CITY UNIVERSITY OF HONG KONG
香港城市大學

The Quantitative Study, Fingerprint Analysis and Biological Effect of *Rhizoma Smilacis Glabrae*
土茯苓活性成分定量分析，指紋圖譜及生物活性研究

Submitted to
Department of Biology and Chemistry
生物及化學系
In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy
哲學博士學位

by

Zhang Qing Feng
張清峰

July 2010
二零壹零年七月
Rhizoma Smilacis Glabrae (RSG) is a commonly used Chinese herbal medicine. To give scientific base for its applications, it is necessary to establish the chemical and biological profile of RSG. Two instrumental techniques, capillary electrophoresis (CE) and High Performance Liquid Chromatography (HPLC), were used for quantitative study and fingerprint analysis of RSG. Antioxidation and anti-cancer effects of RSG based on its chemical profile were also studied.

A CE method was developed for the separation and quantitative determination of six markers, namely trans-resveratrol, astilbin, taxifolin, shikimic acid, syringic acid and ferulic acid in RSG. The effects of borax and β-cyclodextrin (CD) concentration in electrophoretic buffer as well as its pH on the separation were systemically investigated. The optimal separation was carried out with running buffer of 20 mM borax containing 3 mM β-CD at pH 9.4. As the addition of CD in electrophoretic buffer significantly affected the electrophoretic mobilities of analytes, the complexation reactions of the six markers with different CDs (α, β, γ) were studied. Formation constant was calculated according to the electrophoretic mobilities change of analytes. The results showed that the size-fit relation between the host and guest was important for the complexation process. The developed quantitative method was successfully applied to determine the six components in 12 batches of RSG samples. Results revealed that astilbin was the most dominant component in RSG with content ranged from 11.5 to 27.6 mg g⁻¹, while ferulic acid, syringic acid and resveratrol could be absent. Furthermore, the quality of turtle jelly (Gui-ling-gao) was evaluated for the first time in terms of astilbin and taxifolin content.
by the CE method. Twenty one batches of samples with different brand were analyzed. Results showed that the content of astilbin and taxifolin in turtle jelly was distinctly different between brands, some even did not contain. Also, three commercial RSG concentrated extract products were analyzed and quality difference between brands was found.

For quality assurance and species authentication of RSG, its CE fingerprint was developed. To optimize the extraction condition, different extraction solvent and methods were compared. Methanol and sonication were recommended. Eighteen batches of RSG samples collected from various locations were investigated. RSG can be well distinguished from its two confusable species, Rhizoma Smilacis Chinae (RSC) and Rhizoma Heterosmilacis, by comparing their CE fingerprints.

HPLC fingerprint and quantitative analysis method was also developed for quality control and species distinguishing of RSG. Nine peaks were found in the chromatogram of RSG and all were identified by online electrospray ionization tandem mass spectrometry (ESI-MS/MS). These are 5-O-caffeoylshikimic acid, taxifolin, engeletin, isoengeletin, resveratrol, astilbin and its three stereoisomers. Among them, 6 constitutes were consistently found in 18 batches samples. The standard fingerprint of RSG was generated by mean simulation of the 18 tested samples. Based on the standard fingerprint, RSG can be easily distinguished from RSC and Rhizoma Heterosmilacis. Constitutes difference between RSG and RSC was further investigated by HPLC-ESI-MS/MS. Many constitutes, including shikimic acid, caffeoylshikimic acid, resveratrol, taxifolin, stereoisomers of astilbin and engeletin, were found in both species. However, ferulic acid and syringic acid were only found in RSG, while caffeoylquinic acid was only found in
The stability of RSG was investigated by monitoring the content of different constitutes at 55 °C for a period of 4 months. Result showed that the herb was stable during storage. The isomerization of astilbin during extraction was also investigated. Reflux (hot extraction) by solvent containing water would cause the isomerization of astilbin to its stereoisomers. Different extracts of RSG, including water extract, methanol extract and its ethyl acetate fraction, were prepared. The extracts were further analyzed by HPLC and CE, all extracts contained high content of dihydroflavonol glycosides such as astilbin, engeletin and their stereoisomers. Besides, phenolic acid caffeoylshikimic acid and shikimic acid were also contained. The dominant constitute in RSG, astilbin, was isolated and purified on a laboratory scale with purity of 95%. The method didn’t require repeated column chromatography or any special instruments. The product was characterized by element analysis; Ultraviolet-Visible spectrometry; mass spectrometry; IR spectrometry and nuclear magnetic resonance. Properties of astilbin were further investigated. Results showed that the water solubility of astilbin at 25 °C was about 250 μg/ml in acidic condition, and it was unstable in alkaline solution.

Different tests including radicals scavenging, reducing power and inhibition of linoleic acid peroxidation were employed to evaluate the antioxidant activities of astilbin and different extracts of RSG. All extracts showed concentration dependent antioxidant activity according to their contents of polyphenols. Polysaccharide did not show any antioxidant activity while purified astilbin showed the strongest antioxidant activity in comparison to any other extracts.

Methanol extract of RSG and astilbin showed cytotoxicity to HepG2, Hela and HL-60.
cells at relatively high concentration (all IC50>0.16 mg/ml). Morphological study with the method of acridine orange/ethidium bromide staining revealed that treating HepG2 cell with RSG would introduce the apoptosis with chromatin condensation and nuclear fragmentation. Cell cycle analysis showed that the pro-apoptotic effect of RSG was concentration and time-dependent and no phase arrest was noted. Although constitutes in RSC were quite similar with that of RSG, the cytotoxicity of RSC extracts to HepG2 cells was about twenty times stronger than that of RSG. Cell cycle analysis indicated that treating with methanol extract of RSC would cause G2/M arrest and then apoptosis of HepG2 cells. The pro-apoptotic effect was also concentration and time-dependent.
TABLE OF CONTENT

ABSTRACT ..i
TABLE OF CONTENT ..v
ACKNOWLEDGEMENTS ...xiii
DECLARATION ..xiv
ABBREVIATIONS ..xv
LIST OF TABLES ...xviii
LIST OF FIGURES ..xx
LIST OF PUBLICATIONS ..xxvii

SECTION A GENERAL INTRODUCTION ..1

Chapter 1 Literature Review of Rhizoma Smilacis Glabrae ...2
 1.1 Introduction ..2
 1.2 Confusable species and identification ..4
 1.3 Bioactive compounds isolated from RSG ..5
 1.4 Quality control of RSG ...11
 1.5 Bioactivity of RSG or its dominant constituent-astilbin ..11
 1.5.1 Anti-cancer property ...11
 1.5.2 Hypoglycemic effect ...12
 1.5.3 Hepatoprotective effect ...13
 1.5.4 Immunosuppressive activity ...15
 1.5.5 Anti-inflammatory/anti-rheumatic properties ...17
 1.5.6 Antibacterial and insecticidal properties ...19
 1.5.7 Anti-HIV-1 protease- and HIV-1 integrase activities ...20

Chapter 2 Capillary Electrophoresis for Quantitative Analysis of Herbal Medicines21
 2.1 Introduction and basic principle of capillary electrophoresis ..21
 2.2 Applications of CE on analyses of CHM ..24
 2.2.1 Polyphenol ..25
SECTION C RESULTS AND DISCUSSION

Chapter 7 β-Cyclodextrin Facilitates Simultaneous Analysis of Six Components in *Rhizoma Smilacis Glabrae* by Capillary Zone Electrophoresis

7.1 Introduction

7.2 Experimental methods

7.2.1 Standard marker preparation

7.2.2 Sample preparation

7.2.3 Capillary Electrophoretic analysis

7.3 Results and discussion

7.3.1 Method development

7.3.2 Method validation

7.3.3 Samples analysis

7.4 Chapter Conclusion

Chapter 8 Study of the Host-Guest Interaction of Six Markers with Cyclodextrins by Capillary Electrophoresis

8.1 Introduction

8.2 Experimental methods

8.2.1 Solution preparation

8.2.2 Capillary Electrophoresis studies

8.2.3 Calculation of the thermodynamic parameters of guest-CDs complexation

8.3 Results and discussion

8.3.1 Electropherograms of analytes in different concentration of CDs

8.3.2 Effect of CD types

8.3.3 Effect of temperature

8.4 Chapter conclusion

Chapter 9 The Content of Astilbin and Taxifolin in Concentrated Extracts of *Rhizoma Smilacis Glabrae* and Turtle Jelly Vary Significantly

9.1 Introduction
9.2 Experimental methods ... 92
 9.2.1. Preparation of sample ... 92
 9.2.2. Electrophoretic procedure .. 93
9.3 Results and discussion ... 95
 9.3.1 Method development ... 95
 9.3.2 Turtle jelly sample analysis ... 96
 9.3.3. Quality consistency of turtle jelly product 102
 9.3.4. RSG concentrated extracts analysis 102
9.4. Chapter conclusion ... 103

Chapter 10 Development of Capillary Electrophoretic Fingerprint for Rhizoma
Smilacis Glabrae ... 105
10.1 Introduction ... 105
10.2 Experimental ... 106
 10.2.1 Preparation of sample ... 106
 10.2.2 Electrophoretic procedure .. 107
 10.2.3 Data analysis ... 107
10.3 Result and discussion .. 107
 10.3.1 CE method development ... 107
 10.3.2. Optimization of extraction .. 111
 10.3.3 Standardization the fingerprint of RSG 113
 10.3.4 Confusable species distinguishing 117
10.4 Chapter conclusion ... 119

Chapter 11 Chromatographic Fingerprint and Quantitative Analysis of Rhizoma
Smilacis Glabrae by HPLC/DAD/ESI-MS/MS 121
11.1 Introduction ... 121
11.2. Experiment methods .. 122
 11.2.1 HPLC analysis ... 122
 11.2.2 HPLC–MS/MS analysis .. 123
 11.2.3 Preparation of sample .. 123
 11.2.4 Data analysis ... 124
11.3 Result and discussion .. 124
Chapter 12 Comparison of Constituents Between RSG and RSC by HPLC-MS/MS

12.1 Introduction ... 142
12.2 Experimental methods ... 143
12.3 Result and discussion ... 144
 12.3.1 Constituents difference between RSG and RSC 144
 12.3.2 Quantification of constituents in RSG by HPLC-DAD 150
12.4 Chapter conclusion ... 150

Chapter 13 Stability of RSG and Preparation of Its Different Extract 152

13.1 Introduction .. 152
13.2 Experiment methods ... 152
 13.2.1 Stability of RSG .. 152
 13.2.2 Isomerization of astilbin and its stereoisomers by different extract method and solvent ... 152
 13.2.3 Preparation of different RSG extract 153
 13.2.4 HPLC analysis ... 154
 13.2.5 CE analysis ... 154
 13.2.6 Determination of total phenolic content 154
13.3 Result and discussion .. 155
 13.3.1 Stability of RSG during storage 155
 13.3.2 Isomerization of astilbin and its stereoisomers by different extract method and solvent ... 155
 13.3.3 Extraction yield and total phenolic content 158
 13.3.4 Quantification of Polyphenol in the extracts by HPLC method 159
 13.3.4 Quantification of Polyphenol in the extracts by CE method 161
Chapter 14 Simple Preparation of Astilbin from *Rhizoma Smilacis Glabrae* and Its Property Investigation

14.1 Introduction.. 164
14.2 Experimental methods ... 165
 14.2.1 Extraction and isolation procedure .. 165
 14.2.2 Capillary electrophoresis analysis .. 166
 14.2.3 Astilbin solubility test .. 166
 14.2.4 Astilbin stability test .. 167
14.3 Result and discussion .. 167
 13.3.1 Yield and purity of astilbin isolated from *RSG* by different method 167
 14.3.2 Purified Astilbin Characterization ... 171
 14.3.3 Solubility of Astilbin in different pH solution .. 176
 14.3.4 Stability of astilbin in different pH solution ... 178
14.4 Chapter conclusion ... 178

Chapter 15 Antioxidant Activity of *Rhizoma Smilacis Glabrae* Extracts and Its Key Constituent-Astilbin

15.1 Introduction .. 182
15.2 Experimental ... 184
 15.2.1 Preparation of sample solution .. 184
 15.2.2 Scavenging activity of DPPH radical .. 184
 15.2.3 Antioxidant activity by the ABTS.+ assay .. 184
 15.2.4 Reducing power .. 185
 15.2.5 Superoxide anion radical scavenging activity .. 185
 15.2.6 Antioxidant activity in linoleic acid emulsion system (Siddhuraju et al, 2007) 186
 15.2.7 Protective effects of extracts and astilbin on HepG2 cell against oxidative stress induced by t-BOOH .. 187
 15.2.8 Statistical analysis .. 188
15.3 Results and discussion ... 188
 15.3.1 DPPH radical-scavenging activity ... 188
15.3.2 ABTS•+ radical-scavenging activity .. 190
15.3.3 Reducing power ... 191
15.3.4 Superoxide radical-scavenging activity ... 192
15.3.5 Antioxidant activity determined in linoleic acid system 194
15.3.6 Cytotoxicity of t-BOOH to HepG2 cells 195
15.3.6 Protective effects of RSG extracts and astilbin on HepG2 cell against oxidative stress induced by t-BOOH 196

15. 4 Chapter conclusion ... 197

Chapter 16 Anti-proliferative and Pro-apoptotic Effect of RSG Extract on Human Cancer lines HepG2, Hela and HL60 ... 200

16.1 Introduction ... 200
16.2 Experiment methods ... 201
16.2.1 Cell culture ... 201
16.2.2 Drug Preparation .. 202
16.2.3 Cytotoxicity assay ... 202
16.2.4 Acridine orange/ethidium bromide (AO/EB) staining 204
16.2.5 Cell cycle analysis ... 205
16.3 Result and discussion ... 205
16.3.1 Cytotoxicity assay ... 205
16.3.2 AO/EB staining ... 206
16.3.3 Cell cycle analysis ... 210
16.4 Chapter conclusion .. 212

SECTION D OVERALL DISCUSSIONS AND CONCLUSION 217

Chapter 17 Overall Discussion .. 218

17.1. Values of Chinese herbal medicines (CHM) and research strategy for its modernization ... 218
17.2 Comparison of CE and HPLC for phytochemical analysis 223
17.3 Hyphenated technique for phytochemical analysis 225
17.4 Present works about RSG ... 226
17.5 Turtle jelly and suggestions for the manufacturer .. 230

Chapter 18 Overall Conclusion ... 232
 18.1. Material foundation of RSG ... 232
 18.2 Chemical fingerprint for RSG quality control and species distinguishing . 233
 18.3 Processing of RSG and its functional food turtle jelly 234
 18.4. Biological effect of RSG and its key constituent astilbin 234

Chapter 19 Suggestions for Future Work .. 236

SECTION E REFERENCES .. 238
ABBREVIATIONS

AA: Adjuvant-induced arthritis
ABTS: 2’-azinobis (3-ethylbenzothiazoline- 6-sulfonic acid) diammonium salt
AO/EB: Acridine orange/ethidium bromide
BHA: Butylated hydroxyanisole
BHT: Butylated hydroxytoluene
CD: Cyclodextrin
α-CD: α-Cyclodextrin
β-CD: β-Cyclodextrin
γ-CD: γ-Cyclodextrin
CE: Capillary electrophoresis
CGE: Capillary gel electrophoresis
CIEF: Capillary isoelectric focusing
CHM: Chinese herbal medicine
CZE: Capillary zone electrophoresis
DAD: Diode array detector
DMSO: Dimethyl sulfoxide
DNA: Deoxyribonucleic acid
DPPH: 1,1-diphenyl-2-picryl-hydrazil
ED: Electrochemical detector
EF: Ethyl acetate fraction
ESI-MS/MS: Electrospray ionization tandem mass spectrometry
EtOAc: Ethyl acetate
FDA: Food and Drug Administration
FTIR: Fourier transform infrared spectroscopy
FBS: Fetal bovine serum
GAP: Good Agricultural Policies
GC: Gas chromatography
HM: Herbal medicine
HPLC: High-performance liquid chromatography
K: Formation constant
LDH: lactate dehydrogenase
MEKC: Micellar electrokinetic chromatography
MRM: Multiple Reaction monitor
MS: Mass spectrometry
MTT: [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide]
NMR: Nuclear magnetic resonance
NBT: Nitroblue tetrazolium
NADH: Nicotinamide adenine dinucleotide reduced form
OVI: Overlap index
PA: Peak area
PBS: Phosphate buffered saline
PCA: Principal component analysis
PMS: Phenazine methosulphate
PPRC 2005: *Pharmacopoeia of the People's Republic of China 2005*
PPRC 2010: *Pharmacopoeia of the People's Republic of China 2010*
RP-HPLC: Reversed-phase High-performance liquid chromatography
Rnase: Ribonuclease
RPA: Relative peak areas
RSC: *Rhizoma Smilacis Chinae*
RSD: Relative standard deviations
RSG: *Rhizoma Smilacis Glabrae*
ROS: Reactive oxygen species
SDS: Sodium dodecyl sulfate
SES: Similarity Evaluation System for Chromatographic Fingerprint of Traditional Chinese Medicine
SF: Supernatant fraction
SFDA: State Food and Drug Administration
t_R: Retention time
t-BOOH: tert-butyl hydroperoxide
TCM: Traditional Chinese medicine
TLC: Thin-layer chromatography
TM: Traditional medicine
WE: Water extract
WHO: World health organization
LIST OF TABLE

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>Selected examples for polyphenols analysis by CE</td>
<td>29-30</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Selected examples for alkaloids analysis by CE</td>
<td>34</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>Details of collected RSG samples</td>
<td>52</td>
</tr>
<tr>
<td>Table 5.2</td>
<td>Details of collected RSG concentrated extract samples</td>
<td>53</td>
</tr>
<tr>
<td>Table 7.1</td>
<td>Precision and linearity of CE method of different analytes</td>
<td>73</td>
</tr>
<tr>
<td>Table 7.2</td>
<td>Quantity and recovery of compound in Rhizoma Smilacis Glabrae from different areas of china (μg g⁻¹, n=3)</td>
<td>75</td>
</tr>
<tr>
<td>Table 8.1</td>
<td>Selective property of CDs to the different analytes</td>
<td>84</td>
</tr>
<tr>
<td>Table 8.2</td>
<td>Formation constants between analytes and α-CD, electrophoretic mobilities of the analyte in the free and complexed states (n=3)</td>
<td>86</td>
</tr>
<tr>
<td>Table 8.3</td>
<td>Formation constants between analytes and β-CD, electrophoretic mobilities of the analyte in the free and complexed states (n=3)</td>
<td>86</td>
</tr>
<tr>
<td>Table 8.4</td>
<td>Formation constants between analytes and γ-CD, electrophoretic mobilities of the analyte in the free and complexed states (n=3)</td>
<td>86</td>
</tr>
<tr>
<td>Table 8.5</td>
<td>The K values (L mol⁻¹) of six analytes with CD at different temperature and other thermodynamic parameters</td>
<td>88</td>
</tr>
<tr>
<td>Table 9.1</td>
<td>Details of collected samples of turtle jelly</td>
<td>94</td>
</tr>
<tr>
<td>Table 9.2</td>
<td>Content of astilbin and taxifolin in different turtle jelly samples (μg g⁻¹)</td>
<td>97</td>
</tr>
<tr>
<td>Table 9.3</td>
<td>Content of astilbin and taxifolin in Herbal Turtle Jelly of Hungfooktong produced on different dates (μg g⁻¹)</td>
<td>102</td>
</tr>
<tr>
<td>Table 9.4</td>
<td>Content of astilbin and taxifolin in RSG concentrated extracts (mg g⁻¹)</td>
<td>103</td>
</tr>
<tr>
<td>Table 10.1</td>
<td>Retention times (tR) and relative peak areas (RPA) of five characteristic peaks in CE fingerprint of 18 batches of RSG</td>
<td>115</td>
</tr>
<tr>
<td>Table 10.2</td>
<td>The similarities of 18 electropherograms to reference fingerprint</td>
<td>116</td>
</tr>
<tr>
<td>Table 11.1</td>
<td>The tried mobile phase in optimization of HPLC conditions</td>
<td>125</td>
</tr>
<tr>
<td>Table 11.2</td>
<td>The online detected chromatographic and spectrometric data of these identified compounds in the chromatogram of RSG</td>
<td>127</td>
</tr>
</tbody>
</table>
Table 11.3 Retention times (tR) and relative peak areas (RPA) of five characteristic peaks in chromatograms of 18 batches of RSG.

Table 11.4 The similarities of RSG, RSC samples and commercial RSG concentrated product with the standard chromatogram of RSG.

Table 11.5 Precision, linearity and recovery of HPLC method of different analytes.

Table 11.6 Content of the nine constituents in different RSG sample and commercial product (mg g⁻¹, n=3).

Table 12.1 Constitutes difference between RSG and RSC.

Table 12.2 Content of the nine constitutes in different RSC sample (mg g⁻¹, n=3).

Table 13.1 Yield of different RSG extracts, total phenolics and content of astilbin and shikimic acid in different extracts analyzed by CE (mg/g, n=3).

Table 13.2 Content of different constitutes in different extracts analyzed by HPLC (mg/g, n=3).

Table 14.1 Yield, purity and calibration curve of purified astilbin.

Table 14.2 C, H, N element analysis result.

Table 16.1 IC50 values of different RSG extracts on the three cell lines.
LIST OF FIGURES

Fig. 1.1 Photos of *Smilax Glabra Roxb.*; A: Flower; B: Berries; C: processed slice product of its rhizome; D: rhizome………………………………………………2

Fig. 1.2 Dihydroflavonol isolated from RSG……………………………………6

Fig. 1.3 The other flavonoid isolated from RSG…………………………………7

Fig. 1.4 Phenylpropanoid glycosides isolated from RSG…………………………8

Fig. 1.5 Lignan glycoside isolated from RSG…………………………………………………8

Fig. 1.6 Polyphenol, phenolic acid and their glycosides isolated from RSG ……..9

Fig. 2.1 The sketch map of capillary electrophoresis……………………………22

Fig. 2.2 Principle of separation in capillary electrophoresis. A: Capillary zone electrophoresis; B: Micellar Electrophoretic Capillary Chromatography; C: Electrokinetic Chromatography………………………………………24

Fig. 2.3 The basic skeleton of flavonoids (A) and hydroxyphenylcarboxylic acids (B); R: OH or H group…………………………………………………………26

Fig. 7.1 The structures of analytes and internal standard used…………………….64

Fig. 7.2 Effect of pH on the separation of analytes, borax: 20 mM, β-CD: 0 mM. Peaks: 1= *trans*-resveratrol; 2=ferulic acid; 3=syringic acid; 4=astilbin; 5=shikimic acid; 6=taxifolin……………………………………………………67

Fig. 7.3 Effect of β-CD concentration on the separation of analytes, borax: 20 mM, pH: 9.4. Peaks: 1= *trans*-resveratrol; 2=astilbin; 3= taxifolin; 4= ferulic acid; 5= syringic acid; 6= shikimic acid……………………………………………………68

Fig. 7.4 Effect of β-CD on electrophoretic mobility of the analytes………………….68

Fig. 7.5 Effect of borax concentration on the separation of analytes, β-CD: 2 mM, pH: 9.4. Peaks: 1= *trans*-resveratrol; 2=astilbin; 3= taxifolin; 4= ferulic acid; 5= syringic acid; 6= shikimic acid……………………………………………………70

Fig. 7.6 The calibration curves of the six analytes. (A) Area curves; (B) Area ratio curves………………………………………………………………………….72

Fig. 7.7 Electropherograms of *Rhizoma Smilax Glabra* samples and standard
markers. (A) original extract of Sample S07 and (B) sample after 20 times diluted. Peaks: 1= trans-resveratrol; 2= astilbin; 3= taxifolin; 4= ferulic acid; 5= syringic acid; 6= shikimic acid; IS: internal standard………..76

Fig. 8.1 Effects of different concentration of CDs on the migration time of analytes. Running buffer used was 20 mM borax at pH 9.4 with different CD; (A): α-CD; (B) β-CD; (C) γ-CD. Peaks: 1= trans-resveratrol; 2= astilbin; 3= taxifolin; 4= ferulic acid; 5= syringic acid; 6= shikimic acid……………82

Fig. 8.2 Effect of different CDs on electrophoretic mobility of the analytes. (A): α-CD; (B) β-CD; (C) γ-CD……………………………………………………83

Fig. 8.3 Structure of native cyclodextrins (a,b), the molecular dimensions of cyclodextrin cavities (c)……………………………………..84

Fig. 8.4 Double-reciprocal plot for calculating formation constant (K) between analytes and CDs. (A): α-CD; (B) β-CD; (C) γ-CD………………………85

Fig. 8.5 Electrophoretic mobility of astilbin versus β-CD concentration at different temperature………………………………………………..88

Fig. 8.6 Arrhenius Plots for the Heat Activation between analytes and β-CD………..89

Fig. 9.1 Electropherograms of standards. Peaks: 1= astilbin; 2= taxifolin; IS: internal standard (P-coumaric acid)…………………………….96

Fig. 9.2 Electropherograms of Hoi Tin Tong Fresh Herbal Jelly Series. Peaks: 1= astilbin; 2= taxifolin; IS: internal standard (P-coumaric acid)……………98

Fig. 9.3 Electropherograms of Hoi Tin Tong Freshness Retained Jelly Series. Peaks: 1= astilbin; 2= taxifolin; IS: internal standard (P-coumaric acid)………99

Fig. 9.4 Electropherograms of Hungfooktong turtle jelly samples. Peaks: 1= astilbin; 2= taxifolin; IS: internal standard (P-coumaric acid)………………99

Fig. 9.5 Electropherograms of Healthworks turtle jelly samples. Peaks: 1= astilbin; 2= taxifolin; IS: internal standard (P-coumaric acid)………………….99

Fig. 9.6 Electropherograms of three other Hong Kong brand turtle jelly samples. Peaks: 1= astilbin; 2= taxifolin; IS: internal standard (P-coumaric acid)…………………………………………………………100

Fig. 9.7 Electropherograms of turtle jelly samples bought in Hong Kong
supermarket. Peaks: IS: internal standard (P-coumaric acid)………………..101

Fig. 9.8 Electropherograms of turtle jelly samples bought in Shenzhen supermarket. Peaks: IS: internal standard (P-coumaric acid)………………………………101

Fig. 9.9 Electropherograms of RSG (A) and its concentrated extract products (B). Peaks: 1= astilbin; 2= taxifolin; IS: internal standard (P-coumaric acid).103

Fig. 10.1 Representative electropherogram of S01 and molecule structure of identified peak…………………………………………………………..110

Fig. 10.2 UV-spectra of the six biggest peaks in the electropherogram of S01……..110

Fig. 10.3 Extraction optimization. (A) Effect of sonication time; (B) effect of solvent with sonication time of 30 min; (D) effect of sonication times…………..112

Fig. 10.4 Comparison of sonication and refluxing methods with different solvents. (A) methanol as the extract solvent; (B) water as the extract solvent. * Significant different (P<0.05); ** Very significant different (P<0.01)…113

Fig. 10.5 Fingerprints of 18 batches of RSG detected at 214nm………………116

Fig. 10.6 (A) Overlay CE fingerprints of the 18 RSG samples by SES software; (B) Representative standard fingerprint generated by SES software…………117

Fig. 10.7 (A) CE electropherogram of Rhizoma Smilacis Chinae; (B) CE electropherogram of RSG concentrated extract product………………………..120

Fig. 11.1 (A) Chromatogram of S02 (a) and standards (b) under the optimized HPLC separation conditions; peak1: 3-O-caffeoylshikimic acid; peak3: Astilbin; peak4: Taxifolin; peak7: Engeletin; peak9: Resveratrol………………126

Fig. 11.2 Total ion chromatogram of S02…………………………………………..127

Fig. 11.3 Molecular structure of all identified constitutes in RSG………………..129

Fig. 11.4 Chromatogram of multiple reaction monitoring by HPLC-MS/MS. Monitor ion pair: (A) 449/303 (m/z); (B) 433/287 (m/z)………………………………130

Fig. 11.5 Overlay chromatograms of the 18 RSG samples by SES software……133

Fig. 11.6 Standard fingerprint of RSG generated by SES software………………133

Fig. 11.7 (A) Chromatograms of RSC and Rhizoma Heterosmilacis; Peak identification result: peak 1: 3-O-Caffeoylquinic acid; peak 2: 3-O-caffeoylshikimic acid; peak 3: Astilbin; peak4: Taxifolin; peak5: Isoastilbin; peak6: Engeletin; peak7: Isoengeletin; peak8: Resveratrol. (B)
Chromatograms of the three commercial RSG concentrated extract products………………………………………………………………….137

Fig. 12.1 Photos of Smilax Glabra Roxb.; A: Flower; B: Berries; C: processed slice product of its rhizome; D: rhizome……………………………………………………………143

Fig. 12.2 MRM analysis of Shikimic acid. (A) Molecular structure; (B) Product ions (MS²); (C) Result in RSG; (D) Result in RSC……………………………………………………………145

Fig. 12.3 MRM analysis of Syringic acid. (A) Molecular structure; (B) Product ions (MS²); (C) Result in RSG; (D) Result in RSC……………………………………………………………146

Fig. 12.4 MRM analysis of Ferulic acid. (A) Molecular structure; (B) Product ions (MS²); (C) Result in RSG; (D) Result in RSC……………………………………………………………146

Fig. 12.5 MRM analysis of Caffeoylshikimic acid. (A) Molecular structure; (B) Product ions (MS²); (C) Result in RSG; (D) Result in RSC……………………………………………………………147

Fig. 12.6 MRM analysis of Caffeoylquinic acid. (A) Molecular structure; (B) Product ions (MS²); (C) Result in RSG; (D) Result in RSC……………………………………………………………147

Fig. 12.7 MRM analysis of Astilbin and its three stereoisomers. (A) Molecular structure; (B) Product ions (MS²); (C) Result in RSG; (D) Result in RSC. Peak 1: neoastilbin; 2: astilbin; 3: neoisoastilbin; 4: isoastilbin………………………………..148

Fig. 12.8 MRM analysis of Taxifolin. (A) Molecular structure; (B) Product ions (MS²); (C) Result in RSG; (D) Result in RSC. Peak 1: Taxifolin; *Result from astilbin and its stereoisomers……………………………………..148

Fig. 12.9 MRM analysis of Engeletin and its stereoisomer. (A) Molecular structure; (B) Product ions (MS²); (C) Result in RSG; (D) Result in RSC. Peak 1: Engeletin; 2: Isoengeletin……………………………………………………………………………149

Fig. 12.10 Chromatograms of the 4 batch of RSC samples………151

Fig. 13.1 Chromatogram of RSG sample stored at 55 °C with different time. a: 0 day; b: 120 days………156

Fig. 13.2 Peak area of different constitutes versus time of storage at 55 °C…………157

Fig. 13.3 Chromatogram of RSG sample extracted with 40% ethanol by different method. a: Sonication; b: Reflux……157

Fig. 13.4 Peak areas of astilbin and its stereoisomers by different extraction methods and solvents…………………………………………………………………………………………158
Fig. 13.5 Chromatogram of different RSG extracts……………………………….161
Fig. 13.6 CE electropherograms of different extracts. Peaks 1: astilbin; 3: shikimic acid; IS: Internal standard……………………………………………………………..163
Sch. 14.1 Purification procedures of astilbin from RSG…………………………..166
Fig. 14.1 Electropherogram of the crude methanol extract of two different samples. Peak 1: astilbin……………………………………………………………………169
Fig. 14.2 Electropherogram of purified astilbin from different sample under different conditions (100 μg/ml), Peak 1: astilbin………………………………………170
Fig. 14.3 UV spectra of the two peak in the product………………………………170
Fig. 14.4 Calibration curves of different purified astilbin product and astilbin standard…………………………………………………………………………….171
Fig. 14.5 UV-Vis absorption spectrum of purified product in methanol………..173
Fig.14.6 Negative ESI-MS spectrum of purified product…………………………174
Fig.14.7 Proposed fragmentation pattern of astilbin………………………………174
Fig. 14.8 FTIR spectrum of purified product………………………………………..175
Fig. 14.9 Standard FTIR spectrum of astilbin from database……………………175
Fig. 14.10 NMR spectrum of purified product…………………………………….176
Fig. 14.11 NMR spectrum of astilbin from literature……………………………..176
Fig. 14.12 Solubility of astilbin in different pH and temperature…………………177
Fig. 14.13 Color change of astilbin in different pH after one week store………..177
Fig. 14.14 Determination of astilbin in the stored solution by Capillary electrophoresis. Peak 1: astilbin; 2: IS…………………………………………………………179
Fig. 14.15 Stability astilbin in different pH at different temperature……………..180
Fig. 14.16 UV spectrum of astilbin in different pH of phosphate buffer………..180
Fig. 14.17 Dissociation of hydroxyl in astilbin with different pKa……………….181
Fig. 15.1 DPPH radical-scavenging assay of BHA, BHT, astilbin and different extracts of RSG………………………………………………………………………190
Fig. 15.2 ABTS radical-scavenging assay of BHA, BHT, astilbin and different extracts of RSG………………………………………………………………………191
Fig. 15.3 Reducing power assay of BHA, BHT, astilbin and different extracts of RSG……………………………………………………………………………….193
Fig. 15.4 Superoxide radical-scavenging assay of BHA, BHT, astilbin and different extracts of *RSG*………………………………………………………………………194

Fig. 15.5 Antioxidant activity of BHA, BHT, astilbin and different extracts of *RSG* in linoleic acid system……………………………………………………………………195

Fig. 15.6 Cytotoxicity of *t*-BOOH on HepG2 cell measured by LDH leakage after 3 h of incubation. LDH leakage was used as an index of cell viability. *t*-BOOH concentration: (A) 0 mM; (B) 25 mM; (C) 50 mM; (D) 75 mM; (E) 100 mM. F: Percentage of LDH activity in medium versus *t*-BOOH concentration, values are the mean±SD of 3 independent experiments…198

Fig. 15.7 Protective effect of RSG extracts and astilbin against *t*-BOOH-induced oxidative stress on HepG2 cells. HepG2 was treated with 50 mM *t*-BOOH and the note concentration of extracts or atilbin for 3 h. LDH leakage was used as an index of cell viability. Values are the mean±SD of 3 independent experiments. * means significant different (P<0.05) compared with control……199

Fig. 16.1 Molecular structure change of MTT……………………………………………………203

Fig. 16.2 Effect of different RSG extracts and astilbin on the growth of HepG2, Hela and HL-60 cells. Values were expressed as mean ± SD of three independent experiments………………………………………………………………………………………………208

Fig. 16.3 Effect of different RSC extracts, astilbin and chlorogenic acid on the growth of HepG2 cells. Values were expressed as mean ± SD of three independent experiments………………………………………………………………………………………………209

Fig. 16.4 AO/EB staining of HepG2 cells and HL60 cells. A: Control of HepG2; B: HepG2 after drug treatment; C: Control of HL60 cells; D: HL60 cells after drug treatment. Cells were treated with or without 0.4 mg/ml EF of RSG for 24h. Arrows with different letter means: a: live cells; b: early apoptotic cells; c: late apoptotic cells; d: necrosis cells……………………………………………………210

Fig. 16.5 (A) Cell cycle phase distribution and apoptosis of HepG2 cells assayed by flow cytometry after treatment of different concentrations of RSG EF for 24 h. (B) sub-G1 phase (indication of apoptosis), G1 and G2/M phase percentage of HepG2 cells after treatment. Phase percentage was analyzed
Fig. 16.6 (A) Cell cycle phase distribution and apoptosis of HepG2 cells assayed by flow cytometry after treatment of 1mg/ml of RSG EF for different time. (B) sub-G1 phase (indication of apoptosis), G1 and G2/M phase percentage of HepG2 cells after treatment. Phase percentage was analyzed by CellQuest software.

Fig. 16.7 Cell cycle phase distribution and apoptosis of HepG2 cells assayed by flow cytometry after treatment of different concentrations of RSC ME for 24 h.

Fig. 16.8 (A) Cell cycle phase distribution and apoptosis of HepG2 cells assayed by flow cytometry after treatment of 50 μg/ml of RSC ME for different time. (B) sub-G1 phase (indication of apoptosis), G1 and G2/M phase percentage of HepG2 cells after treatment. Phase percentage was analyzed by CellQuest software.