to the discrepancy. In many cases, the experimental details of cell culture experiments are not completely described, making it difficult to reproduce the published results.

In the second part of this thesis, I address how cell culture conditions can affect the measurement of cytotoxicity events. As a case in point, I studied the effect of the culture density on the phosphorylation of H2AX, a widely used DNA damage marker, in a variety of human cell lines. I observed that higher levels of γ H2AX in densely cultured cells in the absence of any cytotoxic treatment. Thus, culture density of cells in routine cell-based assays can dramatically affect the baseline level of γ H2AX expression, leading to aberrant measurement endpoints.

In the third part of the thesis, I examined a common phenomenon in which a single cytotoxic compound can exert distinct growth inhibitory effects on different cell types, depending on their physiological background and histological origins. Andrographolide (ANDRO), a small molecule previously shown to induce apoptosis in numerous cancer cell lines, was used in this study. Two common cell lines, HepG2 and HeLa cells, were treated and the responses were compared, as judged by time-lapse imaging, and flow

cytometry. ANDRO induced DNA damage as indicated by the expression of phospho-H2AX in both cell lines, but it uniquely induces G2/M cell cycle arrest in HepG2, a hepatocellular cell line. This cell cycle arrest phenotype on liver cancer cells would have been missed if simple apoptotic assays were used in high throughput screening.

In the final chapter, I addressed to one of the limitations of existing apoptosis detection methods: the lack of speed. I report the development of a novel approach for the specific detection of apoptosis in cultured mammalian cells, based on the Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF-MS) of intact cells. Buffer washed cells were directly mixed with a matrix solution and directly deposited onto the stainless steel target for MALDI analysis. I discovered that the resulting MS profiles were highly reproducible and can be used to reflect cell viability. The MS profiles generated from apoptotic cells were distinct from those from either normal or necrotic cells. The apoptosis-specific features of the mass spectra were proportional to the percentage of apoptotic cells in the culture, but are independent of the drugs used to stimulate apoptosis. The speed and throughput of this method is superior to the existing apoptosis method. This is the first report on the utilization of intact cell MALDI mass spectrometry in detecting mammalian cell apoptosis.

In summary, the study reported in this thesis provides a systematic critique on the quality

of the published data and the technical limitations of existing in vitro cytotoxicity assays. These shortcomings provide a conceptual framework for the better design and reporting of cytotoxicity experiments. I have also explored a new approach in apoptosis detection, which can be used as a basis for the development of a reliable, rapid, label-free, and high throughput method for high demand of drug screening.

Table of Contents

Abstract	i
Information on Qualifying Panel and Examination Panel	V
Declaration	vi
Acknowledgments	vii
List of Publications	ix
Table of Contents	Х
List of Tables	xvi
List of Figures	xviii
List of Abbreviations	xxiii
Chapter 1 General Introduction	27 – 59
1.1 Apoptosis	28
1.1.1 Morphological Changes of Apoptosis	29
1.1.2 Apoptotic Machinery	29
1.1.2.1 Intrinsic Pathway	30
1.1.2.2 Extrinsic Pathway	32
1.1.3 Therapeutic Targeting Apoptosis	33
1.2 In Vitro Cytotoxicity Testing	37
1.3 Current Approaches for Apoptosis Detection	38
1.3.1 Vital Dyes and Lysotracker Red	39
1.3.2 Nucleic Acids Dyes	39
1.3.3 DNA Laddering	40
1.3.4 Overall Apoptotic Morphology Assessment	40
1.3.5 Annexin V	40

1.3.6 Terminal DeoxynucleotidylTransferase – mediate	41
dUTP-biotin nick end labeling (TUNEL)	
1.3.7 Caspase Activity and Cleavage	41
1.3.8 PARP Cleavage	42
1.3.9 Cytochrome c Release and Apoptosis-related Proteins	43
1.3.10 Mitochondrial Assays	43
1.4 Limitations of the existing techniques for cell death Detections	44
1.5 Motivation of present study	47
1.6 Aims of present study	48
1.7 References	50

Chapter 2 Meta-analysis on Published In-Vitro Cytotoxicity	60 - 90
Studies Reveals Unexpected Lack of Data Consistency	
2.1 Introduction	60
2.2 Materials and Methods	63
2.2.1 Data Curation	63
2.2.2 Cell Culture and Chemicals	64
2.2.3 Cell Viability Assay	64
2.3 Results	66
2.3.1 Consistency of Published Cytotoxicity Data	66
2.3.2 Dose Response Data on the Effect of Etoposide on HeLa	71
Cells	
2.3.3 Factors that Contribute to Data Consistency: Cell Death	74
Detection Methods	

2.3.4 Cell Culture Conditions	76
2.3.5 Cell Density	79
2.4 Discussion	82
2.5 References	85
Chapter 3 Baseline Level of H2AX Phosphorylation in Cultured	91 – 129
Cells is Influenced by Cell Density	
3.1 Introduction	91
3.2 Materials and Methods	96
3.2.1 Cell Culture and Chemicals	96
3.2.2 Cell Cycle Analysis	96
3.2.3 Western Blotting	96
3.2.4 Immunofluorescence	97
3.3 Results	98
3.3.1 yH2AX Expression is Affected by Cell Culture Density	98
3.3.2 High Cell Confluence Induces Pan-nuclear γ H2AX Staining	103
3.3.3 Cell Density-Induced H2AX Phosphorylation	108
3.3.4 Cell Density-Induced H2AX Phosphorylation is Persistent	113
3.3.5 Cell Density Affects the Detected Upregulation of γ H2AX	116
after Genotoxic Stress	
3.4 Discussion	118
3.5 References	122
Chapter 4 Andrographolide Induces Aberrant Mitosis in	130 - 178
Hepatocellular Cancer	

4.1 Introduction	130
4.2 Materials and Methods	133
4.2.1 Cell Culture and Chemicals	133
4.2.2 Cell Viability Assay	133
4.2.3 Cell Cycle Analysis and Apoptosis Detection	133
4.2.4 Detection of Mitochondrial Membrane Potential	134
4.2.5 Transmission Electron Microscopy	134
4.2.6 Western Blotting	135
4.2.7 Immunofluorescence	136
4.2.8 Time-lapse Imaging	136
4.2.9 Cell Synchronization	137
4.2.10 Quantitative Proteomics	137
4.3 Results	139
4.3.1 Andrographolide Induces G2/M Arrest	139
4.3.2 p53 Background not Related to G2/M Arrest	145
4.3.3 Andrographolide-Induced G2/M Arrest is Common to	148
Hepatocellular Carcinoma	
4.3.4 Andrographolide Induced Aberrant Mitosis in	153
Hepatocellular Carcinoma	
4.3.5 Cell Type- and Cell Cycle-Stage Dependent Effects of	153
Andrographolide	
4.3.6 Andrographolide Blocks Mitotic Entry of HepG2 Cells	157
4.3.7 Andrographolide-Induced G2/M Arrest of HepG2 Cells Not	159
Caused by Inhibition of NF-KB Activity	
4.3.8 Responses of HeLa and HepG2 Cells to Andrographolide	161

Revealed by Comparative Proteomics	
4.4 Discussion	164
4.5 References	170
Chapter 5 Novel and Rapid Apoptotic Detection Methods by Using	179 – 211
MALDI-TOF-MS	
5.1 Introduction	179
5.2 Materials and Methods	183
5.2.1 Cell Culture and Chemicals	183
5.2.2 Cell Death Detection	183
5.2.3 MALDI-TOF-MS	184
5.2.4 Data Visualization	185
5.3 Results	186
5.3.1 Apoptotic Cells Exhibits Specific MALDI Mass Spectral	184
Features	
5.3.2 ICM-MS as a Cytotoxicity Test	192
5.3.3 ICM-MS Patterns are Apoptosis-Specific	196
5.3.4 ICM-MS-Based Apoptosis Detection Can Be Used in a	201
Wide Diversity of Mammalian Cell Lines	
5.4 Discussion	204
5.5 References	206
Chapter 6 General Discussion	212 – 225
6.1 References	221

Appendix I	226 - 232
Appendix II	233 - 244
Appendix III	245 - 250