CITY UNVERSITY OF HONG KONG

香港城市大學

Catalytic Oxidation of Organic substrates by a Ruthenium(II) Polypyridyl complex

以二價金屬釕的多吡啶絡合物為催化劑催 化氧化有機化合物的研究

Submitted to
Department of Biology and Chemistry
生物及化學系
in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy
哲學博士學位

by

Hu Zongmin 胡宗敏

June 2011 二零一一年六月

Abstract

The use of recyclable catalysts and water as solvent for the oxidation of organic compounds is appealing in the context of green chemistry. The objectives of this thesis are to develop a polymer-supported ruthenium catalyst for oxidation of organic compounds in aqueous media. This thesis is divided into two parts. Part I is concerned with the catalytic activities of a ruthenium(II) polypyridyl complex, cis-[Ru^{II}(2,9-Me₂phen)₂(H₂O)₂](PF₆)₂ (2,9-Me₂phen = 2,9-dimethyl-1,10-phenanthroline) toward oxidation of various organic compounds in aqueous media. Part II describes the preparation of recyclable polymer-supported ruthenium catalysts and their application for the oxidative degradation of environmental pollutants.

In Part I, the catalytic activities of cis-[Ru^{II}(2,9-Me₂phen)₂(H₂O)₂]²⁺ (**Ru^{II}**) toward the oxidation of organic compounds using various terminal oxidants in aqueous media was described. Among various terminal oxidants, Ce(IV) gave the best yields, and reaction was completed within 15 min. For example, using 1 mol % of **Ru^{II}**, alcohols and alkenes were oxidized to ketones or carboxylic acids with excellent yields (up to 100 %) using Ce(IV) as terminal oxidant. Notably, in the oxidation of cyclohexanol to cyclohexanone, a turnover number (TON) of > 10,000 could be achieved under ambient conditions.

In part II, two polymer-supported ruthenium catalysts have been prepared by

immobilizing $\mathbf{Ru^{II}}$ onto the cation exchange resins Dowex-50W and Chelex-100, and their catalytic activities have been examined. No significant deterioration of product yields were found when $\mathbf{Ru^{II}}$ was supported onto these polymers. The Dowex-50W supported ruthenium catalyst ($\mathbf{Ru^{II}}$ -Dowex) showed higher stability than the Chelex-100 supported catalyst since no leaching of ruthenium was found. In the case of oxidation of cyclohexanol and cyclohexene, a TON of over 10,000 can be achieved. $\mathbf{Ru^{II}}$ -Dowex could be reused by simple filtration and displayed no loss of activity.

In addition, the potential use of these polymer-supported ruthenium catalysts for the oxidative degradation of organic pollutants in water was studied using bisphenol A, an emerging endocrine disruptor, as a substrate; and the environmentally friendly H_2O_2 as oxidant. These polymer-supported catalysts are found to be efficient for the degradation of bisphenol A in aqueous solution by H_2O_2 under ambient conditions. The intermediates and products formed during the oxidative degradation of bisphenol A by these catalytic systems have been identified and a mechanism is proposed. The supported catalysts are easily recovered by simple filtration and display no loss of activity when recycled.

Table of contents

Abstracti
Declaration iii
Acknowledgementsiv
Table of contentsvi
List of Schemesxi
List of Tablesxiv
List of Figuresxv
List of Appendixesxviii
Abbreviationsxx
Chapter 1 General introduction and Objectives1
1.1 Catalytic oxidation in biological systems
1.1.1 Cytochrome P-450 family
1.1.2 Methane Monooxoygenase (MMO)7
1.2 Catalytic oxidation in chemical systems
1.2.1 Oxidation based on cytochrome P-450 model systems
1.2.2 Oxidation based on non-heme metalloenzyme model systems16
1.3 Catalytic oxidation based on Ruthenium23

	1.3.1	Oxidation of alkanes	23
	1.3.2	Oxidation of alcohols	30
	1.3.3	Oxidation of alkenes	36
	1.3.4	Oxidation of other organic substrates	45
1.4	Catal	ytic oxidation by supported catalysts	47
	1.4.1	Advantages of supported catalysts	47
	1.4.2	Choice of the supports	48
1.5	Objec	ctives	49
cis-[Ru	^{II} (2,9-N	Catalytic Oxidation of Alkanes, Alcohols and Alkenes us $[e_2phen)_2(H_2O)_2](PF_6)_2$ as catalyst with various terminal oxides.	lants
in wate	r		50
2.1	Introd	duction	51
2.2	Expe	rimental	53
	2.2.1	Materials	53
	2.2.2	Instrumentation	53
	2.2.3	Synthesis of cis-[Ru ^{II} (2,9-Me ₂ phen) ₂ (H ₂ O) ₂](PF ₆) ₂	53
	2.2.4	Catalytic oxidation with Ru ^{II} using O ₂	54
	2.2.5	Catalytic oxidation with Ru ^{II} using H ₂ O ₂	54
	2.2.6	Catalytic oxidation with Ru ^{II} using TBHP	55
	2.2.7	Catalytic oxidation with Ru ^{II} using Oxone [®]	55
	2.2.8	Catalytic oxidation with Ru ^{II} using Periodate	56
	2.2.9	Catalytic oxidation of alkanes, alcohols and alkenes with Ce ^{IV}	56
	2.2.10	Analysis of IO ₃ ⁻ formed from IO ₄ ⁻ by ion chromatography	57
	2.2.11	Mechanism of catalytic oxidation with cerium(IV)	57

2.3	Resu	ılts and	discussion					58
	2.3.1		Screening	of	the	catalytic	activity	of
	cis-[R	u ^{II} (2,9	-Me ₂ phen) ₂ (H ₂ 0	O) ₂] ²⁺				58
			ytic oxidation					
			dant in water				_	
	2.3.3	The s	stability of the	Ru ^{II} cata	ılyst in c	catalytic system	m using NaIO	O ₄ as
	termin	nal oxid	lant					63
	2.3.4	Mech	nanism of oxida	tion with	n NaIO4 a	and Ru ^{II}		64
	2.3.5	Catal	ytic oxidation	of vario	us alcoh	ols and alker	nes using Ce	^{IV} as
			lant					
	2.	.3.5.1	Oxidation of a	lcohols.				67
	2.	.3.5.2	Oxidation of a	ılkenes				69
	2.3.6	The	stability of the	Ru ^{II} cat	alyst in	catalytic syst	em using Ce	^{IV} as
			lant		-		_	
	2.3.7	Mech	nanism of oxida	tion with	n Ce ^{IV} an	d Ru ^{II}		71
2.4	Conc	cluding	remarks					75
Chapte	r 3 (Cataly	tic Oxidation	of Alco	ohols ar	nd Alkenes	using Suppo	rted
cis-[Ru	^{II} (2,9-N	∕Ie₂phe	en) ₂ (H ₂ O) ₂](PF	(6)2 as ca	talyst in	water	••••••	76
3.1	Intro	duction	n					77
3.2	Expe	eriment	al					85
	3.2.1	Mate	rials					85
	3.2.2	Instru	mentation		•••••			85
	3.2.3	Catal	ysts preparation	1				86
	3.	.2.3.1	Synthesis of the	ne water-	soluble	ruthenium cat	alyst	86
	3.	.2.3.2	Immobilizatio	n of ruth	enium ca	atalyst onto D	owex	86
	3.2.4	Chara	acterization of t	he suppo	orted cata	alysts		86

3.2.	5 Ru ^{II} -Dowex Catalyzed oxidation of alkanes and alcohols using
NaI	O ₄ 87
3.2.	6 Ru ^{II} -Dowex Catalyzed oxidation of alkanes and alcohols using Ce ^{IV}
	87
3.3 Re	sults and discussion88
3.3.	Preparation and characterization of supported catalysts
3.3.	2 Ru ^{II} -Dowex catalyzed oxidation of alcohols and alkenes using
NaI	O ₄ as terminal oxidant in water90
3.3.	Rate of catalytic oxidation using periodate as terminal oxidant93
3.3.	4 The stability of the Ru ^{II} -Dowex catalyst in catalytic system using
NaI	O ₄ as terminal oxidant94
3.3.	5 Ru ^{II} -Dowex catalyzed oxidation of alcohols and alkenes using Ce ^{IV}
as to	erminal oxidant in water97
	3.3.5.1 Oxidation of alcohols
	3.3.5.2 Oxidation of alkenes
3.3.	6 Rate of catalytic oxidation using Ce ^{IV} as terminal oxidant101
3.3.	7 The stability of the Ru ^{II} -Dowex catalyst in catalytic system using
Ce ^{Iv}	as terminal oxidant
3.4 Co	ncluding remarks
Chanter 4	A Recyclable Polymer-Supported Ruthenium Catalyst for the
_	egradation of Bisphenol A in Water using Hydrogen Peroxide 107
omuu (D	ograduston of Bisphenorium (tutor using 11) drogon 1 eromae militar
4.1 Int	roduction
4.2 Ex	perimental111
4.2.	1 Materials111
4.2.	2 Catalysts preparation 111

4.2.2.2 Immobilization of ruthenium catalyst onto resins
4.2.3 Characterization of the supported catalysts
4.2.4 Oxidative degradation of bisphenol A
4.3 Results and discussion
4.3.1 Preparation and characterization of supported catalysts114
4.3.2 Oxidative degradation of bisphenol A
4.3.3 Kinetic studies on oxidative degradation of BPA by Ru ^{II} -Dowey
using H ₂ O ₂ 120
4.3.3.1 Effect of H ₂ O ₂ concentration
4.3.3.2 Effect of acidity
4.3.3.3 Effect of the amount of Ru ^{II} -Resin catalyst129
4.3.4 Recycling of the polymer-supported Ru ^{II} catalyst
4.3.5 Analysis of the intermediates and products formed in the oxidative
degradation of bisphenol A
4.3.6 Proposed oxidative degradation pathways of bisphenol A139
4.3.7 Ru ^{II} versus Fe ^{II} /Fe ^{III} as catalyst
4.4 Concluding remarks
Chapter 5 Conclusions144
5.1 Conclusions
5.2 Future works
References148
Appendixes174

List of Schemes

Scheme 1.1	The catalytic cycle of cytochrome P-450 6
Scheme 1.2	The proposed catalytic cycle of MMO. 9
Scheme 1.3	Proposed catalytic cycle for alkane hydroxylation using ferric
porphyri	n as catalyst 12
Scheme 1.4	Comparison of catalytic oxidation of cyclohexane by $\mathrm{Fe}^{\mathrm{III}}(\mathrm{TPP})\mathrm{Cl}$
and Fe ^{III}	(TPFPP)Cl 13
Scheme 1.5	Oxidation of 2,2-dimethylbutane catalyzed by $\mathrm{Mn^{III}}(\mathrm{TPP})\mathrm{OAc}$ and
Mn ^{III} (T7	TPPP)OAc 14
Scheme 1.6	The proposed catalytic cycle using H_2O_2 as terminal oxidant and
mangan	ese imidazole and porphyrins as catalyst 15
Scheme 1.7	The proposed mechanism for Fe^{III} - H_2O_2 system of Gif conditions
	18
Scheme 1.	8 The proposed mechanism for oxidation by
[Fe ^{III} (TF	$^{2}A)(X)_{2}]^{+}/TBHP$ catalytic system 21
Scheme 1.9	Oxidation of adamantane by 2,6-dichloropyridine N-oxide and
HBr cata	alyzed by $Ru(TDCPP)(O)_2$ 25
Scheme 1.10	Oxidation of decalin by 2,6-dichloropyridine N-oxide catalyzed
by Ru(T	DCPP)(CO) 26
Scheme 1.11	oxidation of cyclohexane by TBHP catalyzed by polypyridyl
rutheniu	m(II) complexes 27
Scheme 1.12	2 Trifluoroacetoxylation of cyclohexane by peracetic acid
catalyze	d by RuCl ₃ 29
Scheme 1.13	Aerobic oxidation of cyclohexane catalyzed by RuCl ₃ or
Ru(TPF	PP)(CO) with dioxygen 30
Scheme 1.14	Oxidation of primary alcohols by aqueous H ₂ O ₂ catalyzed by
[(Me ₃ tac	en)(CF3CO2)2RuIII(OH2)]CF3CO2 31
Scheme 1.15	Oxidation of benzyl alcohol with H ₂ O ₂ in the presence of

$RuCl_3 nH_2O$	31
Scheme 1.16 Oxidation of 1-phenylethanol with TBHP catalyzed by	эу
$RuCl_2(PPh_3)_3$	32
Scheme 1.17 Oxidation of alcohols with Oxone® in the presence of PhI ar	nd
RuCl ₃ as co-catalysts	33
Scheme 1.18 Oxidation of cyclododecanol by PhIO catalyzed by RuCl ₂ (PPh ₃	3)3
3	33
Scheme 1.19 Oxidation of (E)-3-phenylprop-2-en-1-ol by pyridine N-oxid	de
catalyzed by $Ru(tmp)(O)_2$	34
Scheme 1.20 The aerobic oxidation of 2-octanol by dioxygen catalyzed by	Эy
$RuCl_3$	35
Scheme 1.21 The aerobic oxidation of 1-propanol by dioxygen catalyzed by	ЭУ
Ru3O(O2CCH2CH3)6(PPh3)3	36
Scheme 1.22 Epoxidation of alkenes catalyzed by metalloporphyrin comple	ЭX
3	36
Scheme 1.23 Epoxidation of norbornene by O ₂ catalyzed by [Ru(TMP)(O) ₂]3	37
Scheme 1.24 The proposed catalytic cycle for aerobic epoxidation of alkene by	эу
$Ru(TMP)(O)_2$	38
Scheme 1.25 The proposed mechanism for initiation of the aerob	ic
epoxidation of norbornene by [Ru(2,9-Me ₂ phen) ₂ (CH ₃ CN) ₂](PF ₆) ₂	39
Scheme 1.26 Generation of -peroxo species by Ru ^{II} and O ₂	40
Scheme 1.27 Epoxidation of (E)-1,2-diphenylethene by NaIO4 in the present	ce
of RuCl ₃ nH ₂ O and bipyridine	40
Scheme 1.28 Epoxidation of styrene by PhIO catalyzed by Ru(OEP)(PPh3)I	Зr
4	11
Scheme 1.29 Epoxidation of 1-octene in the presence of 2,6-dichloropyridin	ne
N-oxide and Ru(TPFPP)(CO)	12
Scheme 1.30 Epoxidation of norbornene by TBHP catalyzed by a rutheniu	m
tetrakis(4-chlorophenyl)porphyrin complex	12
Scheme 1.31 Oxidation of cyclohexene for the formation of adipic acid by	эy

Ce(IV)/[Ru ^{II} (tpa)(H ₂ O) ₂](PF ₆) ₂ catalytic system in water	43
Scheme 1.32 The proposed pathway for the oxidation of cyclohexene	by
Ce(IV) catalyzed by [Ru ^{II} (tpa)(H ₂ O) ₂](PF ₆) ₂ in water	44
Scheme 1.33 The proposed mechanism for the formation of adipic acid in	the
presence of H_2O_2 and $[(Me_3tacn)(CF_3CO_2)_2Ru^{III}(OH_2)]CF_3CO_2$	45
Scheme 1.34 Oxidation of phenols bearing para-substituents by TB	HP
catalyzed by RuCl ₂ (PPh ₃) ₃	46
Scheme 1.35 Oxidation of tertiary amines with TBHP catalyzed	by
$RuCl_2(PPh_3)_3$	46
Scheme 1.36 Oxidation of secondary amines with TBHP catalyzed	by
$RuCl_2(PPh_3)_3$	47
Scheme 3.1 Epoxidation of alkenes by NaIO ₄ catalyzed by Mn(salen)-Resin	78
Scheme 3.2 Aerobic oxidation of primary and secondary benzylic alcoh	ols
using Ru/C	78
Scheme 3.3 Aerobic oxidation of alcohols and amines catalyzed by Ru/Al ₂	$_{2}O_{3}$
	79
Scheme 3.4 Aerobic oxidation of alcohols and primary amines catalyzed	by
Ru/Al ₂ O ₃ or Ru/TiO ₂	80
Scheme 3.5 Immobilization of Ru ^{II} (TDCPP)(CO)(EtOH) onto mesoporo	ous
molecular sieves MCM-41	81
Scheme 3.6 Preparation of ruthenium porphyrins supported or	nto
chloromethylated resin by covalent bond	82
Scheme 3. 7 Preparation of RuCl ₂ (PPh ₃) ₃ supported onto organic-inorga	nic
hybrid	84

List of Tables

Table 1.1	Reactions catalyzed by cytochrome P-450 enzymes 4
Table 2.1	Ru ^{II} catalyzed oxidation of cyclohexanol using various terminal
oxida	nts 59
Table 2.2	Catalytic oxidation of alcohols and alkenes by NaIO ₄ catalyzed by
Ru ^{II} in	n water 61
Table 2.3	Catalytic oxidation of alcohols and alkenes by Ce^{IV} catalyzed by Ru^{II}
in wat	ter 68
Table 2.4	Catalytic oxidation of alkenes by Ce ^{IV} catalyzed by Ru ^{II} in water 69
Table 3.1	Catalytic oxidation of alcohols by NaIO ₄ catalyzed by Ru ^{II} -Dowex
in wat	ger 91
Table 3.2	Stability studies of Ru^{II} and Ru^{II} -Dowex in the presence of $NaIO_496$
Table 3.3	Catalytic oxidation of alcohols by $\mathrm{Ce}^{\mathrm{IV}}$ catalyzed by $\mathrm{Ru}^{\mathrm{II}}\text{-}\mathrm{Dowex}$ in
water	98
Table 3.4	Catalytic oxidation of alkenes by Ce ^{IV} catalyzed by Ru ^{II} -Dowex in
water	100
Table 3.5	Stability studies of Ru ^{II} and Ru ^{II} -Dowex in the presence of Ce ^{IV} 105
Table 4.1	List of major intermediates (a - e) and main fragments (m/z)
obtain	ned by LC-MS and LC-MS/MS. 135

List of Figures

Figure 1.1 Structure of iron protoporphyrin IX 3
Figure 1. 2 The structures of tetra, tri and pentadentate pyridine ligands
commonly employed in non-heme iron(II)/iron(III) complexes 19
Figure 2.1 Time-course of turnover number (TON) with successive additions
of NaIO ₄ at points indicated by arrows using Ru ^{II} catalyst. 63
Figure 2.2 UV-Vis spectrum of I_3^- formed by IO_4^- and excess I^- 65
Figure 2.3 UV-Vis spectral change upon addition of $NaIO_4$ (2.5 × 10^{-4} M) to
an aqueous solution of $\mathbf{Ru^{II}}$ (1.0 × 10 ⁻⁴ M), before (curve A) and after
(curve B) addition of NaIO ₄ .
Figure 2.4 Proposed catalytic cycle of oxidation of alcohols by NaIO ₄
catalyzed by $\mathbf{Ru^{II}}$ 66
Figure 2.5 Time-course of turnover number (TON) with successive additions
of Ce^{IV} at points indicated by arrows using Ru^{II} catalyst.
of the points indicated by alrows using 214 catalysis.
Figure 2.6 Spectrophotometric titration for varied Ce^{IV} and fixed Ru^{II}
Figure 2.6 Spectrophotometric titration for varied Ce^{IV} and fixed Ru^{II}
Figure 2.6 Spectrophotometric titration for varied Ce^{IV} and fixed Ru^{II} concentration in water
Figure 2.6 Spectrophotometric titration for varied Ce^{IV} and fixed Ru^{II} concentration in water 72 Figure 2.7 Spectrophotometric changes upon addition of 1-butanol to
Figure 2.6 Spectrophotometric titration for varied Ce^{IV} and fixed Ru^{II} concentration in water 72 Figure 2.7 Spectrophotometric changes upon addition of 1-butanol to Ru^{II}/Ce^{IV} in water. 73
Figure 2.6 Spectrophotometric titration for varied Ce^{IV} and fixed Ru^{II} concentration in water 72 Figure 2.7 Spectrophotometric changes upon addition of 1-butanol to Ru^{II}/Ce^{IV} in water. 73 Figure 2.8 Proposed catalytic cycle for the oxidation of 1-butanol by Ce^{IV}
Figure 2.6 Spectrophotometric titration for varied Ce^{IV} and fixed Ru^{II} concentration in water 72 Figure 2.7 Spectrophotometric changes upon addition of 1-butanol to Ru^{II}/Ce^{IV} in water. 73 Figure 2.8 Proposed catalytic cycle for the oxidation of 1-butanol by Ce^{IV} catalyzed by Ru^{II} in water 74
Figure 2.6 Spectrophotometric titration for varied Ce^{IV} and fixed Ru^{II} concentration in water 72 Figure 2.7 Spectrophotometric changes upon addition of 1-butanol to Ru^{II}/Ce^{IV} in water. 73 Figure 2.8 Proposed catalytic cycle for the oxidation of 1-butanol by Ce^{IV} catalyzed by Ru^{II} in water 74 Figure 3.1 Diffuse reflectance spectra of (a) Ru^{II} -Dowex and (b) Ru^{II} -Dowex
Figure 2.6 Spectrophotometric titration for varied Ce^{IV} and fixed Ru^{II} concentration in water 72 Figure 2.7 Spectrophotometric changes upon addition of 1-butanol to Ru^{II}/Ce^{IV} in water. 73 Figure 2.8 Proposed catalytic cycle for the oxidation of 1-butanol by Ce^{IV} catalyzed by Ru^{II} in water 74 Figure 3.1 Diffuse reflectance spectra of (a) Ru^{II} -Dowex and (b) Ru^{II} -Dowex after catalytic oxidation 89
Figure 2.6 Spectrophotometric titration for varied Ce^{IV} and fixed Ru^{II} concentration in water 72 Figure 2.7 Spectrophotometric changes upon addition of 1-butanol to Ru^{II}/Ce^{IV} in water. 73 Figure 2.8 Proposed catalytic cycle for the oxidation of 1-butanol by Ce^{IV} catalyzed by Ru^{II} in water 74 Figure 3.1 Diffuse reflectance spectra of (a) Ru^{II} -Dowex and (b) Ru^{II} -Dowex after catalytic oxidation 89 Figure 3.2 Plot of % yield versus time for the oxidation of cyclohexanol in
Figure 2.6 Spectrophotometric titration for varied Ce^{IV} and fixed Ru^{II} concentration in water 72 Figure 2.7 Spectrophotometric changes upon addition of 1-butanol to Ru^{II}/Ce^{IV} in water. 73 Figure 2.8 Proposed catalytic cycle for the oxidation of 1-butanol by Ce^{IV} catalyzed by Ru^{II} in water 74 Figure 3.1 Diffuse reflectance spectra of (a) Ru^{II} -Dowex and (b) Ru^{II} -Dowex after catalytic oxidation 89 Figure 3.2 Plot of % yield versus time for the oxidation of cyclohexanol in water by NaIO ₄ catalyzed by Ru^{II} (upper) and Ru^{II} -Dowex (lower) at room

Figure 3.4 Plot of % yield versus time for the oxidation of cyclohexane	ol in			
water by Ce^{IV} catalyzed by Ru^{II} (upper) and Ru^{II} -Dowex (lower) at room				
temperature.	102			
Figure 3.5 Time-course of turnover number (TON) with successive additional transfer of turnove	tions			
of Ce^{IV} at points indicated by arrows using Ru^{II} -Dowex catalyst.	104			
	1			
Figure 4.1 Diffuse reflectance UV-vis spectra of $\mathbf{Ru}^{\mathbf{II}}$ (i), Dowex (ii)				
Ru ^{II} -Dowex (iii)	115			
Figure 4.2 Diffuse reflectance UV-vis spectra of $\mathbf{Ru^{II}}$ (i), Chelex (iv)	and			
Ru ^{II} -Chelex (v)	116			
Figure 4.3 Time course for the ruthenium catalyzed degradation of BPA ((0.50			
mM) by H_2O_2 (25 mM) in water (50 mL). Temperature = 25 °C.	118			
Figure 4.4 Fe ²⁺ and Mn ²⁺ supported on Dowex and Chelex as supported	orted			
catalyst during bisphenol A degradation by H ₂ O ₂ . H ₂ O ₂ =25	mM,			
[Fe]=0.20mM, [Mn]=0.20mM.	119			
Figure 4.5 Effect of H ₂ O ₂ concentration on degradation of bisphenol A	A by			
Ru ^{II} -Dowex. Ru ^{II} -Dowex (8.2 μmol Ru ^{II} /g Dowex), 1.0 g; bispheno	ol A:			
(0.50 mM) in 50 mL water.	121			
Figure 4.6 A representative plot of [Bisphenol A] vs. time. H ₂ O ₂ , 25	mM;			
Ru^{II}-Dowex (8.2 μmol Ru^{II}/g Dowex), 1.0 g; bisphenol A (0.50 mM) i	in 50			
mL water.	123			
Figure 4.7 Plot of $1/k_{obs}$ versus [H ₂ O ₂] for the $\mathbf{Ru^{II}}$ -Dowex catalyzed oxid	ative			
degradation of BPA by H ₂ O ₂ .	124			
Figure 4.8 Oxidative degradation of BPA (0.5 mM) catalyzed by Ru^{II}-Do	wex			
at various pH. H_2O_2 , 25 mM; $\mathbf{Ru^{II}}\text{-}\mathbf{Dowex}$ (8.2 μ mol $\mathbf{Ru^{II}}$ / g Dowex),	1.0 g			
50 mL water. Temperature = 25 °C.	126			
Figure 4.9 A representation plot of oxidative degradation of BPA by H ₂ O	O_2 at			
pH 8. H_2O_2 , 25 mM; $\mathbf{Ru^{II}}$ -Dowex (8.2 μ mol $\mathbf{Ru^{II}}$ /g Dowex), 1.	0 g;			
bisphenol A (0.50 mM) in 50 mL water.	127			

Figure 4.10 Plot of $k_{\rm obs}$ versus pH in the oxidative degradation of BPA by H_2O_2 .

141

Figure 4.11 Effect of the amount of Ru ^{II} -Dowex catalyst on the oxidative
degradation of bisphenol A. H ₂ O ₂ , 25mM; bisphenol A, 0.50 mM in 50 mL
water. 130
Figure 4.12 Plot of k_{obs} versus amount of $\mathbf{Ru^{II}}$ -Dowex in the oxidative
degradation of BPA by H_2O_2 . 131
Figure 4.13 UV-Vis spectra of $\mathbf{Ru^{II}}$ in homogeneous catalytic oxidation. (a)
Before adding H_2O_2 , $[\mathbf{Ru^{II}}] = 0.07$ mM, $[BPA] = 0.5$ mM. (b) Immediately
after adding H_2O_2 , $[H_2O_2]=25mM$, (c) After 5 h, excess Na_2SO_3 added to
remove H_2O_2 .
Figure 4.14 Liquid chromatogram of the reaction mixture after 7 h for the
oxidation of bisphenol A by $\mathbf{Ru^{II}} ext{-}\mathbf{Dowex}/\mathrm{H}_2\mathrm{O}_2$ at 25 °C. BPA, 0.5 mM;
H_2O_2 , 25 mM; Ru^{II} -Dowex (8.2 μ mol Ru^{II}), 1.0 g; 50 mL water.
Figure 4.15 Liquid chromatogram of the mixture containing BPA, H ₂ O ₂ and
Ru ^{II} - Dowex catalyst after 24 h reaction.
Figure 4. 16 Gas chromatogram of the mixture (after extraction with diethyl
ether) containing BPA, H ₂ O ₂ and Ru^{II}-Dowex catalyst after 24 h reaction.
138
Figure 4.17 Proposed oxidative degradation pathways of BPA by

 $\boldsymbol{Ru^{II}\text{-}\boldsymbol{Dowex}/H_2O_2}$

List of Appendixes

Appendix 1	Catalytic oxidation of benzyl alcohol by O ₂ catalyzed by Ru ^{II} at	
different pH 174		
Appendix 2	Catalytic oxidation of alcohols, alkanes and alkenes by H_2O_2	
catalyze	d by Ru ^{II} in water at different pH 175	
Appendix 3	Catalytic oxidation of alcohols and alkenes by H_2O_2 catalyzed by	
Ru ^{II} in acetone 177		
Appendix 4	Catalytic oxidation of alcohols, alkanes and alkenes by TBHP	
catalyzed by Ru ^{II} in acetone 178		
Appendix 5	Catalytic oxidation of alcohols, alkanes and alkenes by Oxone®	
catalyze	d by Ru ^{II} in water at different pH 180	
Appendix 6	Catalytic oxidation of alcohols, alkanes and alkenes by Oxone®	
catalyzed by Ru ^{II} in acetone/water 182		
Appendix 7	Catalytic oxidation of alcohols, alkanes and alkenes by Oxone®	
catalyze	d by Ru^{II} and Ru^{II} -Dowex in t -BuOH/H ₂ O 184	
Appendix 8	Effect of H ₂ O ₂ concentration on degradation of bisphenol A by	
Ru ^{II} -Chelex. Ru ^{II} -Chelex (6.9 μmol Ru ^{II} /g Dowex), 1.0 g; bisphenol A:		
(0.50 mM) in 50 mL water. 186		
Appendix 9	Figure 4.9 Effect of the amount of Ru ^{II} -Chelex catalyst on the	
oxidative degradation of bisphenol A. H ₂ O ₂ , 25mM; bisphenol A, 0.50 mM		
in 50 mL water. 187		
Appendix 10	Plot of [Bisphenol A] vs time. H ₂ O ₂ , 5 mM; Ru ^{II} -Dowex (8.2	
μmol Ru	1 Dowex), 1.0 g; bisphenol A (0.50 mM) in 50 mL water. 188	
Appendix 11	Plot of [Bisphenol A] vs time. H ₂ O ₂ , 10 mM; Ru ^{II} -Dowex (8.2	
μmol Ru ^{II} /g Dowex), 1.0 g; bisphenol A (0.50 mM) in 50 mL water. 189		
Appendix 12	Plot of [Bisphenol A] vs time. H ₂ O ₂ , 25 mM; Ru ^{II} -Dowex (8.2	
μmol Ru ^{II} /g Dowex), 0.5 g; bisphenol A (0.50 mM) in 50 mL water. 190		
Appendix 13	Plot of [Risphenol A] vs time H ₂ O ₂ 25 mM: Ru ^{II} -Dowex (8.2)	

μ mol Ru ^{II} /g Dowex), 2.0 g; bisphenol A (0.50 mM) in 50 mL water. 191		
Appendix 14 Oxidantive degradation of BPA by H ₂ O ₂ at pH 4. H ₂ O ₂ , 25 mM;		
Ru^{II} -Dowex (8.2 μ mol Ru^{II} /g Dowex), 1.0 g; bisphenol A (0.50 mM) in 50		
mL water. 192		
Appendix 15 Oxidantive degradation of BPA by H ₂ O ₂ at pH 7. H ₂ O ₂ , 25 mM;		
Ru^{II} -Dowex (8.2 μ mol Ru^{II} /g Dowex), 1.0 g; bisphenol A (0.50 mM) in 50		
mL water. 193		
Appendix 16 Oxidantive degradation of BPA by H ₂ O ₂ at pH 9. H ₂ O ₂ , 25 mM;		
Ru ^{II} -Dowex (8.2 μmol Ru ^{II} /g Dowex), 1.0 g; bisphenol A (0.50 mM) in 50		
mL water. 194		
Appendix 17 Mass spectra of peak a for bisphenol A degradation intermediates.		
Inset: MS-MS fragmentation of the product peak. 195		
Appendix 18 Mass spectra of peak b for bisphenol A degradation intermediates.		
Inset: MS-MS fragmentation of the product peak. 196		
Appendix 19 Mass spectra of peak c for bisphenol A degradation intermediates.		
Inset: MS-MS fragmentation of the product peak. 197		
Appendix 20 Mass spectra of peak d for bisphenol A degradation intermediates.		
Inset: MS-MS fragmentation of the product peak. 198		
Appendix 21 Mass spectra of peak e for bisphenol A degradation intermediates.		
Inset: MS-MS fragmentation of the product peak. 199		
Appendix 22 Mass spectra of peak f for bisphenol A degradation intermediates.		
Inset: MS-MS fragmentation of the product peak. 200		
Appendix 23 Mass spectra of the peak x for final products of bisphenol A		
degradation obtained by GC-MS. 201		
Appendix 24 Mass spectra of the peak y for final products of bisphenol A		
degradation obtained by GC-MS. 202		
Appendix 25 Mass spectra of the peak z for final products of bisphenol A		
degradation obtained by GC-MS. 203		

Abbreviations

TPP tetraphenylporphyrinato anion

TPFPP tetra(perfluorophenyl)porphyrinato anion

TTPPP tetra(2,4,6-triphenyl)porphyrinato

tpa tris(2-pyridylmethyl)amine

tacn 1,4,7-triazacyclononane

t-BuOH *tert*-butanol

DMF dimethylformamide

2,9-Me₂phen 2,9-dimethyl-1,10-phenanthroline

O₂ diozxygen

H₂O₂ hydrogen peroxide

TBHP *tert*-butyl hydroperoxide

PhIO iodosylbenzene

Oxone[®] $2KHSO_5 \cdot KHSO_4 \cdot K_2SO_4$

Ce^{IV} cerium(IV) ammonium nitrate

 $\mathbf{Ru^{II}}$ $cis-[Ru^{II}(2,9-Me_2phen)_2(H_2O)_2](PF_6)_2$

BPA bisphenol A