

CITY UNIVERSITY OF HONG KONG

香港城市大學

Stoichiometric and Catalytic Oxidation of
Organic Substrates by Manganese(V) and
Osmium(VI) Nitrido Complexes

錳和鐵含氮配合物化學計量及催化氧化
有機化合物之研究

Submitted to
Department of Biology and Chemistry
生物及化學系
in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy
哲學博士學位

by

Kwong Hoi Ki
鄺凱琦

December 2011
二零一一年十二月

Abstract

This thesis is divided into three parts. Part I reports the catalytic oxidation of alkenes and alcohols by a manganese nitrido complex $(\text{Ph}_4\text{P})_2[\text{Mn}^{\text{V}}(\text{N})(\text{CN})_4]$. Part II describes the Lewis-acid activated catalytic oxidation of alkanes and aromatic hydrocarbons by an osmium nitrido complex $[\text{Os}^{\text{VI}}(\text{N})(\text{quin})_2\text{Cl}]$ (Hquin = quinaldic acid). Part III is concerned with C-H bond activation by some manganese(V) imido species, which are generated by reacting a (salen)manganese(V) nitrido complex $[\text{Mn}^{\text{V}}(\text{N})(\text{salen})]$ (salen = N,N' -ethylenebis(salicylideneaminato) dianion) with various Lewis acids.

In part I, it was found that the oxidation of alkenes and alcohols can be catalyzed by $(\text{Ph}_4\text{P})_2[\text{Mn}^{\text{V}}(\text{N})(\text{CN})_4]$ effectively at room temperature using H_2O_2 as the terminal oxidant. The reaction rate can be greatly increased by the presence of one equivalent of acetic acid. The nature of the active intermediate has been investigated using various mechanistic probes. When MPPH was used as a terminal oxidant in the oxidation of cyclooctene and cyclohexanol, high yields of MPPOH (>90%), cyclooctene oxide (90%) and cyclohexanol (75%) could be detected. In the oxidation of *cis*-stilbene using H_2O_2 , high yield of *cis*-stilbene oxide (95%) could be obtained and only a small amount of *trans*-stilbene oxide (3%) could be detected. In the oxidation of cyclobutanol, 100% yield of cyclobutanone was generated while no ring-opening product was produced. These results indicate that ROOH undergoes heterolytic cleavage when it interacts with the manganese center. It is proposed that the manganese catalyst acts as a Lewis acid to facilitate the heterolytic O-O bond cleavage of ROOH. According to the results of computational study by using the DFT method, the accelerating effect of acetic acid is due to the stabilization of the Mn-(HOOH)

intermediate by hydrogen bonding.

In Part II, it was found that the oxidation of various alkanes and aromatic hydrocarbons with H_2O_2 can be catalyzed by $[\text{Os}^{\text{VI}}(\text{N})(\text{quin})_2\text{Cl}]$ effectively at room temperature in the presence of a Lewis acid. The KIE value for the competitive oxidation of cyclohexane and d_{12} -cyclohexane by $[\text{Os}^{\text{VI}}(\text{N})(\text{quin})_2\text{Cl}]/\text{FeCl}_3/\text{H}_2\text{O}_2$ is 3.1. For the oxidation of aromatic hydrocarbons, the oxidation of aromatic ring occurs preferentially than the oxidation of side-chain. The major products are the corresponding phenols and benzoquinones. Products arising from the NIH shift of the aromatic ring substituents could also be detected. For $[\text{Os}^{\text{VI}}(\text{N})(\text{quin})_2\text{Cl}]/\text{FeCl}_3/\text{H}_2\text{O}_2$, the KIE value for the competitive oxidation of benzene and d_6 -benzene is 0.94. The use of MPPH as the terminal oxidant for the oxidation of *p*-xylene results in the formation of high yields of MPPOH and ring oxidized products. This result suggests that ROOH undergoes a heterolytic O-O bond cleavage when it interacts with the osmium center.

In Part III, it was found that some (salen)manganese(V) imido species generated from the reaction of the corresponding manganese(V) nitrido species with various Lewis acids are able to abstract H-atoms from hydrocarbons with weak C-H bonds. The products resulting from the C-H bond activation of various hydrocarbons have been analyzed, and mechanistic studies have been carried out.

Table of Contents

	Page
Abstract	i
Acknowledgments	iii
Table of Contents	v
List of Schemes	xi
List of Tables	xvii
List of Figures	xix
Objectives	xxi
Chapter 1 Catalytic Oxidation of Alkenes and Alcohols by a Manganese(V) Nitrido Complex	1
1.1 Introduction	1
1.1.1 Green Chemistry	1
1.1.1.1 Twelve Principles of Green Chemistry	2
1.1.1.2 Green metrics for chemical processes	3
1.1.2 Catalytic oxidation processes	5
1.1.2.1 Green solvents	7
1.1.2.2 Green oxidants	10
1.1.2.3 Renewable raw materials	13
1.1.2.4 Biomimetic oxidation catalysis	15
1.1.2.5 Biocatalysis	17
1.1.3 Manganese complexes as catalysts for epoxidation of alkenes	18
1.1.3.1 Manganese porphyrin complexes	19
1.1.3.2 Manganese salen complexes	23

Table of Contents

	Page
1.1.3.3 Manganese tacn complexes	29
1.1.3.4 Manganese complexes with aminopyridine ligand	33
1.1.3.5 Miscellaneous manganese catalysts	36
1.1.4 Catalytic oxidation of alcohols by manganese complexes	40
1.1.5 Catalytic oxidation of alkenes and alcohols by a manganese(V) nitrido complex	46
1.2 Experimental	47
1.2.1 Materials	47
1.2.2 Instrumentation	47
1.2.3 Catalytic oxidation	48
1.2.4 Computational study	49
1.3 Results & Discussion	50
1.3.1 Catalytic epoxidation of alkenes by $(\text{Ph}_4\text{P})_2[\text{Mn}^{\text{V}}(\text{N})(\text{CN})_4]/\text{H}_2\text{O}_2$	50
1.3.1.1 Catalytic epoxidation of 2-methyl-2-pentene by $(\text{Ph}_4\text{P})_2[\text{Mn}^{\text{V}}(\text{N})(\text{CN})_4]/\text{H}_2\text{O}_2$	50
1.3.1.2 Stability of $(\text{Ph}_4\text{P})_2[\text{Mn}^{\text{V}}(\text{N})(\text{CN})_4]$ toward the catalytic epoxidation of 2-methyl-2-pentene by H_2O_2	52
1.3.1.3 Catalytic epoxidation of various alkenes by $(\text{Ph}_4\text{P})_2[\text{Mn}^{\text{V}}(\text{N})(\text{CN})_4]/\text{H}_2\text{O}_2$	54
1.3.2 Catalytic oxidation of alcohols by $(\text{Ph}_4\text{P})_2[\text{Mn}^{\text{V}}(\text{N})(\text{CN})_4]$	57
1.3.3 Mechanistic studies	60
1.3.3.1 MPPH as a mechanistic probe	60
1.3.3.2 <i>cis</i> -stilbene as a mechanistic probe	61
1.3.3.3 Cyclobutanol as a mechanistic probe	62

Table of Contents

	Page
1.3.3.4 Kinetic isotope effects (KIE) of catalytic oxidation of benzyl alcohol by $(\text{Ph}_4\text{P})_2[\text{Mn}^{\text{V}}(\text{N})(\text{CN})_4]/\text{H}_2\text{O}_2$	63
1.3.4 Computational study	63
1.4 Concluding remarks	67
Chapter 2 Lewis Acid Activated Catalytic Oxidation of Alkanes and Arenes by an Osmium(VI) Nitrido Complex	68
2.1 Introduction	68
2.1.1 Osmium terminal nitrido complexes	68
2.1.2 Catalytic oxidation of alkanes and arenes by osmium complexes	83
2.1.3 Activation of transition metal complexes by Lewis acids	88
2.1.3.1 Lewis acids	88
2.1.3.2 Activation of metal oxo complexes by Lewis acids	89
2.1.3.3 Activation of metal nitrido complexes by Lewis acids	93
2.1.3.4 Lewis acid-activated catalytic oxidation of hydrocarbons by an osmium(VI) nitrido complex	95
2.2 Experimental	96
2.2.1 Materials	96
2.2.2 Instrumentation	97
2.2.3 Catalytic oxidation	97
2.3 Results and Discussion	99
2.3.1 Lewis acid activated catalytic oxidation of alkanes by $[\text{Os}^{\text{VI}}(\text{N})(\text{quin})_2\text{Cl}]$	99

Table of Contents

	Page
2.3.1.1 Catalytic oxidation of cyclohexane by $[\text{Os}^{\text{VI}}(\text{N})(\text{quin})_2\text{Cl}]$ / $\text{FeCl}_3/\text{H}_2\text{O}_2$	99
2.3.1.2 Effects of various Lewis acids on the catalytic oxidation of cyclohexane by $[\text{Os}^{\text{VI}}(\text{N})(\text{quin})_2\text{Cl}]/\text{H}_2\text{O}_2$	101
2.3.1.3 Effects of various terminal oxidants on the catalytic oxidation of cyclohexane by $[\text{Os}^{\text{VI}}(\text{N})(\text{quin})_2\text{Cl}]/\text{FeCl}_3$	101
2.3.1.4 Stability of $[\text{Os}^{\text{VI}}(\text{N})(\text{quin})_2\text{Cl}]$ toward the FeCl_3 -activated oxidation of cyclohexane by H_2O_2	104
2.3.1.5 Catalytic oxidation of various alkanes by $[\text{Os}^{\text{VI}}(\text{N})(\text{quin})_2\text{Cl}]$ / $\text{FeCl}_3/\text{H}_2\text{O}_2$	105
2.3.2 Lewis acid activated catalytic oxidation of arenes by $[\text{Os}^{\text{VI}}(\text{N})(\text{quin})_2\text{Cl}]$	110
2.3.2.1 Catalytic oxidation of <i>p</i> -xylene by $[\text{Os}^{\text{VI}}(\text{N})(\text{quin})_2\text{Cl}]/\text{FeCl}_3/\text{H}_2\text{O}_2$	110
2.3.2.2 Effects of various Lewis acids on the catalytic oxidation of <i>p</i> -xylene by $[\text{Os}^{\text{VI}}(\text{N})(\text{quin})_2\text{Cl}]/\text{H}_2\text{O}_2$	113
2.3.2.3 Effects of various terminal oxidants on the catalytic oxidation of <i>p</i> -xylene by $[\text{Os}^{\text{VI}}(\text{N})(\text{quin})_2\text{Cl}]/\text{FeCl}_3$	113
2.3.2.4 Stability of $[\text{Os}^{\text{VI}}(\text{N})(\text{quin})_2\text{Cl}]$ toward the FeCl_3 -activated oxidation of <i>p</i> -xylene by H_2O_2	116
2.3.2.5 Catalytic oxidation of various arenes by $[\text{Os}^{\text{VI}}(\text{N})(\text{quin})_2\text{Cl}]$ / $\text{FeCl}_3/\text{H}_2\text{O}_2$	117
2.3.3 Mechanistic studies	123
2.3.3.1 Kinetic isotope effects	123

Table of Contents

	Page
2.3.3.2 MPPH as a mechanistic probe	123
2.3.3.3 Involvement of radicals	124
2.3.3.4 Proposed mechanism	125
2.4 Concluding remarks	126
Chapter 3 Lewis-Acid Assisted C-H Bond Activation of Hydrocarbons	127
by a Manganese Nitrido Complex	
3.1 Introduction	127
3.1.1 Manganese nitrido complexes	127
3.1.2 Manganese imido complexes	132
3.1.3 C-H bond activation by transition metal complexes	135
3.1.3.1 C-H bond activation by transition metal nitrido complexes	135
3.1.3.2 C-H bond activation by transition metal imido complexes	140
3.1.3.3 C-H bond activation by transition metal amido complexes	142
3.1.4 C-H bond activation by manganese complexes	145
3.1.4.1 C-H bond activation by manganese imido complexes	145
3.1.4.2 C-H bond activation by manganese oxo and hydroxo complexes	146
3.1.5 Lewis acid assisted C-H bond activation by a (salen)manganese(V) nitrido complex	149
3.2 Experimental	150
3.2.1 Materials	150
3.2.2 Instrumentation	150
3.2.3 Analysis of Organic Products	150

Table of Contents

	Page
3.3 Results & Discussion	152
3.3.1 Formation of (salen)manganese(V) imido species	152
3.3.2 C-H bond activation of hydrocarbons by (salen)manganese(V) imido species	158
3.3.2.1 Reaction of $[\text{Mn}^{\text{V}}(\text{N})(\text{salen})]$ with BF_3 in the presence of CHD	158
3.3.2.2 Reaction of $[\text{Mn}^{\text{V}}(\text{N})(\text{salen})]$ with BF_3 in the presence of xanthene	160
3.3.2.3 Reaction of $[\text{Mn}^{\text{V}}(\text{N})(\text{salen})]$ with BF_3 in the presence of DHA	163
3.3.2.4 Reaction of $[\text{Mn}^{\text{V}}(\text{N})(\text{salen})]$ with BF_3 in the presence of various organic substrates	166
3.3.2.5 Reaction of $[\text{Mn}^{\text{V}}(\text{N})(\text{salen})]$ with various Lewis acids in the presence of various organic substrates	167
3.3.3 Proposed mechanism for Lewis acid-assisted C-H bond activation of hydrocarbons by a (salen)manganese(V) nitrido complex	168
3.4 Concluding Remarks	169
References	170
Appendix: List of Publications	201

List of Schemes

	Page
Scheme 1.1 BHC synthesis of ibuprofen	7
Scheme 1.2 Aerobic oxidation of alcohol catalyzed by PhenS*Ph(OAc) ₂	12
Scheme 1.3 Direct oxidation of cyclohexene to adipic acid	13
Scheme 1.4 Ring-opening of styrene oxide by <i>p</i> -anisidine	14
Scheme 1.5 Chlorohydrin process	19
Scheme 1.6 Manganese(III) porphyrin catalyzed epoxidation of styrene by NaOCl in the presence of pyridine as a co-catalyst	20
Scheme 1.7 Asymmetric epoxidation of indene by NaOCl using Jacobsen's catalyst in the presence of P ₃ NO	25
Scheme 1.8 Epoxidation of 2,2-dimethylchromene by H ₂ O ₂ catalyzed by a manganese complex containing a pentadentate chiral salen ligand	26
Scheme 1.9 Epoxidation of 6-nitro-2,2-dimethylchromene by PhIO using a manganese salen-based ion-pair catalyst	27
Scheme 1.10 Epoxidation of 6-nitro-2,2-dimethylchromene by urea-H ₂ O ₂ using a dimeric homochiral manganese(III) salen catalyst	28
Scheme 1.11 Chemoselective oxidation of cyclooctene by H ₂ O ₂ catalyzed by [Mn(tmtacn)] ²⁺ using various carboxylic acids as co-catalyst	32
Scheme 1.12 Epoxidation of alkenes with CH ₃ CO ₃ H catalyzed by a manganese complex with a tetradentate tacn-derived ligand	33
Scheme 1.13 Oxidation of benzyl alcohol with NaIO ₄ catalyzed by Mn(TEPyP)	43
Scheme 1.14 MPPH as a mechanistic probe	60

List of Schemes

	Page
Scheme 1.15 <i>cis</i> -stilbene as a mechanistic probe	61
Scheme 1.16 Cyclobutanol as a mechanistic probe	62
Scheme 1.17 Potential energy surface for the $[\text{Mn}(\text{N})(\text{CN})_4]^{2-}$ catalyzed epoxidation of ethene with H_2O_2 in the presence of CH_3COOH at B3LYP level using LanL2DZ basis set for Mn and 6-311+G(d,p) basis set for nonmetal atoms.	65
Scheme 2.1 Substitution of chloride ligands of $[\text{Os}^{\text{VI}}(\text{N})(\text{Tp})\text{Cl}_2]$ with various anions	69
Scheme 2.2 Oxidation of <i>trans</i> -stilbene with <i>m</i> -CPBA catalyzed by $[\text{Os}^{\text{VI}}(\text{N})(\text{Tp})(\text{OH})_2]$	69
Scheme 2.3 Synthesis of osmium(VI) nitrido complexes containing arsine and stibine ligands	70
Scheme 2.4 Synthesis of osmium(VI) nitrido complexes containing neutral N-donor ligands	71
Scheme 2.5 Synthesis of dinuclear osmium nitrido complexes with neutral bridging ligands	71
Scheme 2.6 Synthesis of osmium(VI) nitrido complexes containing a terpyridine ligand	71
Scheme 2.7 Synthesis of $["\text{Bu}_4\text{N}][\text{Os}^{\text{VI}}(\text{N})(\text{OSiMe}_3)_4]$ and its reaction with AlMe_3 and 3-mercaptopropionamide	72
Scheme 2.8 Synthesis of osmium(VI) nitrido complexes containing thiolate and alkoxide ligands	72
Scheme 2.9 Synthesis of osmium(VI) nitrido complexes containing thiophenoxy and phenoxide ligands	73

List of Schemes

	Page
Scheme 2.10 Synthesis of $[^n\text{Bu}_4\text{N}][\text{Os}^{\text{VI}}(\text{N})(\text{CH}_2\text{SiMe}_3)_4]$ and its reaction with $\text{Mg}(\text{CH}_2\text{CMe}_3)_2$, $(\text{HPy})(\text{BF}_4)$ and NaOH	73
Scheme 2.11 Synthesis of $[^n\text{Bu}_4\text{N}][\text{Os}^{\text{VI}}(\text{N})(\text{CH}_2\text{SiMe}_3)_2\text{Cl}_2]$ and its reaction with various sulfur-containing ligands	74
Scheme 2.12 Reaction of $[^n\text{Bu}_4\text{N}][\text{Os}^{\text{VI}}(\text{N})(\text{CH}_2\text{SiMe}_3)_2\text{Cl}_2]$ with cyclopentadienyl ligands	74
Scheme 2.13 Reaction of $[^n\text{Bu}_4\text{N}][\text{Os}^{\text{VI}}(\text{N})(\text{CH}_2\text{SiMe}_3)_2\text{Cl}_2]$ with phosphines	75
Scheme 2.14 Alkylation of $[^n\text{Bu}_4\text{N}][\text{Os}^{\text{VI}}(\text{N})(\text{CH}_2\text{SiMe}_3)_2\text{Cl}_2]$ with MgPhBr	75
Scheme 2.15 Synthesis of $[^n\text{Bu}_4\text{N}][\text{trans-}\{\text{Os}^{\text{VI}}(\text{N})(\text{CH}_2\text{SiMe}_3)_2(\text{OH})_2\}]$ and its reaction with <i>p</i> -toluenesulfonic acid	75
Scheme 2.16 Synthesis of $[\text{Os}^{\text{VI}}(\text{N})(\text{CH}_2\text{SiMe}_3)_2\text{Cl}]_2$ and its reactions with phosphines	76
Scheme 2.17 Reaction of $[\text{Os}^{\text{VI}}(\text{N})(\text{CH}_2\text{SiMe}_3)_2\text{Cl}]_2$ with various thiolate ligands	76
Scheme 2.18 Synthesis of $[\text{Os}^{\text{VI}}(\text{N})(\text{Me})_3(\text{THF})_2]$ and its reaction with TMEDA	76
Scheme 2.19 Synthesis of $[^n\text{Bu}_4\text{N}][\text{Os}^{\text{VI}}(\text{N})(\text{Ph})_4]$ and its reaction with KTp	77
Scheme 2.20 Synthesis of $[^n\text{Bu}_4\text{N}][\text{Os}^{\text{VI}}(\text{N})(\text{Ph})_2\text{Cl}_2]$ and substitution of its chloride ligands with various ligands	77
Scheme 2.21 Synthesis of nitridoosmium(VI) acetylide complexes	78
Scheme 2.22 Synthesis of osmium(VI) nitrido complexes containing various anionic bidentate ligands	79
Scheme 2.23 Synthesis of $[\text{Os}^{\text{VI}}(\text{N})(\text{tpm})\text{Cl}_2](\text{PF}_6)$	80

List of Schemes

	Page
Scheme 2.24 Synthesis of an osmium(VI) nitrido complex containing an oxygen tripodal ligand	80
Scheme 2.25 Synthesis of osmium(VI) nitrido complexes containing di-, tri- and tetra-anionic tetradentate ligands	81
Scheme 2.26 Reaction of $[\text{Os}^{\text{VI}}(\text{N})(\text{salophen})\text{Cl}]$ with CN^- and $(\text{CF}_3\text{CO})_2\text{CH}^-$	82
Scheme 2.27 Competitive reactions during oxidation of aromatic hydrocarbons	84
Scheme 2.28 Friedel-Crafts alkylation and acylation	88
Scheme 2.29 Mukaiyama aldol condensation	89
Scheme 2.30 Hetero-Diels-Alder cycloaddition	89
Scheme 2.31 Alkene alkylation	89
Scheme 2.32 Proposed mechanism for alkane oxidation by barium ruthenate	92
Scheme 2.33 Proposed mechanism for alkane oxidation by LiCl -ferrate	93
Scheme 2.34 Proposed mechanism for catalytic and stoichiometric oxidation of alkane by $[\text{Os}^{\text{VIII}}(\text{N})(\text{O})_3]^-/\text{FeCl}_3$	94
Scheme 2.35 Proposed mechanism for catalytic oxidation of hydrocarbons by $[\text{Os}^{\text{VI}}(\text{N})(\text{quin})_2\text{Cl}]$	125
Scheme 3.1 Synthesis of $[\text{Mn}^{\text{V}}(\text{N})(\text{salen})]$ and $[\text{Mn}^{\text{V}}(\text{N})(\text{saltmen})]$	129
Scheme 3.2 Synthesis of Mn(V) nitridocyanometalates	130
Scheme 3.3 Synthesis of manganese(V) nitrido complexes containing pyrazolone ligands	131
Scheme 3.4 Principle reactions of $[\text{Mn}(\text{NBu}^t)_3\text{Cl}]$	133
Scheme 3.5 Synthesis of various dimeric alkyl compounds from $[\text{Mn}(\text{NBu}^t)_3\text{Cl}]$	133

List of Schemes

	Page	
Scheme 3.6	Synthesis of manganese(V) imido complexes containing a corrole ligand	134
Scheme 3.7	Synthesis of a manganese(V) imido complex containing a corrolazine ligand	134
Scheme 3.8	Photolysis of diazido(phosphane)nickel(II) complexes in the presence of cyclohexane and cyclohexene	136
Scheme 3.9	Fragmentation of $[(\text{NN}_4)\text{FeN}]^{2+}$ through C-C bond insertion of the nitrido-nitrogen atom in this complex	137
Scheme 3.10	Proposed mechanism for the photolysis of $(\text{C}_5\text{Me}_5)_2\text{U}[\text{N}(\text{SiMe}_3)_2](\text{N}_3)$	137
Scheme 3.11	Proposed mechanism for the solid-state thermolysis of $(^{\text{Mes}}\text{BPDI})\text{CoN}_3$	139
Scheme 3.12	Proposed mechanism for the formation of the double tuck-in rhodium compound	140
Scheme 3.13	Proposed mechanism for amidation of saturated C-H bond by $[\text{Ru}^{\text{VI}}(\text{Por})(\text{NTs})_2]$	141
Scheme 3.14	Proposed mechanism for activation of saturated C-H bond by $[\text{Zr}(\text{NHCMe}_3)(\text{CH}_3)(\text{ebthi})]$	142
Scheme 3.15	C-H bond activation by <i>trans</i> -(DMPE) ₂ Ru(H)(NH ₂)	143
Scheme 3.16	Activation of C-H bond of cyclobutanone by <i>trans</i> -(DMPE) ₂ Ru(H)(NH ₂)	143
Scheme 3.17	Proposed mechanism for C-H bond activation by $[\text{Mn}^{\text{V}}(\text{NTs})(\text{tpfc})]$	145

List of Schemes

	Page
Scheme 3.18 Proposed mechanism for the formation of the dimeric Mn(II) amido/aryl compound	146
Scheme 3.19 C-H bond activation by $[\text{Mn}^{\text{III}}\text{H}_3\text{buea(O)}]^{2-}$	147
Scheme 3.20 Proposed mechanism for the reaction of $[\text{Mn}^{\text{III}}\text{H}_3\text{buea(O)}]^{2-}$ with DHA	147
Scheme 3.21 Proposed mechanism for the reaction of $[\text{Mn}^{\text{V}}(\text{O})(\text{TBP}_8\text{Cz})]$ with DHA	148
Scheme 3.22 C-H bond activation by $[\text{Mn}^{\text{III}}(\text{PY5})(\text{OH})](\text{CF}_3\text{SO}_3)_2$	148
Scheme 3.23 Proposed mechanism for BF_3 assisted C-H bond activation of 1,4-cyclohexadiene by $[\text{Mn}^{\text{V}}(\text{N})(\text{salen})]$	168

List of Tables

	Page	
Table 1.1	E-factors of various segments of chemical industry	4
Table 1.2	Oxygen availability in various oxidants	10
Table 1.3	Selected examples of enzymes involved in oxidation reactions	17
Table 1.4	Mononuclear manganese epoxidation catalysts	38
Table 1.5	Dinuclear and trinuclear manganese epoxidation catalysts	39
Table 1.6	Catalytic epoxidation of 2-methyl-2-pentene by $(\text{Ph}_4\text{P})_2[\text{Mn}^{\text{V}}(\text{N})(\text{CN})_4]/\text{H}_2\text{O}_2$	51
Table 1.7	Successive runs of catalytic epoxidation of 2-methyl-2-pentene by $(\text{Ph}_4\text{P})_2[\text{Mn}^{\text{V}}(\text{N})(\text{CN})_4]$	53
Table 1.8	Catalytic epoxidation of various alkenes by $(\text{Ph}_4\text{P})_2[\text{Mn}^{\text{V}}(\text{N})(\text{CN})_4]/\text{H}_2\text{O}_2$	55
Table 1.9	Catalytic oxidation of various alcohols by $(\text{Ph}_4\text{P})_2[\text{Mn}^{\text{V}}(\text{N})(\text{CN})_4]/\text{H}_2\text{O}_2$	58
Table 1.10	Relative energetic (in kcal/mol) of epoxidation of ethene by $[\text{Mn}(\text{N})(\text{CN})_4]^{2-}$ with H_2O_2 and CH_3COOH at gas phase and in acetonitrile	66
Table 2.1	Effects of FeCl_3 on the catalytic oxidation of cyclohexane by $[\text{Os}^{\text{VI}}(\text{N})(\text{quin})_2\text{Cl}]/\text{FeCl}_3/\text{H}_2\text{O}_2$	100
Table 2.2	Effects of various Lewis acids on the catalytic oxidation of cyclohexane by $[\text{Os}^{\text{VI}}(\text{N})(\text{quin})_2\text{Cl}]/\text{FeCl}_3/\text{H}_2\text{O}_2$	102
Table 2.3	Effects of various terminal oxidants on the catalytic oxidation of cyclohexane by $[\text{Os}^{\text{VI}}(\text{N})(\text{quin})_2\text{Cl}]/\text{FeCl}_3$	103
Table 2.4	Successive runs of catalytic oxidation of cyclohexane by $[\text{Os}^{\text{VI}}(\text{N})(\text{quin})_2\text{Cl}]/\text{FeCl}_3/\text{H}_2\text{O}_2$	104

List of Tables

	Page
Table 2.5 Catalytic oxidation of various alkanes by $[\text{Os}^{\text{VI}}(\text{N})(\text{quin})_2\text{Cl}]$ / $\text{FeCl}_3/\text{H}_2\text{O}_2$	106
Table 2.6 Effects of FeCl_3 on the catalytic oxidation of <i>p</i> -xylene by $[\text{Os}^{\text{VI}}(\text{N})(\text{quin})_2\text{Cl}]$ / $\text{FeCl}_3/\text{H}_2\text{O}_2$	112
Table 2.7 Effects of various Lewis acids on the catalytic oxidation of <i>p</i> -xylene by $[\text{Os}^{\text{VI}}(\text{N})(\text{quin})_2\text{Cl}]$ / $\text{FeCl}_3/\text{H}_2\text{O}_2$	114
Table 2.8 Effects of various terminal oxidants on the catalytic oxidation of <i>p</i> -xylene by $[\text{Os}^{\text{VI}}(\text{N})(\text{quin})_2\text{Cl}]$ / FeCl_3	115
Table 2.9 Successive runs of catalytic oxidation of <i>p</i> -xylene by $[\text{Os}^{\text{VI}}(\text{N})(\text{quin})_2\text{Cl}]$ / $\text{FeCl}_3/\text{H}_2\text{O}_2$	116
Table 2.10 Catalytic oxidation of various monosubstituted arenes by $[\text{Os}^{\text{VI}}(\text{N})(\text{quin})_2\text{Cl}]$ / $\text{FeCl}_3/\text{H}_2\text{O}_2$	118
Table 2.11 Catalytic oxidation of various methyl-substituted arenes by $[\text{Os}^{\text{VI}}(\text{N})(\text{quin})_2\text{Cl}]$ / $\text{FeCl}_3/\text{H}_2\text{O}_2$	120
Table 3.1 Effects of the amount of BF_3 on the oxidation of CHD by $\text{Mn}^{\text{V}}(\text{N})(\text{salen})$	158
Table 3.2 Effects of the amount of BF_3 on the oxidation of xanthene by $\text{Mn}^{\text{V}}(\text{N})(\text{salen})$	162
Table 3.3 Effects of the amount of BF_3 on the oxidation of DHA by $\text{Mn}^{\text{V}}(\text{N})(\text{salen})$	163
Table 3.4 BF_3 activated oxidation of various organic substrates by $\text{Mn}^{\text{V}}(\text{N})(\text{salen})$	166
Table 3.5 $\text{Sc}(\text{OTf})_3$ activated oxidation of various alkanes by $\text{Mn}^{\text{V}}(\text{N})(\text{salen})$	167

List of Figures

	Page	
Figure 1.1	The ideal synthesis	3
Figure 1.2	Examples of ionic liquids	9
Figure 1.3	Multi-component ionic liquid system: An ionic manganese complex embedded in [BPy][BF ₄]	22
Figure 1.4	Structure of salen ligand	23
Figure 1.5	Structure of Jacobsen's catalyst	24
Figure 1.6	Structure of [Mn ^{IV} ₂ (tmtacn) ₂ (μ -O) ₃](PF ₆) ₂	29
Figure 1.7	Structure of [Mn ^{IV} (tmtacn)(OMe) ₃]PF ₆	29
Figure 1.8	Structure of glyoxylic acid methylester methyl hemiacetal	32
Figure 1.9	Proposed structure of the carboxylate-bridged dimanganese tmtacn intermediate	32
Figure 1.10	Structure of [Mn ₂ O(OAc) ₂ (TPTN)](ClO ₄) ₂	34
Figure 1.11	Various aminopyridine N ₄ ligands	35
Figure 1.12	Structure of the TEMPO-linked manganese porphyrin complex	42
Figure 1.13	Structure of the water-soluble Mn(III) salen complex	44
Figure 1.14	Structure of [Mn(3,3',5,5'- <i>t</i> -Bu ₄ -salphen)Cl]	44
Figure 1.15	Plot of accumulated mmol of epoxide vs. number of consecutive runs of epoxidation of 2-methyl-2-pentene by (Ph ₄ P) ₂ [Mn ^V (N)(CN) ₄]/H ₂ O ₂	52
Figure 2.1	Structure of Os ₃ (CO) ₁₁ (L) (L = 2,3- η -1,4-diphenylbut-2-en-1,4-dione)	86
Figure 2.2	Structure of Os ₃ (CO) ₁₀ (μ -H) ₂	87
Figure 2.3	Structure of decamethylosmocene	87
Figure 2.4	Structure of [(TMC)Fe ^{IV} (O)-Sc(OTf) ₄ (OH)]	90

List of Figures

	Page	
Figure 3.1	ESI/MS (+ve mode) of a reaction mixture of [Mn(N)(salen)] (1.1 mM) and BF ₃ (3.3 mM) in CH ₂ Cl ₂ /CH ₃ CN (1:1 v/v) after 5 min.	153
Figure 3.2	UV-vis spectra for the reaction between [Mn(N)(salen)] (1 x 10 ⁻⁴ M) and Sc(OTf) ₃ (1.0 equiv.) in CH ₂ Cl ₂ /CH ₃ CN (1:1 v/v).	154
Figure 3.3	ESI/MS of a reaction mixture of [Mn(N)(salen)] (2 mM) with Sc(OTf) ₃ (4 mM) in CH ₂ Cl ₂ /CH ₃ CN (1:1 v/v) after 20 min.	156
Figure 3.4	ESI/MS of a reaction mixture of [Mn(N)(salen)] (2 mM) with Ca(OTf) ₂ (4 mM) in CH ₂ Cl ₂ /CH ₃ CN (1:1 v/v) after 20 min.	157
Figure 3.5	ESI/MS of a reaction mixture of [Mn(N)(salen)] (0.3 mM) with BF ₃ (0.9 mM) in CH ₂ Cl ₂ /CH ₃ CN (1:1 v/v) in the presence of CHD (0.12 M) after 1 h.	159
Figure 3.6	ESI/MS of a reaction mixture of [Mn(N)(salen)] (0.3 mM) with BF ₃ (0.9 mM) in CH ₂ Cl ₂ /CH ₃ CN (1:1 v/v) in the presence of xanthene (0.12 M) after 1 d.	161
Figure 3.7	ESI/MS of a reaction mixture of [Mn(N)(salen)] (0.3 mM) with BF ₃ (0.9 mM) in CH ₂ Cl ₂ /CH ₃ CN (1:1 v/v) in the presence of DHA (0.12 M) after 50 min.	164
Figure 3.8	ESI/MS of a reaction mixture of [Mn(N)(salen)] (0.3 mM) with BF ₃ (0.9 mM) in CH ₂ Cl ₂ /CH ₃ CN (1:1 v/v) in the presence of DHA (0.12 M) after 1 d.	165

Objectives

This research work is divided into three parts. In part I, the catalytic oxidation of alkenes and alcohols by a manganese(V) nitrido complex $(\text{Ph}_4\text{P})_2[\text{Mn}^{\text{V}}(\text{N})(\text{CN})_4]$ has been studied. In part II, the effects of Lewis acids on the activation of an osmium(VI) nitrido complex $[\text{Os}^{\text{VI}}(\text{N})(\text{quin})_2\text{Cl}]$, towards the catalytic oxidation of alkanes and aromatic hydrocarbons will be discussed. Part III describes the C-H bond activation of hydrocarbons by some manganese(V) imido species, which are generated by the reaction of a (salen)manganese nitrido complex $[\text{Mn}^{\text{V}}(\text{N})(\text{salen})]$ with Lewis acids.

The objectives of the study in part I are as follows:

- (1) to study the epoxidation of alkenes and the oxidation of alcohols by using $(\text{Ph}_4\text{P})_2[\text{Mn}^{\text{V}}(\text{N})(\text{CN})_4]$ as a catalyst.
- (2) to study the mechanisms of catalytic alkene and alcohol oxidations by this system.

The objectives of the study in part II are as follows:

- (1) to investigate the effects of Lewis acids on the catalytic oxidation of alkanes and aromatic hydrocarbons by $[\text{Os}^{\text{VI}}(\text{N})(\text{quin})_2\text{Cl}]$.
- (2) to study the mechanisms of the catalytic oxidation of alkanes and aromatic hydrocarbons by this system.

The objectives of the study in part III are as follows:

- (1) to analyze the products generated by the C-H bond activation of hydrocarbons by some (salen)manganese(V) imido species.
- (2) to study the mechanism of the C-H bond activation of hydrocarbons by these manganese imido species.