CITY UNIVERSITY OF HONG KONG 香港城市大學

Organic Geochemistry and Photodegradation of Organic Pollutants in the Environment 環境中有機汙染物的有機地球化學及其光 催化降解研究

Submitted to Department of Biology and Chemistry 生物化學系 in partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy 哲學博士學位

By

Wang Ru Wei 王儒威

July 2012 二零壹二年七月 Polycyclic aromatic hydrocarbons (PAHs) belong to a class of organic contaminants of great environmental concern. They have grasped much attention due to their carcinogenic potential and ubiquitous presence in the environment. The main pathway for PAHs to enter human bodies is via breathing polluted air or through the food chain. Various forms of PAHs in coals or from coal combustion may affect human, especially indoor coal combustion. In the meantime, PAHs in raw coal can reduce or even poison the activity of catalysts in the refinery, making the stockpile of liquid product unstable. Many literatures concluded that most of the PAHs come from fossil-fuel combustion. However, their pollution from raw coal were usually neglected. The movement and distribution of PAHs in the environment depends on properties such as how easily they dissolve in water, and how easily they evaporate into the air.

The abundances of sixteen polycyclic aromatic hydrocarbons (PAHs) on the priority list of U.S. Environmental Protection Agency (USEPA) have been determined in fourteen Chinese and American coals. The ranks of the samples range from lignite, bituminous coal, anthracite to natural coke. Soxhlet extraction was conducted on each coal for 48 h. The extract was analyzed on gas chromatograph-mass spectrometer (GC-MS). The results show that the total PAHs content ranged from 0.31 μ g/g to 57.6 μ g/g coal (on a dry basis). It varied with coal rank and is highest in the maturity range of bituminous coal rank. High-molecular-weight (HMW) PAHs are predominant in low-rank coals, but low-molecular-weight (LMW) PAHs are predominant in high-rank coals. The Low-sulfur coals have a higher PAHs content than high S coals. It may be explained by an increasing connection between disulfide bonds and PAHs in high-S coal.

In addition, it leads us to conclude that the PAH content of coals may be related to the depositional environment.

Fly ash and bottom ash samples were collected from a coal-fired power plant located in Anhui province, China. Mineral phases and morphologies of the samples were determined by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. 16 polycyclic aromatic hydrocarbons (PAHs, 16 compounds specified on "EPA Method 610") properties in the ash samples were investigated. In the fly ashes, the \sum_{16} PAH (total amount of 16 PAHs) and the CPAHs (total amount of eight carcinogenic PAHs) levels varied from 0.93 µg/g to 2.08 µg/g, 0.26 µg/g to 0.87 µg/g, respectively. In the bottom ashes, \sum_{16} PAH and the CPAHs levels varied from 2.83 µg/g to 5.32 µg/g, 1.76 µg/g to 3.76 µg/g, respectively. The CPAHs levels of some ashes, especially for the bottom ashes, are above the limits regulated by several countries, indicating that this type of coal combustion product need special treatment before landfill. Fly ashes were dominated by medium molecular weight (MMW) PAHs and low molecular weight (LMW) PAHs, while bottom ashes were abundant in the 5- and 6-ring PAHs species.

Thirty-three soil samples were collected from the Luling, Liuer, and Zhangji coal mines, in the Huaibei and Huainan areas, Anhui Province, China, in 2007. The concentrations of 16 polycyclic aromatic hydrocarbons (PAHs), identified as priority pollutants by the USEPA, were determined by gas chromatography-mass spectrometry (GC-MS). The sum of 16 US-EPA PAHs ranged from 0.13 to 3.54 μ g/g (dry weight basis) with a mean concentration of 0.84 μ g/g. Among the three sampling sites selected around the coal mines, the site at the Luling Coal Mine revealed maximum

concentration of PAHs, while minimum concentration was observed at the site at Zhangji Coal Mine. In general, low molecular weight PAHs were predominant. Gob pile and coal preparation plant are the sources of PAHs pollution in surface soils in the vicinity of coal mines. The crops in rice paddies may adsorb some PAHs and reduces the PAHs content in soils from paddyfields. Vertical distribution of PAHs in two soil profiles indicates that PAHs contamination in soil profiles tends to occur high in the surface soils and markedly decreases with soil depth. For all depths, PAHs showed a similar distribution pattern, which is an indicator of a similar origin. Total B[a]P equivalent concentration (B[a]Peq) was found to be maximum at the Luling area, while it was minimum at Liuer zones.

Organic pollutants in water have been causing serious environmental problems. Photocatalytic degradation of these pollutants using solar energy is an attractive solution to this global problem. Metal oxide semiconductor nanoparticles have been used as high activity photocatalysts; such as ZnO, TiO₂, CdS, Fe₂O₃ and HNbO₃. These semiconductors, however, can only be excited by UV light due to their large band gaps. For better utilization of sunlight and indoor illumination, it is desirable to develop photocatalysts that can be excited by visible light. We propose to develop a series of highly efficient visible light nano-photocatalyst of niobates and tantalates as well as doping these semiconductors with various metals and non-metals. Additionally, doping with metals can lead to increased photocatalytic efficiencies, while doping with non-metals can shift the optical absorption of the photocatalysts to the visible region. Our research should lead to the development of a novel, practical and marketable nanotechnology for environmental remediation. Nitrogen doped KNbO₃ micro/nanostructures was synthesized by the following two procedures: First, KNbO₃ micro/nanostructures were synthesized by a hydrothermal process using KOH and Nb₂O₅ as starting materials; The effects of KOH concentration on the morphology and particle size of KNbO₃ micro/nanostructures were carefully studied. It was found that lower concentration of KOH lead to formation of nanorod, further increase of KOH concentration leads to formation of KNbO₃ microcubes from the nanorod, and then the portion of the cubes increases as the reaction advances until all of the products become nanocubes. Second, nitrogen doped KNbO₃ nanocubes (N-cube), that firstly exhibited good visible light photocatalytic activity of KNbO₃ species, were synthesized by solid-state reaction of KNbO₃ micro/nanostructures with urea at 425 °C.

Photocatalytic experiment results showed that 1) different morphology and particle size of KNbO₃ can cause the change of recombination rate of photogenerated chargers and specific surface area, thus have a significant influence on the photocatalytic activity; 2) The as prepared N-cube exhibited greatly enhanced activity in the visible-light photocatalytic degradation of varies of organic contaminants and photocatalytic reduction and oxidation of water for H_2 and O_2 generation, which were mainly attributed to the improved surface area and increased optical absorption properties arises from the N 2p levels above the O 2p levels of the valence band. A mechanism for the photodegradation of organic contaminants by the N-cube photocatalyst under visible light is also proposed.

The visible-light-sensitive photocatalyst of $Ag_{1.4}K_{0.6}Ta_4O_{11}$ nanoplates was synthesized by a facile molten-salt method, and the photocatalytic activity is evaluated by decomposition of aqueous organic contaminants containing orange G (OG), rhodamine B (RhB) and pentachlorophenol (PCP) as well as photocatalytic reduction of water for H₂ generation under visible light irradiation. The $Ag_{1,4}K_{0,6}Ta_4O_{11}$ nanoplates exhibited higher photocatalytic activity on photodegradation of OG and PCP than that of Degussa TiO₂ P25, but slower on the photodegradation of RhB. In addition, the activity of the $Ag_{1.4}K_{0.6}Ta_4O_{11}$ nanoplates is improved significantly by the modification with lanthanum ions. The optimal modifying content is 1mol% corresponding to the highest photodegradation percentages for photodegradation. On the other hand, the 5% La^{3+} modifying content exhibited highest photocatalytic activity for H₂ evolution. The enhancement of photocatalytic activity after La^{3+} modification is attributed to the formation of nanowires, which further promote charge separation and transfer capability in the La^{3+} modified $Ag_{1,4}K_{0,6}Ta_4O_{11}$ nanocomposites.

List of figures

List of figures Page no
Figure 1.1: Migration and transformation of PAHs in the Environment
Figure 1.2: Solar BPA degradation in water using a powdered photocatalyst24
Figure 1.3: Honda-Fujishima effect-water splitting using a TiO ₂ photoelectrode25
Figure 1.4: Schematic diagram showing the main events of photocatalysis over
semiconductors
Figure 1.5: Elements constructing heterogeneous photocatalysts
Figure 3.1: Distribution of PAHs groups (2-ring, the 4-ring, and 5-6-ring) in coals62
Figure 3.2: Relationship of amount of USEPA priority with respect to carbon content,
and the O/C and H/C ratios
Figure 3.3: Wise model of chemical structure of coal
Figure 3.4: Relationship of the total PAHs of USEPA priority with the sulfur content in
bituminous coals
Figure 4.1: Location of (a) Huainan (b) the general study area of the power plant77
Figure 4.2: schematic configuration of the air pollution control devices
Figure 4.3: X-ray diffraction patterns of feed coal, bottom ash and fly ash collected at
bituminous coal combustion [The minerals identified are A: anhydrite C1:chlorite;
C ₂ :calcite; D:domolite; K:kaolinite; M ₁ :millite; M ₂ :montmorillonite; I:illite; Q:quartz;
S:siderite; O:others (gypsum; hematite; lime; magnetite; rutile)]84
Figure 4.4: Typical FESEM images and magnified images of (A,a) feed coal, (B,b)
bottom ash and (C,c) ESP fly ash samples obtained from Luohe power plant85

Figure 4.5: Distribution of PAH groups (two- and three-ring, four-ring, and five- and
six-ring PAHs) in feed coal, fly ashes and bottom ashes
Figure 5.1: Locations of soil samples collected at the Luling, Liuer, and Zhangji coal
mines.in Huaibei and Huainan city, Anhui, China102
Figure 5.2: Percentage composition of molecular weight distribution of PAHs in soils of
the three coalfield110
Figure 5.1: Locations of soil samples collected at the Luling, Liuer, and Zhangji coal
mines.in Huaibei and Huainan city, Anhui, China113
Figure 5.2: Percentage composition of molecular weight distribution of PAHs in soils of
the three coalfield
Figure 5.3: Variation of PAHs content in soil samples from the Luling, Liuer and
Zhangji coal mines, Anhui, China
Figure 5.4: Vertical variation of PAHs in soils from two profiles at Luling and Liuer
Mines, Anhui, China
Figure 6.1: Typical FESEM images and magnified images of products obtained starting
from different KOH concentration: a) 10M; b) 13M; c) 16M; d) 30M. The reaction was
carried out for 12h at 200 °C
Figure 6.2: XRD patterns for KNbO ₃ powders with different morphology129
Figure 6.3: EDX spectrum for nanorod and nanocube samples
Figure 6.4: Raman spectra of the starting reactant Nb ₂ O ₅ and KNbO ₃ powders131
Figure 6.5: UV-vis diffuse reflectance spectra of nanocube, nanorod and microcube
powders
Figure 6.6: XRD patterns of the nanocube and N-cube

Figure 6.7: FESEM images of N-cube
Figure 6.8: UV-vis diffuse reflectance spectra of nanocube and N-cube powders134
Figure 6.9: (a) XPS spectrum of the as-prepared nanocube and N-cube survey spectrum;
(Nb 3d) High-resolution XPS spectrum of the Nb 3d core level; (N 1s) High-resolution
XPS spectrum of the N 1s core level
Figure 6.10: Photocatalytic activities of the KNbO ₃ powders for photodegradation of a)
RhB; b) BPA under UV irradiation
Figure 6.11: The photocatalytic performance of pure KNbO ₃ nanocube and
corresponding nitrogen doped samples for photodegradation of a) OG; b) PCP; c) BPA
under visible light irradiation (using a 420 nm cutoff filter)138
Figure 6.12: (a) Photocatalytic H_2 evolution from an aqueous methanol solution
(20vol%, 10mL) under UV light irradiation ($\lambda > 390$ nm) over photocatalysts nanorod,
nanocube and N-cube (0.05g). (b) The photocatalytic activity of H_2 evolution upon the
amount of RuO ₂ cocatalyst over photocatalyst N-cube in methanol aqueous solution
under UV light irradiation ($\lambda > 390$ nm). (c) Photocatalytic O ₂ evolution from an
aqueous AgNO ₃ solution (20vol%, 10mL) under UV light irradiation ($\lambda > 390$ nm) over
photocatalysts nanorod, nanocube and N-cube (0.05g)140
Figure 6.13: Proposed band structure of N-cube and visible light photocatalytic
processes
Figure 6.14: Photocatalytic activity of OG with photocatalyst N-cube under visible light
irradiation ($\lambda > 420$ nm) in the absence and presence of methanol and nitrogen gas143
Figure 7.1: XRD patterns of a) $Ag_{1.4}K_{0.6}Ta_4O_{11}$; b) 0.5% La- $Ag_{1.4}K_{0.6}Ta_4O_{11}$; c)
1%La-Ag _{1.4} K _{0.6} Ta ₄ O ₁₁ ; d) 2%La-Ag _{1.4} K _{0.6} Ta ₄ O ₁₁ ; e) 3%La-Ag _{1.4} K _{0.6} Ta ₄ O ₁₁ ; f)

$+70La-Ag_{1,4}R_{0.6}a_{4}O_{11}, g_{7}570La-Ag_{1,4}R_{0.6}a_{4}O_{11}, a_{7}670La-Ag_{1,4}R_{0.6}a_{4}O_{11}$
The standard XRD pattern of anatase is also included for reference
Figure 7.2: XRD patterns of bulk $Ag_2Ta_4O_{11}$ and $K_2Ta_4O_{11}$
Figure 7.3: EDX spectrum for $Ag_{1.4}K_{0.6}Ta_4O_{11}$ photocatalyst
Figure 7.4: (a) low-magnification SEM image, (b) high-magnification FESEM image of
the as-prepared $Ag_{1.4}K_{0.6}Ta_4O_{11}$ nanoplates, (c) low-magnification SEM image of the
3%La ⁻ Ag _{1.4} K _{0.6} Ta ₄ O ₁₁ hetero-nanostructure158
Figure 7.5: SEM images of x%La-Ag _{1.4} $K_{0.6}$ Ta ₄ O ₁₁ hetero-nanostructure: a) x = 0.5, b) x
(= 1, c) x = 2, d) x = 3, e) x = 4, f) x = 5, g) x = 6159
Figure 7.6: XPS spectra of A-survey spectrum; B-La 3d; C-Ag 3d for Ag _{1.4} K _{0.6} Ta ₄ O ₁₁
and 1%La-Ag _{1.4} K _{0.6} Ta ₄ O ₁₁
Figure 7.7: UV-vis diffuse reflectance spectra of $x\%$ La-Ag _{1.4} K _{0.6} Ta ₄ O ₁₁ powders162
Figure 7.8: Photocatalytic activities of the $x\%La$ - $Ag_{1.4}K_{0.6}Ta_4O_{11}$ powders for
photodegradation of a) RhB; b) OG; c) PCP under visible light irradiation ($\lambda >$
420nm)
Figure 7.9 Photocatalytic H_2 evolution from an aqueous methanol solution (20vol%,
10mL) under UV light irradiation over photocatalysts $Ag_{1.4}K_{0.6}Ta_4O_{11}$ and
x%La-Ag _{1.4} K _{0.6} Ta ₄ O ₁₁ (0.05g)167

List of tables

	List of tables	Page no.
Table 1.1 : Properties and chemical structures of	sixteen US EPA Priority PA	Hs2
Table 1.2: 17 PAHs based on their probable c	arcinogenic and mutagenic b	behavior by
the World Health Organization (WHO)		4
Table 1.3: Comparison of literature values of PA	AHs content of US-EPA prior	ity (µg/g on
a dry basis) in coals from a number of countries		15
Table 1.4: Comparison of PAH contents in com	bustion residues from differen	nt countries
between this study and literatures (ng/g)		22
Table 3.1: Proximate and ultimate analyses of fo	ourteen Chinese and U.S. coal	ls55
Table 3.2: Concentrations of 16 PAHs of USEPA	A priority in fourteen coals (ir	n μg/g)58
Table 3.3: Comparison of literature values of PA	AHs content of US-EPA prior	ity (µg/g on
a dry basis) in coals from a number of countries		60
Table 4.1: Sampling sites and description		79
Table 4.2: Concentrations of USEPA priority H	PAHs in feed coal bottom as	hes and fly
ashes (µg/g)		87
Table 4.3: Comparison of PAH contents in com	bustion residues from differen	nt countries
between this study and literatures (ng/g)		
Table 4.4: Comparison of carcinogenic PAH le	evels with soils guidelines re	egulated by
various countries		89
Table 5.1: Mean and standard deviation of PAI	Hs contents in soils from the	vicinity of
three coal mines, Anhui, China		103

Table 5.2: Individual PAH concentration ($\mu g/g$) at three coalfields106
Table 5.3: PAHs concentrations (μ g/kg dry weight) in soil samples from a number of
countries
Table 5.4: Toxic equivalent factors (TEFs) and $B[a]P$ equivalent concentration ($B[a]P_{eq}$)
at the Luling, Liuer and Zhangji coal mines, Anhui, China115
Table 6.1: Crystal systems, specific surface area, photocatalytic reaction constant k and
band gap energy of the samples

Table of contents

	Content	Page no.
Abstract		i
Lists of publications		vi
Acknowledgements		viii
List of figures		x
List of tables		xiv
Chapter 1 – Introduction		1
1.1 General introduction of PAHs		1
1.1.1 Physicochemical Properties of PA	AHs	1
1.1.2 Environmental Source of PAHs		4
1.1.3 PAHs Migration and Transforma	ation in the Environment	5
1.1.4 Environmental fate of PAHs		6
1.1.4.1 PAH in ambient and indoor a	air	6
1.1.4.2 PAHs in soil and sediment		
1.1.4.3 PAHs in water		
1.2 Raw coal and coal combustion-derived	d polycyclic aromatic hydro	carbons (PAHs)
in the environment and their impact on the envi	rironment	11
1.2.1 Native PAHs in coal – a natural se	source of contamination	11
1.2.1.1 The importance of coal		11
1.2.1.2 Coal maceral composition an	nd associated PAH formation	n 12
1.2.1.3 Concentration and composit	tion of PAHs in coals and t	heir correlation

with coal rank and origin14
1.2.1.4 Native coal-bound PAH in soils and sediments
1.2.2 PAHs from coal combustion
1.2.2.1 Formation Mechanism of PAHs during coal combustion
1.2.2.2 Factors influencing PAH emissions during coal combustion
1.2.2.3 Levels and patterns of PAHs in ashes
1.3 Photocatalytic degradation of organic pollutants in water under visible light
using nanostractured niobates and tantalates
1.3.1 Background of degradation of pollutants in water
1.3.2 Basic principle of semiconductor photocatalysis
1.3.3 Titanium dioxide (TiO ₂) photocatalysts
1.3.4 Niobates and tantalates
1.4 References
Chapter 2 – Overall objectives
2.1 PAH Geochemistry and Their Environmental Impact
2.2 Semiconductor photodegradation
Chapter 3 - Abundances of Polycyclic Aromatic Hydrocarbons (PAHs) in 14 Chinese and
American Coals and Their Relation to Coal Rank and Weathering
3.1 Introduction
3.2 Experimental Section
3.2.1 Sample preparation
3.2.2 Chemicals and Materials
3.2.3 Soxhlet Extraction

	3.2.4 Gas Chromatograph-Mass Spectrometer (GC-MS)	56
	3.2.5 Quality assurance and quality control	56
3.3	Results and discussion	
	3.3.1 Total Amount of PAHs and Carcinogenic PAHs	
	3.3.2 PAH Pattern	60
	3.3.3 Effect of Rank	63
	3.3.4 Effect of Sulfur Content	65
3.4	Conclusions	67
3.5	References	68
Chapt	ter 4 – Characterization of PAHs in coal-fired power plant bottom ashes a	nd fly ashes
from Hu	ıainan, China	
4.1	Introduction	73
4.2	Experimental Section	76
	4.2.1 Study area	76
	4.2.2 Sample Collection	
	4.2.3 Sample characterization	80
	4.2.4 Sample extraction and analysis	
	4.2.5 Quality assurance and quality control	
4.3	Results and discussion	83
	4.3.1 XRD patterns	83
	4.3.2 Sample Morphology	
	4.3.3 Total amount of PAHs and carcinogenic PAHs	85
	4.3.4 PAH patterns	89

4.4 Conclusions	
4.5 References	
Chapter 5 - Environmental Assessment of PAHs in soils around the Anhui o	coal district, China
5.1 Introduction:	
5.2 Materials and Methods	100
5.2.1 Geologic Setting of Coal Mines	100
5.2.2 Soil Samples	103
5.2.3 Solvent Extraction and Clean up	
5.2.4 Analysis	
5.2.5 Quality assurance /quality control (QA/QC)	
5.3 Results and discussion	
5.3.1 Concentration and distribution of PAHs in soils	
5.3.2 PAH compound profiles in soils	110
5.3.3 Source and spatial dispersion of PAHs in coal mines	112
5.3.4 Estimation of carcinogenic potencies	114
5.4 Conclusions	116
5.5 References	116
Chapter 6 - Synthesis of Nitrogen-Doped KNbO3 Micro/Nanostructures a	nd Application for
Photocatalysis	
6.1 Introduction	
6.2 Experimental	
6.2.1 Sample Preparation	

6.2.2 Sample Characterization	126
6.2.3 Photocatalytic Tests	126
6.3 Results and Discussion	128
6.3.1 Characterization of KNbO ₃	128
6.3.2 Characterization of the N-KNbO ₃	132
6.3.3 Photocatalytic Performance	135
6.3.3.1 Photocatalytic activity for organic contaminants degradation	135
6.3.3.2 Photocatalytic activity for H ₂ /O ₂ evolution	139
6.3.4 Mechanism for the Photocatalytic Activity of KNbO ₃ -N	141
6.4 Conclusions	143
6.5 References	144
Chapter 7 - Enhancement of Visible-Light Photocatalytic Activity of $Ag_{1.4}K_{0.6}Ta_4O_{11}$ na	inoplates
by lanthanum modification	151
7.1 Introduction	151
7.2 Experimental Section	153
7.2.1 Synthesis	153
7.2.2 Characterizations	154
7.2.3 Photocatalytic tests	154
7.3 Results and Discussion	156
7.3.1 Structure and properties of samples	156
7.3.2 XPS Analysis.	159
7.3.3 Measurement of the light absorption.	162
7.3.4 Photocatalytic activity	162

7.3.4.1 Photocatalytic activity for organic contaminants degradation	. 162
7.3.4.2 Photocatalytic activity of H ₂ evolution	. 166
7.4 Conclusions	. 167
7.5 References	. 168