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ABSTRACT 
 

The processes in living organisms that govern cellular adaptation and survival 

mechanisms to cope with hypoxic stress are complex and incompletely defined. 

Numerous in-vivo and in-vitro studies in mammals and non-mammalian vertebrates 

have shown that many steroidogenic activities and reproductive functions are impaired 

under chronic or acute hypoxic stress; however, the molecular basis for the 

reproduction impairments is still poorly known. The Hypoxia-Inducible Factors (HIFs) 

are a family of transcription factors that mediate many of the molecular responses to 

hypoxia, and over 100 genes controlling diverse cellular and physiologically processes 

are now known to be regulated by HIF proteins. Endogenous microRNA (miRNA) 

molecules (which are short non-coding RNAs with the ability to regulate gene 

expression post-transcriptionally) have been identified as essential mediators of 

numerous cellular processes, including responses to hypoxia. In particular, 

microRNA-210 (miR-210) is known to be specifically induced by HIF-1 during 

hypoxia. The cell-cycle regulator E2F3, the receptor tyrosine kinase ligand ephrin A3, 

and the DNA repair protein RAD52 are repressible gene targets of miR-210. However, 

the roles of the HIF family of proteins and related miRNAs in the regulation of 

steroidogenesis and reproductive functions have yet to delineated.  

In this study, the hypothesis that HIFs and associated miRNAs are involved in 

regulating genes that control the steroidogenesis pathway in vertebrates was tested 

using the steroidogenic human H295R (adrenocortical carcinoma) cell line as a model. 

H295R cells express all of the key enzymes involved in steroidogenesis and have the 

ability to produce steroid hormones representative of the three distinct zones − zona 

glomerulosa, zona fasciculata and zona reticularis − in the adult adrenal cortex. 

Experiments were performed to determine the effects of hypoxia on the expression 

levels of: (1) HIF-1α, -2α and -3α by qRT-PCR and Western blot analyses; (2) nine 
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steroidogenic enzyme genes (HMGR, StAR, CYP11A1, 3β-HSD2, CYP17A1, 

CYP21A2, 17β-HSD1, 17β-HSD4 and CYP19A1) by qRT-PCR; (3) four transcription 

factor genes (SF-1, Dax-1, Nur-77 and Cited-2) that control steroidogenesis by 

q-RT-PCR; and (4) two sex hormones (testosterone and estradiol) by ELISA assays in 

H295R cells.  

The effects of overexpression and knockdown of the human HIF-1α, HIF-2α 

and HIF-3α proteins (using the lentiviral expression system by Invitrogen) on 

steroidogenesis and hormone levels in H295R cells were also examined using the 

techniques described above. In addition, micro-RNA profiling experiments on 

normoxic, hypoxic, and HIFα-overexpressing and HIF-knockdown H295R cells were 

performed. Following extensive computational analyses, two miRNAs − miR-210 and 

miR-98 − were selected for further experiments. Overexpression and knockdown 

experiments of these two miRNAs were investigated in H295R cells, and their effects 

on the expression patterns of the nine steroidogenic genes and four regulatory factors 

(SF-1, Dax-1, Nur-77 and Cited-2); HIF-1α and HIF- 2α mRNAs; and testosterone and 

estrogen levels were determined. 

Hypoxic H295R cells showed significant induction of the HIF-1α and HIF-2α 

proteins; but HIF-3α mRNA and protein were not detectable in H295R cells under 

normoxic and hypoxic conditions. Hypoxia differentially regulated expression of the 

nine steroidogenic enzyme genes, whereby downregulation of StAR, 17β-HSD1, 

17β-HSD4 and CYP19 was observed. Expression of SF-1 and Dax-1 were reduced 

under hypoxia, while Nur-77 mRNA level was unaffected. Importantly, testosterone 

and estradiol levels were significantly reduced in hypoxic H295R cells.  

CYP17A1 expression was downregulated while 17β-HSD1, CYP19A1, 

Dax-1 and Nur-77 were upregulated in HIF-1α knockdown cells, an observation 

opposite to that in hypoxic H295R cells, which strongly indicated that HIF-1α is likely 
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involved in the regulation of these genes. As compared to hypoxic cells, HIF-1α 

knockdown cells did not show a reduction in the two sex steroid hormones, which 

suggests the presence of another level of regulation.  CYP21A2, CYP19A1 and 

Dax-1 genes were downregulated in the HIF-2α overexpressing cells (under normoxia) 

but upregulated in the HIF2-knockdown cells (under hypoxia), which suggested that 

these steroidogenic genes are likely regulated by HIF-2. 3β-HSD2 and CYP17A1 were 

also affected in the HIF-2α knockdown where the level of estradiol was decreased, 

while testosterone level was marginally increased. Overall, steroidogenic enzyme 

genes were observed to be differentially regulated by HIFs. Some steroidogenic 

enzyme genes such as CYP19A1 and 17β-HSD1 were found to be commonly affected 

by hypoxia and HIFs. Computational analysis of the 5′-flanking regions of these genes 

revealed several putative hypoxia responsive elements (HREs). This suggests that HIFs 

may be regulating these genes directly by binding to the HREs.  

miRNA profiling studies showed that some 29% of the 379 human miRNAs 

that are expressed in normoxia showed altered expression under hypoxia. When 

hypoxically upregulated miRNAs were compared to those of HIF2α-overexpressing 

and HIF3α-overexpressing H295R cells, 44, 65 and 41 miRNAs, respectively, were 

found to be upregulated specifically in hypoxia, HIF-2α and HIF-3α-overexpressing 

cells. In contrast, 24, 23 and 10 miRNAs, respectively, were found to be 

co-upregulated in hypoxic and HIF3α-overexpressing cells, hypoxic and 

HIF2α-overexpressing cells, and HIF2α- and HIF3α-overexpressing cells. 16 miRNAs 

were co-upregulated in hypoxic, HIF1α-overexpressing, HIF2α-overexpressing and 

HIF3α-overexpressing cells. On the other hand, 21, 29 and 47 miRNAs, respectively, 

were found to be downregulated specifically under hypoxia, in HIF2α- and 

HIF3α-overexpressing H295R cells. In contrast, 5, 18, 11 miRNAs, respectively, were 

found to be co-downregulated in hypoxic and HIF2α-overexpressing cells, HIF2α- and 
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HIF3α-overexpressing cells, and hypoxic and HIF3α-overexpressing H295R cells. 16 

miRNAs were downregulated in hypoxic, HIF1α-overexpressing, 

HIF2α-overexpressing and HIF3α-overexpressing cells. miRNA profiles in HIF-1α 

knockdown (under hypoxia) when compared to hypoxic H295R cells (to detect HIF-1α 

regulated miRNAs) showed that 26 miRNAs exhibited opposite expression patterns. 

Comparison of HIF2α-overexpressing and HIF2α-knockdown miRNA profiles showed 

55 miRNAs are HIF-2α regulated.  

Overexpression studies on miR-210 showed significant reduction in the 

mRNA levels of StAR and CYP17A1; while mRNA of StAR was only marginally 

upregulated and CYP17A1 remained unchanged in miR-210 knockdown cells. 

miR-210 overexpression significantly upregulated Nur-77 expression whereas Cited-2 

was reduced. miR-210 overexpression increased estradiol and testosterone levels 

although the knockdown cells showed no change in these two hormones. 

Overexpression of miR-98 reduced the mRNA levels of StAR, CYP11A1, CYP17A1 

and CYP19A1. miR-98 knockdown had no effect on StAR and CYP19A1 but 

expression of 3β-HSD2, CYP11A1, CYP17A1 and 17β-HSD1 were downregulated. 

Additionally, miR-98 overexpression reduced the expression of Dax-1, Cited-2 and 

SF-1. Expression of SF-1 and Dax-1 was also found reduced in miR-98 knockdown 

cells. In agreement with the reduced expression of certain steroidogenic enzyme genes, 

a significant reduction in estradiol production was observed miR-98-overexpressing 

H295R cells. Computer analysis showed that CYP19A1 is a likely gene target of 

miR-98. To verify whether the putative miR-98 binding site in the 3’-UTR of CYP19A 

is indeed functional, further investigations are needed.  

Overall, this study describes the likely roles of HIFs in controlling 

steroidogenesis through the possible actions of specific miRNAs, and provides the 

basis for an alternative pathway through which steroidogenesis is modulated under 
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hypoxia. This study has provided some important insights into the relationships 

between hypoxia, HIFs, miRNAs and steroidogenesis.  
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