Aspects of Ecology and Biology of Two Sympatric Horseshoe Crab Species
(Tachypleus tridentatus and Carcinoscorpius rotundicauda)
同地共棲兩種鱟的生態和生物學研究

Submitted to
Department of Biology and Chemistry
生物及化學系
In Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy
哲學博士學位

by

Hu Menghong
胡夢紅

July 2011
二零一一年七月
Abstract of thesis entitled

Aspects of Ecology and Biology of Two Sympatric Horseshoe Crab Species

(*Tachypleus tridentatus* and *Carcinoscorpius rotundicauda*)

同地共棲兩種鱟的生態和生物學研究

Submitted by

Hu Menghong

For the Degree of Doctor of Philosophy at the City University of Hong Kong

Horseshoe crabs are chelicerates, distant relatives of spiders. They are often referred to as living fossils, as they have changed little morphologically in the last 445 million years. There are four extant species of horseshoe crabs. The species *Limulus polyphemus* (Linnaeus, 1758) occurs only along the eastern coast of the USA. The other three species, *Tachypleus tridentatus* (Leach, 1819), *Tachypleus gigas* (Müller, 1785) and *Carcinoscorpius rotundicauda* (Latreille, 1802) live along the coast of the Indo-West Pacific. In Asian waters, habitat degradation especially the loss of spawning and nursery grounds, marine pollution and human exploitation have resulted in a decline in horseshoe crab populations.

The present research investigated two co-existing horseshoe crab species, *T. tridentatus* and *C. rotundicauda*, with a focus on some aspects of their ecology and biology. These included 1) relationship of environmental variability and their spatial distribution on three important nursery beaches on Beibu Gulf, southern China; 2) their distribution,
abundance and population structure at these nursery beaches; 3) diet and trophic relationships of the two species within the food web of the beach ecosystems; 4) effects of starvation on body weight and blood indicators; 5) effects of starvation on the energy budget; 6) nutritional requirements and 7) development of an optimal artificial feed formulation. The overall study objectives were to decipher the ecological and biological differences of the two sympatric horseshoe crab species and to develop laboratory culture practices that would enhance future conservation of these animals and restore their declining populations.

As compared with the adults, juvenile horseshoe crabs are relatively immobile and restricted to a smaller geographic area, making them easier to count. Juvenile abundance data are useful in predicting their population structure and growth development in the field. A comprehensive field study was conducted from May to June 2009, to better understand abundance, population structure, growth development and the relationship of environmental variables and spatial distribution of juvenile horseshoe crabs. This study restricted its survey area to 1.6 m to 0.6 m above chart datum of three nursery beaches, Xi Bei Ling (XBL), Jin Hai Wan (JHW) and Xi Chang (XC), along Beibu Gulf, southern China.

Hydrography and sediment characteristics of each transect at the three nursery beaches were measured. Results showed that four environmental variables were found to be positively correlated with the abundance of juvenile horseshoe crabs in the following order: sediment TOC > sediment median diameter > DO of interstitial waters > tidal height of the transect. The remaining two variables, temperature and salinity, were found to be negatively correlated with the abundance of juvenile horseshoe crabs.
Only *T. tridentatus* was found at XBL, whereas both *T. tridentatus* and *C. rotundicauda* co-existed on JHW and XC beaches. The species-specific growth and mortality of each species were estimated based on the size-frequency data of the juveniles. *T. tridentatus* at 7th instar stage was in the majority at XBL, while *T. tridentatus* at 8th instar stage was dominant at both JHW and XC. However, *C. rotundicauda* at 7th instar stage was only abundant at XC. The relationship between pre-moult and post-moult sizes of juvenile horseshoe crabs was generally fitted with the Hiatt linear model. The model data showed that the increments of juvenile *T. tridentatus* were significantly larger than juvenile *C. rotundicauda*, indicating species-specific growth characteristics. Results from the present study added information to the current database on the growth allometry of the two sympatric horseshoe crab species recorded in Asian waters. From the field data, cumulative mortality of *T. tridentatus* from 9th to 11th instars at JHW (71.0%) was lower than that at XBL (83.8%) and XC (84.8%). For *C. rotundicauda*, cumulative mortality from 10th to 11th instars was 47.7% at XC. Estimated species-specific mortality rate at a given instar stage ranged from 23.0% to 64.9% for *T. tridentatus* and 13.0% to 59.5% for *C. rotundicauda*. The present findings suggested that natural mortality for both juvenile horseshoe species was comparable to data reported in literature.

In order to evaluate the food sources and trophic relationship between these co-occurring *T. tridentatus* and *C. rotundicauda* populations, carbon and nitrogen stable isotopic signatures (δ13C and δ15N) were analyzed on the two species and their potential prey specimens. The statistical differences in the isotopic signatures, among different size groups per horseshoe crab species, revealed location-specific differences. Stable isotope signatures revealed the food sources of the two species, including bivalves,
crustaceans, gastropods and polychaetes. The present results indicated that juvenile horseshoe crabs are generalist feeders. The two sympatric species exhibited trophic segregation at JHW, but they showed an overlap in trophic niche at XC. This indicated that the two species at XC were overlapped not only in their spatial but also in their trophic niches.

Horseshoe crabs are omnivorous, preferring diets containing marine phytoplankton, microalgae and benthic invertebrates. Under natural conditions, horseshoe crabs have to tolerate and overcome the shortage or total absence of food during for short and long periods in the wild due to environmental perturbations, such as marine pollution and seasonal changes in the structure of benthic communities. The scarcity or even total absence of food during shorter or longer periods may affect the physiology of the animals in the marine ecosystem. In order to understand their feeding strategies and energy utilization, the effect of prolonged starvation on blood indicators and energy budgets of adult _T. tridentatus_ and _C. rotundicauda_ were studied under two food treatments (fed and starved) for seven weeks.

During the experimental period, no significant differences of body weight were detected between the starved and fed groups in the two species. Plasma alkaline phosphatase increased slightly and then decreased. Plasma calcium remained fairly constant during the experimental period. However, there was a continuous decrease in plasma glucose in the starved treatment. Additionally, cholesterol, lipase and triglycerides in the plasma increased significantly later in the study, while plasma total protein remained fairly constant during the experiment. The results suggested that, for adult horseshoe crabs, starvation might stimulate a “hunger response”, which in turn might lead to some
internal nutrients consumption. By consuming internal nutrients, adult horseshoe crabs can withstand prolonged starvation.

In terms of energy budget, significant interactive effects among species, feeding regimes (fed or starved) and time course on respiration rate (RR), ammonia excretion rate (ER), oxygen: nitrogen (O:N) ratio and scope for growth (SfG), were evident during the seven–week experiment. No significant effects of species and time course, or their interaction on absorption efficiency, were observed in the fed treatments. For each species, RR and ER of the starved treatment significantly decreased, while their O:N ratio significantly increased, as compared to the fed treatment, which remained relatively stable during the experiment. In the starved treatment of each species, a rapid reduction in SfG was apparent at the start of the experiment; thereafter, SfG remained stable over the study period. SfG of fed *T. tridentatus* was significantly lower than that of fed *C. rotundicauda* throughout the experiment, while no significant difference between species was found in starved treatments from Week 1 to Week 7. *C. rotundicauda* showed a greater decrease in SfG under starvation than *T. tridentatus*, suggesting that they may have a more competitive life history strategy for adjusting to different nutritional conditions.

The above research led to further studies on nutritional requirements, particularly for the rearing of juvenile horseshoe crabs by artificial feed, in the laboratory, with an aim to restock their declined populations in the field. In order to assess dietary protein and energy requirements of the two horseshoe crab species, a feeding trial including nine formulated feeds with three digestible protein (DP) levels (36%, 40% and 44%) and three digestible energy (DE) levels (14, 16 and 18 MJ kg\(^{-1}\)) was conducted. The control
group fed on frozen brine shrimp (*Artemia salina*). For each species, juvenile horseshoe crabs were randomly distributed into 30 tanks and fed once daily (17:00 h) to satiation level for 84 days. At the end of the experiment, the survival rate of *T. tridentatus* ranged from 67% to 100%, while that of *C. rotundicauda* ranged from 44% to 100%. For the two species, the growth and feed utilization of juveniles strongly correlated with the dietary DP and DE. The results of this study indicated that the formulated feed containing 40% DP with 14 MJ kg$^{-1}$ DE was the best, in terms of growth and feed utilization for the two juvenile horseshoe crab species. Final body weight (FBW), thermal-unit growth coefficient (TGC), feed efficiency ratio (FER), nitrogen retention efficiency (NRE) and energy retention efficiency (ERE) of *T. tridentatus* fed with 40% DP and 14 MJ kg$^{-1}$ DE were significantly higher than that of *T. tridentatus* fed with the control diet. However, for *C. rotundicauda*, only significantly higher FER, NRE and ERE were found in juveniles fed with 40% DP and 14 MJ kg$^{-1}$ DE than the control diet. The present findings revealed that the optimum dietary DP/DE ratio for the two species was 28.16 g protein MJ$^{-1}$.

A further 84-day experiment progressed to assess the suitability of a combination of rendered protein ingredients, including poultry by-product meal (PBM), meat and bone meal (MBM) and blood meal (BM), as substitutes for fishmeal (FM) in experimental diets for the two species. A suitable substitution for fishmeal would help improve the cost-effectiveness of the culturing of juvenile horseshoe crabs. The optimal replacement levels of FM by the combination of PBM, MBM and BM were shown, by the third-order polynomial regression analysis, to be 50% and 75% in protein for *T. tridentatus* and *C. rotundicauda*, respectively. A nutritionally balanced, practical artificial feed for each juvenile horseshoe crab species was formulated successfully.
Table of Contents

Declaration i
Abstract of thesis entitled ii
Publications and Awards viii
Acknowledgements x
Table of Contents xii
List of Tables xvii
List of Figures xxii

Chapter 1 General introduction 1
1.1 Background and morphology of horseshoe crabs 1
1.2 Life cycle and habitat requirements 6
1.3 Post-embryonic development 8
1.4 Co-existence of T. tridentatus and C. rotundicauda 10
1.5 Feeding and resource utilization 12
1.6 Physiological responses under starvation 15
1.7 Nutritional requirements and artificial feed formulation 17
1.8 Objectives of present research 21
1.9 Organization of the thesis 21

Chapter 2 Relationship of environmental variables and spatial distribution of juvenile horseshoe crabs 23
2.1 Introduction 23
2.2 Materials and methods 25
Chapter 3 Abundance, growth and population structure of juvenile horseshoe crabs along three nursery beaches

3.1 Introduction
3.2 Materials and methods
 3.2.1 Study sites, survey and sampling strategies
 3.2.2 Cohort analysis
 3.2.3 Growth analysis
 3.2.4 Mortality calculation
3.3 Results
 3.3.1 Abundance
 3.3.2 Population structure
 3.3.3 Growth
 3.3.4 Mortality
3.4 Discussion
Chapter 4 Stable isotopic evidence for food sources and trophic relationship of juvenile horseshoe crabs

4.1 Introduction

4.2 Materials and methods
 4.2.1 Study locations
 4.2.2 Horseshoe crab and biota tissue sample collection
 4.2.3 Environmental sample collection
 4.2.4 Sample preparation and stable isotope analysis
 4.2.5 Data analysis

4.3 Results

4.4 Discussion

Chapter 5 Effects of prolonged starvation on body weight and blood indicators in the two horseshoe crab species

5.1 Introduction

5.2 Materials and methods
 5.2.1 Animals and experiment conditions
 5.2.2 Sampling strategy
 5.2.3 Biochemical analysis
 5.2.4 Statistical analysis

5.3 Results
 5.3.1 Body weight of horseshoe crabs
 5.3.2 Alkaline phosphatase
 5.3.3 Calcium
5.3.4 Cholesterol	112
5.3.5 Glucose	114
5.3.6 Lipase	116
5.3.7 Triglyceride	118
5.3.8 Plasma total protein	120

5.4 Discussion

5.4.1 Effects of starvation on body weight of horseshoe crabs	122
5.4.2 Effects of starvation on blood indicators in horseshoe crabs	123
5.4.3 Effects of starvation on metabolic preferences in horseshoe crabs	128

Chapter 6 Effects of starvation on the energy budget of the two horseshoe crab species

6.1 Introduction	130
6.2 Materials and methods	131
6.2.1 Experimental animals	131
6.2.2 Experiment design	132
6.2.3 Physiological measurements	132
6.2.4. Statistical analysis	135
6.3 Results	136
6.4 Discussion	149

Chapter 7 Dietary digestible protein and energy requirements of juvenile *T. tridentatus* and *C. rotundicauda*

| 7.1 Introduction | 155 |
| 7.2 Materials and methods | 157 |
7.2.1 Ingredients, diet formulation and preparation
7.2.2 Experimental setup and procedures
7.2.3 Sampling and chemical analysis
7.2.4 Statistical analysis
7.3 Results
7.4 Discussion

Chapter 8 Development of nutritionally balanced and cost-effective feed formulations for juvenile horseshoe crab culture
8.1 Introduction
8.2 Materials and methods
 8.2.1 Ingredients, diet formulation and preparation
 8.2.2 Experimental conditions, animals and feeding
 8.2.3 Sampling and chemical analysis
 8.2.4 Statistical analysis
8.3 Results
8.4 Discussion

Chapter 9 General discussion and conclusions
9.1 General discussion
9.2 Limitations
9.3 Suggestion for further work
9.4 Contributions to knowledge and overall conclusions

Chapter 10 References
List of Tables

Table 2.1 Characteristics of three study beaches of Beihai 31
Table 2.2 Various environmental parameters of each transect of three study beaches 32
Table 2.3 Total number and density of juvenile horseshoe crabs along the sampling transects of three study beaches 35
Table 2.4 Canonical coefficients of juvenile horseshoe crab densities and environmental variables with respect to canonical variates of CCA 37
Table 3.1 Abundance of juvenile horseshoe crabs recorded at the study beaches 51
Table 3.2 Instar stages and mean prosomal width (mm) (± SE) for juvenile cohorts defined for the three study beaches and in previous studies 55
Table 3.3 Relationship between pre-moult and post-moult prosomal widths of juvenile horseshoe crabs (Hiatt growth model) 58
Table 3.4 Approximate age and growth rates of instars for juvenile T. tridentatus 59
Table 3.5 Mortality (%) of juveniles at the study beaches. Mortality was calculated at each successive instar and accumulated across instars 62
Table 4.1 Mean (± SE) of $\delta^{13}\text{C}$ (%) and $\delta^{15}\text{N}$ (%) signatures in tissue from juvenile horseshoe crabs of the three study beaches 77
Table 4.2 Mean (± SE) of δ\(^{13}\)C (‰) and δ\(^{15}\)N (‰) signatures in faeces from juvenile horseshoe crabs of the three study beaches

Table 4.3 One-way ANOVA results for the comparisons of δ\(^{13}\)C (‰) and δ\(^{15}\)N (‰) signatures of tissues and faeces of juvenile horseshoe crabs among different size groups per species.

Table 4.4 Student’s t-test results for the species-specific difference comparisons of δ\(^{13}\)C (‰) and δ\(^{15}\)N (‰) signatures in horseshoe crab tissues

Table 4.5 Mean of δ\(^{13}\)C (‰) and δ\(^{15}\)N (‰) signatures in tissue, estimated diet and faeces of the two horseshoe crab species from the three study beaches

Table 4.6 δ\(^{13}\)C (‰) and δ\(^{15}\)N (‰) signatures in tissue from potential food items of juvenile horseshoe crabs at the three study beaches

Table 4.7 One-way ANOVA results for the comparisons of δ\(^{13}\)C (‰) and δ\(^{15}\)N (‰) signatures of T. tridentatus tissues, faeces, and groups of potential food items among the three study beaches

Table 4.8 Student’s t-test results from comparisons of δ\(^{13}\)C (‰) and δ\(^{15}\)N (‰) signatures of C. rotundicauda tissues and faeces between JHW and XC beaches

Table 5.1 Summary of two-way repeated measures ANOVA results for effects of food treatment (F) and sampling time (T) on body weight, ALP, calcium, cholesterol, glucose, lipase, triglyceride and protein in T. tridentatus and C. rotundicauda
Table 6.1 Summary of two-way repeated measures ANCOVA results for effects of species (S) and sampling time points (T) on absorption efficiency of fed adult horseshoe crabs, with body size as covariate

Table 6.2 Summary of three-way repeated measures ANCOVA results for effects of species (S), food treatments (F) and sampling time points (T) on respiration rate, excretion rate, O:N ratio and SfG of adult horseshoe crabs, with body size as covariate

Table 7.1 Gross nutrient composition (%) and energy content (MJ kg$^{-1}$) of the ingredients

Table 7.2 Essential amino acid profile (%) of the ingredients

Table 7.3 Formulation (%), gross nutrient composition (%) and energy content (MJ kg$^{-1}$) of the test feeds

Table 7.4 Essential amino acid profile (%) of the test feeds, control diet and carcasses of juvenile horseshoe crabs

Table 7.5 Survival rate of juvenile horseshoe crabs fed with experimental diets

Table 7.6 Summary of two-way ANOVA results for DP and DE on growth performance and feed utilization of juvenile horseshoe crabs fed with formulated feeds

Table 7.7 Growth performance and feed utilization of juvenile *T. tridentatus* fed with experimental diets (Mean ± SE, n = 3)

Table 7.8 Growth performance and feed utilization of juvenile *C. rotundicauda* fed with experimental diets (Mean ± SE, n = 3)
Table 8.1 Gross nutrient composition (%) and energy content (MJ kg\(^{-1}\)) of the ingredients 188
Table 8.2 Essential amino acid profile (%) of the ingredients 188
Table 8.3 Formulation (%) and chemical composition of the diets 189
Table 8.4 Essential amino acid profile (%) of the artificial feeds and the juvenile horseshoe crab carcasses 191
Table 8.5 Survival rate\(1\) of juvenile horseshoe crabs fed with experimental diets 196
Table 8.6 Growth performance and feed utilization of juvenile *T. tridentatus* fed experimental diets (Mean ± SE, n = 3) 198
Table 8.7 Growth performance and feed utilization of juvenile *C. rotundicauda* fed experimental diets (Mean ± SE, n = 3) 199
List of Figures

Figure 1.1 Morphological differences among different horseshoe crab species: (A) *L. polyphemus*; (B) *T. gigas*; (C) *T. tridentatus*; (D) *C. rotundicauda* 3

Figure 1.2 Cross-section of the central portion of the telson: (A) *L. polyphemus*; (B) *T. gigas*; (C) *T. tridentatus*; (D) *C. rotundicauda* 3

Figure 2.1 Location of the survey beaches in Beibu Gulf, southern China 26

Figure 2.2 A bi-plot of environmental variables (represented by arrows) and juvenile horseshoe crab densities along sampling transects at the three study beaches (represented by ●) with respect to canonical variates (CV I, CV II) 39

Figure 3.1 Juvenile *T. tridentatus* cohorts based on size (prosomal width) frequency data at the three study beaches 52

Figure 3.2 Juvenile *C. rotundicauda* cohorts based on size (prosomal width) frequency data at XC nursery beach 53

Figure 3.3 Growth rates of juvenile *T. tridentatus* as an increase in mean prosomal width over time 60

Figure 4.1 The mean $\delta^{13}C$ (‰) and $\delta^{15}N$ (‰) signature of horseshoe crab tissue, faeces and their estimated diet compared to the mean signatures of potential food items at XBL beach 88

Figure 4.2 The mean $\delta^{13}C$ (‰) and $\delta^{15}N$ (‰) signature of horseshoe crab tissue, faeces and their estimated diet compared to the mean signatures of potential food items at JHW beach 89
Figure 4.3 The mean δ^{13}C (‰) and δ^{15}N (‰) signature of horseshoe crab tissue, faeces and their estimated diet compared to the mean signatures of potential food items at XC beach.

Figure 5.1 Effects of food treatment (fed, —; starved, ---) on body weight (mean ± SE) in two horseshoe crab species: (A) *T. tridentatus* and (B) *C. rotundicauda*.

Figure 5.2 Effects of food treatment (fed, —; starved, ---) on plasma ALP activity (mean ± SE) in two species of horseshoe crabs: (A) *T. tridentatus* and (B) *C. rotundicauda*.

Figure 5.3 Effects of food treatment (fed, —; starved, ---) on plasma calcium concentration (mean ± SE) in two horseshoe crab species: (A) *T. tridentatus* and (B) *C. rotundicauda*.

Figure 5.4 Effects of food treatment (fed, —; starved, ---) on plasma cholesterol concentration (mean ± SE) in two horseshoe crab species: (A) *T. tridentatus* and (B) *C. rotundicauda*.

Figure 5.5 Effects of food treatment (fed, —; starved, ---) on plasma glucose concentration (mean ± SE) in two horseshoe crab species: (A) *T. tridentatus* and (B) *C. rotundicauda*.

Figure 5.6 Effects of food treatment (fed, —; starved, ---) on plasma lipase activity (mean ± SE) in two horseshoe crab species: (A) *T. tridentatus* and (B) *C. rotundicauda*.

Figure 5.7 Effects of food treatment (fed, —; starved, ---) on plasma triglyceride concentration (mean ± SE) in two horseshoe crab species: (A) *T. tridentatus* and (B) *C. rotundicauda*.
Figure 5.8 Effects of food treatment (fed, —; starved, ---) on plasma total protein concentration (mean ± SE) in two horseshoe crab species: (A) *T. tridentatus* and (B) *C. rotundicauda*

Figure 6.1 Absorption efficiency (AE) of two horseshoe crab species fed clam meat: (A) *T. tridentatus* and (B) *C. rotundicauda*

Figure 6.2 Effects of treatments on respiration rate (RR) (mean ± SE) in two horseshoe crab species: (A) *T. tridentatus* and (B) *C. rotundicauda* (fed, —; starved, ---)

Figure 6.3 Effects of treatment on excretion rate (ER) (mean ± SE) in two horseshoe crab species: (A) *T. tridentatus* and (B) *C. rotundicauda* (fed, —; starved, ---).

Figure 6.4 Effects of treatment on O:N ratio (mean ± SE) in two horseshoe crab species: (A) *T. tridentatus* and (B) *C. rotundicauda* (fed, —; starved, ---)

Figure 6.5 Effects of treatment on SfG (mean ± SE) in two horseshoe crab species: (A) *T. tridentatus* and (B) *C. rotundicauda* (fed, —; starved, ---)

Figure 8.1 Effect of different FM protein replacement levels by the blends of PBM, MBM and BM (PBM:MBM = 2:1, ▲; PBM:MBM = 1:1, □) on FBW of two horseshoe crab species: (A) *T. tridentatus* and (B) *C. rotundicauda*

Figure 8.2 Effect of different FM protein replacement levels by the blends of PBM, MBM and BM (PBM:MBM = 2:1, ▲; PBM:MBM = 1:1, □) on TGC of two horseshoe crab species: (A) *T. tridentatus* and (B) *C. rotundicauda*
Figure 8.3 Effect of different FM protein replacement levels by the blends of PBM, MBM and BM (PBM:MBM = 2:1, ▲; PBM:MBM = 1:1, □) on FR of two horseshoe crab species: (A) *T. tridentatus* and (B) *C. rotundicauda*

205

Figure 8.4 Effect of different FM protein replacement levels by the blends of PBM, MBM and BM (PBM:MBM = 2:1, ▲; PBM:MBM = 1:1, □) on FER of two horseshoe crab species: (A) *T. tridentatus* and (B) *C. rotundicauda*

207