CITY UNIVERSITY OF HONG KONG 香港城市大學

Hypoxia Inducible Factors and Associated MicroRNAs in Regulation of Steroidogenesis in the H295R Human Adrenocortical Carcinoma Cells 缺氧誘導因子及其相關的微小 RNA 在人類腎上腺皮質癌 H295R 細胞中 對類固醇激素合成的調控

> Submitted to Department of Biology and Chemistry 生物及化學系 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy 哲學博士學位

by

Chaturvedi Gayathri

September 2011 二零一一年九月

ABSTRACT

The processes in living organisms that govern cellular adaptation and survival mechanisms to cope with hypoxic stress are complex and incompletely defined. Numerous in-vivo and in-vitro studies in mammals and non-mammalian vertebrates have shown that many steroidogenic activities and reproductive functions are impaired under chronic or acute hypoxic stress; however, the molecular basis for the reproduction impairments is still poorly known. The Hypoxia-Inducible Factors (HIFs) are a family of transcription factors that mediate many of the molecular responses to hypoxia, and over 100 genes controlling diverse cellular and physiologically processes are now known to be regulated by HIF proteins. Endogenous microRNA (miRNA) molecules (which are short non-coding RNAs with the ability to regulate gene expression post-transcriptionally) have been identified as essential mediators of numerous cellular processes, including responses to hypoxia. In particular, microRNA-210 (miR-210) is known to be specifically induced by HIF-1 during hypoxia. The cell-cycle regulator E2F3, the receptor tyrosine kinase ligand ephrin A3, and the DNA repair protein RAD52 are repressible gene targets of miR-210. However, the roles of the HIF family of proteins and related miRNAs in the regulation of steroidogenesis and reproductive functions have yet to delineated.

In this study, the hypothesis that HIFs and associated miRNAs are involved in regulating genes that control the steroidogenesis pathway in vertebrates was tested using the steroidogenic human H295R (adrenocortical carcinoma) cell line as a model. H295R cells express all of the key enzymes involved in steroidogenesis and have the ability to produce steroid hormones representative of the three distinct zones – zona glomerulosa, zona fasciculata and zona reticularis – in the adult adrenal cortex. Experiments were performed to determine the effects of hypoxia on the expression levels of: (1) HIF-1 α , -2 α and -3 α by qRT-PCR and Western blot analyses; (2) nine

steroidogenic enzyme genes (HMGR, StAR, CYP11A1, 3 β -HSD2, CYP17A1, CYP21A2, 17 β -HSD1, 17 β -HSD4 and CYP19A1) by qRT-PCR; (3) four transcription factor genes (SF-1, Dax-1, Nur-77 and Cited-2) that control steroidogenesis by q-RT-PCR; and (4) two sex hormones (testosterone and estradiol) by ELISA assays in H295R cells.

The effects of overexpression and knockdown of the human HIF-1 α , HIF-2 α and HIF-3 α proteins (using the lentiviral expression system by Invitrogen) on steroidogenesis and hormone levels in H295R cells were also examined using the techniques described above. In addition, micro-RNA profiling experiments on normoxic, hypoxic, and HIF α -overexpressing and HIF-knockdown H295R cells were performed. Following extensive computational analyses, two miRNAs – miR-210 and miR-98 – were selected for further experiments. Overexpression and knockdown experiments of these two miRNAs were investigated in H295R cells, and their effects on the expression patterns of the nine steroidogenic genes and four regulatory factors (SF-1, Dax-1, Nur-77 and Cited-2); HIF-1 α and HIF- 2 α mRNAs; and testosterone and estrogen levels were determined.

Hypoxic H295R cells showed significant induction of the HIF-1 α and HIF-2 α proteins; but HIF-3 α mRNA and protein were not detectable in H295R cells under normoxic and hypoxic conditions. Hypoxia differentially regulated expression of the nine steroidogenic enzyme genes, whereby downregulation of StAR, 17 β -HSD1, 17 β -HSD4 and CYP19 was observed. Expression of SF-1 and Dax-1 were reduced under hypoxia, while Nur-77 mRNA level was unaffected. Importantly, testosterone and estradiol levels were significantly reduced in hypoxic H295R cells.

CYP17A1 expression was downregulated while 17β -HSD1, CYP19A1, Dax-1 and Nur-77 were upregulated in HIF-1 α knockdown cells, an observation opposite to that in hypoxic H295R cells, which strongly indicated that HIF-1 α is likely involved in the regulation of these genes. As compared to hypoxic cells, HIF-1 α knockdown cells did not show a reduction in the two sex steroid hormones, which suggests the presence of another level of regulation. CYP21A2, CYP19A1 and Dax-1 genes were downregulated in the HIF-2 α overexpressing cells (under normoxia) but upregulated in the HIF2-knockdown cells (under hypoxia), which suggested that these steroidogenic genes are likely regulated by HIF-2. 3 β -HSD2 and CYP17A1 were also affected in the HIF-2 α knockdown where the level of estradiol was decreased, while testosterone level was marginally increased. Overall, steroidogenic enzyme genes were observed to be differentially regulated by HIFs. Some steroidogenic enzyme genes such as CYP19A1 and 17 β -HSD1 were found to be commonly affected by hypoxia and HIFs. Computational analysis of the 5'-flanking regions of these genes revealed several putative hypoxia responsive elements (HREs). This suggests that HIFs may be regulating these genes directly by binding to the HREs.

miRNA profiling studies showed that some 29% of the 379 human miRNAs that are expressed in normoxia showed altered expression under hypoxia. When hypoxically upregulated miRNAs were compared to those of HIF2 α -overexpressing and HIF3 α -overexpressing H295R cells, 44, 65 and 41 miRNAs, respectively, were found to be upregulated specifically in hypoxia, HIF-2 α and HIF-3 α -overexpressing cells. In contrast, 24, 23 and 10 miRNAs, respectively, were found to be co-upregulated in hypoxic and HIF3 α -overexpressing cells, hypoxic and HIF2 α -overexpressing cells, hypoxic and HIF2 α -overexpressing cells, and HIF2 α -overexpressing cells. 16 miRNAs were co-upregulated in hypoxic, HIF1 α -overexpressing, HIF2 α -overexpressing and HIF3 α -overexpressing cells. 0n the other hand, 21, 29 and 47 miRNAs, respectively, were found to be downregulated specifically under hypoxia, in HIF2 α - and HIF3 α -overexpressing H295R cells. In contrast, 5, 18, 11 miRNAs, respectively, were found to be co-downregulated in hypoxic and HIF2 α -overexpressing cells, HIF2 α - and HIF3 α -overexpressing H295R cells. In contrast, 5, 18, 11 miRNAs, respectively, were found to be co-downregulated in hypoxic and HIF2 α -overexpressing cells, HIF2 α - and HIF3 α -overexpressing cells. HIF2 α - and HIF3 α -overexpressing H295R cells. In contrast, 5, 18, 11 miRNAs, respectively, were found to be co-downregulated in hypoxic and HIF2 α -overexpressing cells, HIF2 α - and HIF3 α -overexpressing cells, HIF2 α - and HIF3 α -overexpressing H295R cells. In contrast, 5, 18, 11 miRNAs, respectively, were found to be co-downregulated in hypoxic and HIF2 α -overexpressing cells, HIF2 α - and HIF3 α -overexpressing cells, HIF2 α - and HIF3 α -overexpressing cells, HIF2 α -overexpressing cell

iv

HIF3 α -overexpressing cells, and hypoxic and HIF3 α -overexpressing H295R cells. 16 miRNAs were downregulated in hypoxic, HIF1 α -overexpressing, HIF2 α -overexpressing and HIF3 α -overexpressing cells. miRNA profiles in HIF-1 α knockdown (under hypoxia) when compared to hypoxic H295R cells (to detect HIF-1 α regulated miRNAs) showed that 26 miRNAs exhibited opposite expression patterns. Comparison of HIF2 α -overexpressing and HIF2 α -knockdown miRNA profiles showed 55 miRNAs are HIF-2 α regulated.

Overexpression studies on miR-210 showed significant reduction in the mRNA levels of StAR and CYP17A1; while mRNA of StAR was only marginally upregulated and CYP17A1 remained unchanged in miR-210 knockdown cells. miR-210 overexpression significantly upregulated Nur-77 expression whereas Cited-2 was reduced. miR-210 overexpression increased estradiol and testosterone levels although the knockdown cells showed no change in these two hormones. Overexpression of miR-98 reduced the mRNA levels of StAR, CYP11A1, CYP17A1 and CYP19A1. miR-98 knockdown had no effect on StAR and CYP19A1 but expression of 3β-HSD2, CYP11A1, CYP17A1 and 17β-HSD1 were downregulated. Additionally, miR-98 overexpression reduced the expression of Dax-1, Cited-2 and SF-1. Expression of SF-1 and Dax-1 was also found reduced in miR-98 knockdown cells. In agreement with the reduced expression of certain steroidogenic enzyme genes, a significant reduction in estradiol production was observed miR-98-overexpressing H295R cells. Computer analysis showed that CYP19A1 is a likely gene target of miR-98. To verify whether the putative miR-98 binding site in the 3'-UTR of CYP19A is indeed functional, further investigations are needed.

Overall, this study describes the likely roles of HIFs in controlling steroidogenesis through the possible actions of specific miRNAs, and provides the basis for an alternative pathway through which steroidogenesis is modulated under hypoxia. This study has provided some important insights into the relationships between hypoxia, HIFs, miRNAs and steroidogenesis.

TABLE OF CONTENTS

Page

ABS	ГRACT		i
ACK	NOWLE	DGEMENTS	vii
TAB	LE OF C	ONTENTS	ix
LIST	OF FIG	URES	xviii
LIST	OF TAB	LES	xxiii
LIST	OF ABB	REVIATIONS	XXV
СНА	PTER 1	INTRODUCTION	1
1.1	Respo	nses to hypoxia	3
	1.1.1	Behavioral responses to hypoxia	3
	1.1.2	Physiological and biochemical responses to hypoxia	4
	1.1.3	Molecular responses to hypoxia	5
1.2	1.2 Hypoxia inducible factor-1 (HIF-1)		6
	1.2.1	HIF-β	6
	1.2.2	HIF-1a	9
	1.2.3	Conserved domains in HIF-1	9
	1.2.4	Regulation of HIF-1: oxygen dependent degradation	11
		<u>1.2.4.1</u> <u>HIF regulation under normoxia</u>	12
		<u>1.2.4.2</u> <u>HIF regulation under hypoxia</u>	16
	1.2.5	Other mechanisms of HIF-1 α regulation	18
	1.2.6	Different splice variants of HIF-1a protein	19
1.3	Нурох	ia-inducible factor -2	20

Hypoxia-inducible factor -2 1.3

1.4	Нурох	ia inducible factor -3	23
1.5.	Roles a	of HIFs	26
	1.5.1	HIF and cancer	28
	1.5.2	HIF and energy metabolism	30
1.6	Effects	of hypoxia in aquatic environments	32
	1.6.1	Effects of hypoxia on reproduction and steroidogenesis	32
1.7	Adren	al steroidogenesis	36
	1.7.1	Regulatory factors involved in steroidogenesis	38
1.8	Нурох	ia and microRNAs	40
	1.8.1	Regulation of miRNAs by HIFs	46
1.9	Ration	ale and objectives of this study	46
CHA	PTER 2	MATERIALS AND METHODS	50
2.1	Mater	ials	50
2.2	Cell C	ulture	50
	2.2.1	H295R Cells	50
	2.2.2	293FT Cells	52
	2.2.3	HT1080 cells	53
2.3	Consti	ruction of plasmids	54
	2.3.1	Construction of HIF-a overexpression plasmids	54
	2.3.2	Construction of HIF-a knockdown plasmids	56
2.4	Lentiv	irus production, concentration and titre determination	57
2.5	Transo	duction	58
2.6	RNA i	nterference	59
2.7	RNA	extraction, reverse transcription and Polymerase Chain	59
	Reacti	on (PCR)	

vii

2.8	Quanti	tative Real Time PCR	61
2.9	Protein	extraction, quantification, SDS PAGE and Western	63
	Blotting	5	
2.10	Sex ste	roid hormone detection by Enzyme-linked immunosorbent	65
	assay		
2.11	microR	NA profiling	65
2.12	Overex	pression and inhibition of miR-210 and miR-98	67
2.13	Statisti	cal analysis	68
СНАР	FER 3	RESULTS AND DISCUSSION	70
		Effects of Hypoxia and HIFs on Steroidogenesis in H295R	
		Cells	
3.1	Effect o	of hypoxia on steroidogenesis in H295R cells	70
	3.1.1	Expression of HIF-1a, HIF-2a and HIF-3a under normoxia	71
		and hypoxia in H295R cells	
	3.1.2	Expression of hypoxia markers in H295R cells	75
	3.1.3	Expression of steroidogenic enzyme genes under normoxia	76
		and hypoxia	
	3.1.4	Sex steroid hormone levels under normoxia and hypoxia	81
3.2	Cloning	g and optimization of transfection conditions	83
	3.2.1	Construction of HIF-as overexpression plasmids	84
	3.2.2	Construction of HIF-a knockdown plasmids	86
	3.2.3	Lentivirus propogation and titre determination	88
	3.2.4	Optimization of transduction efficiency	89
	3.2.5	Optimal post-transduction incubation time	91

viii

3.3	Effects	s of HIF-1α on steroidogenesis in H295R cells	92
	3.3.1	Transient overexpression of HIF-1a	92
	3.3.2.	Transient HIF-1α knock-down under hypoxia	95
	3.3.3	Effect of HIF-1a knockdown on steroidogenic enzyme gene	98
		expression pattern	
	3.3.4	Sex steroid hormone levels	99
	3.3.5	Comparison between control hypoxic cells and HIF-1 α	100
		knockdown (under hypoxia) cells	
	3.3.6	Mechanisms of regulation of target genes by HIF-1	102
3.4	Effect	of HIF-2α on steroidogenesis in H295R cells	112
	3.4.1	Transient over-expression of HIF-2 α under normoxia	112
	3.4.2	Effect of HIF 2a over-expression on steroidogenic enzyme	115
		genes	
	3.4.3	Effect of HIF-2 α over-expression on sex steroid hormones	117
	3.4.4	Transient knockdown of HIF-2 α in H295R cells	118
	3.4.5	Effect of HIF-2a knockdown on steroidogenic enzyme genes	120
	3.4.6	Effect of HIF-2a knockdown on sex steroid hormone levels	122
	3.4.7	Comparison of effect of HIF-2a overexpression and	122
		knockdown in H295R cells	
	3.4.8	Comparison of effect of HIF-2 α knockdown and hypoxia	128
	3.4.9	Comparison of effect of HIF-2a knockdown and HIF-1a	128
		knockdown	
3.5	Effect	of HIF-3α on steroidogenesis in H295R cells	129
	3.5.1	Transient over-expression of HIF-3a	129
	3.5.2	Effect on mRNA expression of HIF-1a, HIF-2a following	132
		overexpression of HIF-3a under normoxia	

ix

	3.5.3	Effect of HIF-3α over-expression on steroidogenesis	133
	3.5.4	Effect of HIF 3α over-expression on the sex steroid hormones	135
CHA	PTER 4	RESULTS AND DISCUSSION	139
		Expression of microRNAs in H295R cells	
4.1	Investig	gation of miRNA expression profiles in H295R cells	139
	4.1.1	TaqMan human microRNA array cards	142
	4.1.2	miRNA profiling using TaqMan Low-Density Array of mature	146
		human miRNAs	
4.2	miRNA	expression profile in H295R cells under hypoxia	149
	4.2.1	Upregulated miRNAs under hypoxia	150
	4.2.2	Downregulated miRNAs under hypoxia	154
	4.2.3	miRNA target gene prediction: steroidogenic enzyme genes	156
4.3	miRNA	expression profile in HIF1α-knockdown H295R cells	160
	4.3.1	Upregulated miRNAs in HIF1a-knockdown H295R cells	161
		under hypoxia	
	4.3.2	Downregulated miRNAs in HIF-1α knockdown cells	164
4.4	miRNA	expression profiles in HIF2α-overexpressing and HIF2α-	168
	knockd	lown H295R cells	
	4.4.1	Comparison of miRNA expression profiles of HIF2 α -	168
		overexpressing and HIF2 α -knockdown H295R cells	
	4.4.2	Comparison of miRNA expression profiles of HIF2 α -	171
		overexpressing H295R cells and hypoxic H295R cells	
	4.4.3	Comparison of miRNA expression profiles in HIF2 α -	173
		knockdown H295R cells and hypoxic H295R cells	

х

	4.4.4	Comparison of miRNA profiles of HIF2a-overexpressing,	174
		HIF2α-knockdown and hypoxic H295R cells	
4.5	miRNA	A expression profile in HIF3α-overexpressing H295R cells	175
	4.5.1	Upregulated miRNA expression profile under HIF-3α	176
		overexpression	
	4.5.2	Downregulated miRNAs in HIF3α-overexpressing cells	177
4.6	Overvi	iew of miRNA expression profiles in H295R cells	178
СНА	PTER 5	RESULTS AND DISCUSSION	
		Role of miR-210 and miR-98 on Steroidogenesis in	183
		H295R cells	
5.1	Selecti	on of two microRNAs for further investigations	183
5.2	Role of	f miR-210 in steroidogenesis	186
	5.2.1	Overexpression and inhibition of miR-210	186
	5.2.2	Effect of miR-210 on steroidogenic enzyme genes	189
	5.2.3	Effect of miR-210 on production of sex steroid hormones in	193
		H295R cells	
	5.2.4	Effect of premiR-210 and antimiR-210 on HIF-1 α , HIF-2 α and	196
		HIF-3a expression	
5.3	Effect	of miR-98 on steroidogenesis in H295R cells	199
	5.3.1	Overexpression and inhibition of miR-98	199
	5.3.2	Effect of miR-98 on steroidogenic enzyme genes	200
	5.3.3	Effect of miR-98 on sex steroid levels in H295R cells	206
	5.3.4	Effect of pre-miR-98 and anti-miR-98 on HIF-1a, HIF-2a and	208
		HIF-3a expression	

CHAPTER 6 CONCLUDING REMARKS	214
REFERENCES	225
APPENDIX- I	263
APPENDIX-II	268
APPENDIX-III	270
APPENDIX-IV	272