ANAEROBIC BIODEGRADATION
OF POLYCYCLIC AROMATIC
HYDROCARBONS (PAHS) IN THE
SUBSURFACE SEDIMENT OF
MANGROVE WETLAND

LI CHUN-HUA

DOCTOR OF PHILOSOPHY
CITY UNIVERSITY OF HONG KONG
MAY 2010
Anaerobic Biodegradation of Polycyclic Aromatic Hydrocarbons (PAHs) in the Subsurface Sediment of Mangrove Wetland

Submitted to
Department of Biology and Chemistry
in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

by

LI Chun-Hua

May 2010
Abstract

Polycyclic aromatic hydrocarbons (PAHs) released into all environmental compartments through natural or anthropogenic activities are toxic, carcinogenic and mutagenic. Mangrove wetlands, located along the coastline of tropical and subtropical regions and close to human activities, are susceptible to PAH contamination. The anaerobic properties of mangrove sediments, especially their vertical changes, will directly affect the PAH contamination and biodegradation; however, studies in this area are limited. Previous related research was mainly focused on monitoring the temporal and spatial changes of PAH concentrations. The effects of anaerobic biodegradation of PAHs in sediment and some important biologically related factors, such as bacterial population and activity, electron acceptors utilization, and anaerobic gas production, on PAH degradation have seldom reported. The present research therefore aims (1) to study the vertical profiles of PAHs and anaerobic properties of the subsurface sediments in Ma Wan, one of the most contaminated mangrove swamps in Hong Kong; (2) to obtain the PAH-degrading anaerobic bacterial consortia from subsurface mangrove sediments under low oxygen (2±0.3% O\textsubscript{2}) and non-oxygen (0% O\textsubscript{2}) conditions; (3) to evaluate the anaerobic biodegradability of PAHs with the amendment of different electron acceptors, including nitrate, manganese Mn(IV), iron Fe(III), sulfate and carbon dioxide (produced by NaHCO\textsubscript{3}).

The vertical distribution of PAHs at different sediment depths, namely 0-2 cm, 2-4 cm, 4-6 cm, 6-10 cm, 10-15 cm and 15-20 cm, in Ma Wan mangrove swamp was investigated. Results showed that the concentrations of total PAHs (summation of 16...
US EPA priority PAHs) increased with sediment depth. The lowest concentration (about 1300 ng g\(^{-1}\) freeze dried sediment) were found in the surface layer (0-2 cm) while the highest value (around 5000 ng g\(^{-1}\) freeze dried sediment) was in the deeper layer (10-15 cm). The percentage of high molecular weight (HMW) PAHs (4 to 6 rings) to total PAHs was more than 89% at all sediment depths. The ratio of phenanthrene (Phe) to anthracene (Ant) was less than 10 while fluoranthene (Flua) to pyrene (Pyr) was around 1. Negative redox potentials (Eh) were recorded in all sediment samples, ranging from -170 to -200 mv, with a sharp decrease at a depth of 6 cm then declined slowly to 20 cm. These findings suggested that PAHs, particularly HMW ones, in Ma Wan sediment were originated from diesel-powered fishing vessels and were mainly accumulated in deep anaerobic layers. Among the electron acceptors commonly used by anaerobic bacteria, sulfate was the most dominant one, followed by Fe(III), nitrate, and Mn(IV) was the least. Their concentrations also decreased with sediment depth. The population size of total anaerobic heterotrophic bacteria increased with sediment depth, reaching the peak number in the middle layer (4-6 cm). In contrast, the aerobic heterotrophic bacterial count decreased with sediment depth. The vertical drop of the electron transport system (ETS) activity under PAH stress suggested that the indigenous bacteria were still active in the anaerobic sediment layer contaminated with PAHs.

Four PAHs, namely Fluorene (Fl), Phe, Flua and Pyr were selected as the target compounds in the enrichment and biodegradation experiments because of their relatively higher concentrations in Ma Wan mangrove sediment. Fresh sediment sample was mixed with mineral salt medium at a salinity of 25 parts per thousand at a ratio of
1:10 (w/v). The sediment slurry was enriched with the mixed PAHs under low oxygen and non-oxygen conditions, and the respective enrichment periods were 30 and 45 days. After three consecutive enrichment periods under each oxygen condition, two enriched consortia showing satisfactory PAH-degrading ability were obtained. A total of six strains of anaerobic PAH-degrading bacteria were isolated, the three from the low-oxygen condition were *Microbacterium*, *Rhodococcus* and *Sphingomonas*, while only one out of three isolates from the non-oxygen condition was identified and it was a *Sphingomonas* species.

A series of biodegradation studies with the inoculation of the enriched consortium and the amendment of different electron acceptors was performed. Results showed that nitrate and sulfate significantly enhanced PAH-degrading ability, while Fe(III) and NaHCO$_3$ did not have any significant effect; Mn(IV) had significantly adverse effect on the biodegradation of PAHs. Under both low-oxygen and non-oxygen conditions, the treatment groups with the inoculation of the enriched PAH-degrading consortium with the addition of electron acceptor had the highest PAHs biodegradation ability, while the control group (just contained the indigenous bacteria) had the lowest biodegradation ability. The 3-ring PAHs showed higher biodegradation percentages than the 4-ring PAHs, irrespective to the oxygen condition and whether the enriched consortia were inoculated or not. The present study was also proved that the bacteria from mangrove sediments could utilize different electron acceptors in the sediment simultaneously.

In summary, the present research revealed that Ma Wan mangrove swamp was contaminated by anthropogenic PAHs, mainly from nearby fishing vessels operated
with diesel. PAHs, especially those with high molecular weights, were accumulated in deep acidic and anaerobic sediments (>10 cm), with pH levels less than 6.0 and Eh at around -200 mv. Two types of enrichment consortia with PAH-degrading ability were obtained from its subsurface sediment, and the anaerobic PAH-degrading bacteria were first time reported. A modified ETS method was successfully applied to evaluate the bacterial activities under PAH stress. The present study demonstrated that the anaerobic biodegradation of PAHs could be improved by the amendment of different electron acceptors, particularly nitrate and sulfate. The biodegradation course was better understood than previous researches as both biological and chemical parameters were monitored.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declaration</td>
<td>i</td>
</tr>
<tr>
<td>Abstract</td>
<td>ii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>vi</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>viii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xvii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xxiv</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>xxxii</td>
</tr>
</tbody>
</table>

Chapter 1 Introduction

1.1 General Introduction 1

1.2 Aim and Objectives 3

1.3 Layout of the Thesis 4

Chapter 2 Literature Review

2.1 General Property and Toxicity of Polycyclic Aromatic Hydrocarbons 6

2.1.1 Physical and Chemical Properties 6

2.1.2 Formation and Sources of PAHs 7

2.1.3 Environmental Fate of PAHs 11
2.1.4 Toxicity of PAHs 13

2.2 Removal of PAHs 17

2.2.1 Physical/Chemical Methods 17

2.2.2 Bioremediation Methods 18

2.2.2.1 Bioremediation by Microorganisms 20

2.2.2.2 Bioremediation by Plants (Phytoremediation) 25

2.3 PAH Biodegradation by Anaerobic Bacteria 26

2.3.1 Properties of Anaerobic Bacteria 26

2.3.2 Classification of Anaerobic Bacteria 27

2.3.3 Significance of Anaerobic Biodegradation of PAHs 29

2.3.4 Research Progress on Anaerobic Biodegradation of PAHs 30

2.3.4.1 Nitrate-reducing Condition 30

2.3.4.2 Mn(IV)-reducing Condition 35

2.3.4.3 Fe(III)-reducing Condition 37

2.3.4.4 Sulfate-reducing Condition 40

2.3.4.5 Methanogenic Condition 44

2.3.5 Facultative and Micro-aerophilic Anaerobic Biodegradation of PAHs 46

2.3.6 Factors Affecting Anaerobic Biodegradation of PAHs 48

2.3.6.1 Adaptation to PAH Environment 48

2.3.6.2 Bioavailability of PAHs 49

2.3.6.3 Nutrients 50

2.3.6.4 pH, Salinity, Temperature and Redox Potential Factors 50
2.3.6.5 Solid Ratio and Sediment Type 52

2.4 PAH Contamination and Biodegradation in Mangrove Sediment 52

2.4.1 Contamination of PAHs 52

2.4.2 Biodegradation of PAHs 55

2.4.2.1 Aerobic Biodegradation of PAHs 55

2.4.2.2 Anaerobic Biodegradation of PAHs 57

Chapter 3 Vertical Distribution of Polycyclic Aromatic Hydrocarbons in Ma Wan Sediments and Their Anaerobic Biodegradation Potential 58

3.1 Introduction 58

3.2 Materials and Methods 62

3.2.1 Sediment Sampling 62

3.2.2 Analysis of PAHs 63

3.2.2.1 Extraction 63

3.2.2.2 Cleanup 63

3.2.2.3 Gas Chromatography Analysis 64

3.2.2.4 PAH Analysis Quality Control 66

3.2.3 Determination of Electron Acceptors 68

3.2.4 Bacterial Population Sizes and Activity 69

3.2.4.1 Bacterial Population Sizes 69

3.2.4.2 Bacterial Activity under PAH Stress 70
3.2.5 Anaerobic PAH-degrading Potential
3.2.6 Statistical Analysis
3.3 Results
3.3.1 Vertical Distribution of PAHs in Ma Wan Mangrove Sediment
3.3.2 Properties of Ma Wan Mangrove Sediment
3.3.2.1 General Physical and Chemical Properties
3.3.2.2 Electron Acceptor for Anaerobic Respiration
3.3.2.3 Bacterial Population Sizes
3.3.2.4 Bacterial Activity under PAH Stress
3.3.3 Intrinsic Anaerobic PAH-degrading Ability
3.4 Discussion
3.4.1 PAH Contamination in Mangrove Sediment
3.4.2 Dominant Reducing Condition
3.4.3 PAH-degrading Potential under Anaerobic Condition
3.5 Conclusions

Chapter 4 Enrichment of Anaerobic PAH-degrading Bacterial Consortia
from Subsurface Mangrove Sediment

4.1 Introduction
4.2 Materials and Methods
4.2.1 Enrichment of PAH-degrading Bacterial Consortia
4.2.1.1 PAHs Stock Solution
<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.1.2 Mineral Salt Medium (MSM)</td>
</tr>
<tr>
<td>4.2.1.3 Enrichment Process</td>
</tr>
<tr>
<td>4.2.2 Analysis of Residual PAHs in Enrichment Medium</td>
</tr>
<tr>
<td>4.2.3 Bacteria Enumeration</td>
</tr>
<tr>
<td>4.2.4 Isolation and Identification of Bacterial Strains</td>
</tr>
<tr>
<td>4.2.5 Statistical Analysis</td>
</tr>
<tr>
<td>4.3 Results</td>
</tr>
<tr>
<td>4.3.1 PAH Biodegradation during Enrichment</td>
</tr>
<tr>
<td>4.3.2 Bacterial Population Sizes</td>
</tr>
<tr>
<td>4.3.3 Identification of PAH-degrading Bacteria</td>
</tr>
<tr>
<td>4.4 Discussion</td>
</tr>
<tr>
<td>4.4.1 Improvement on PAH-degrading Ability during Enrichment</td>
</tr>
<tr>
<td>4.4.2 Anaerobic PAH-degrading Bacteria Isolated from Mangrove Sediment</td>
</tr>
<tr>
<td>4.5 Conclusions</td>
</tr>
</tbody>
</table>

Chapter 5 Anaerobic Biodegradation of Polycyclic Aromatic Hydrocarbons with Amendment of Nitrate, Fe(III) and Mn(IV) in Mangrove Sediment Slurry

<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Introduction</td>
</tr>
<tr>
<td>5.2 Materials and Methods</td>
</tr>
<tr>
<td>5.2.1 Collection of Sediments</td>
</tr>
<tr>
<td>5.2.2 Preparation of PAH Stock Solution</td>
</tr>
</tbody>
</table>
5.2.3 Preparation of Bacterial Growth Medium 103
5.2.4 Sources of Electron Acceptors 104
5.2.5 PAH Biodegradation Experiment 105
5.2.6 Analytical Methodology 107
5.2.7 Biodegradation Kinetics 109
5.2.8 Statistical Analysis 110

5.3 Results 110
5.3.1 PAH Biodegradation 110
5.3.2 Bacterial Population Sizes 125
5.3.3 Bacterial Activity under PAH Stress 133
5.3.4 Electron Acceptors 135
5.3.4.1 Nitrate Amendment 136
5.3.4.2 Fe(III) Amendment 137
5.3.4.3 Mn(IV) Amendment 138
5.3.5 Anaerobic Gases 147
5.3.6 pH and Eh 152

5.4 Discussion 158
5.4.1 Effect of the Amendment of Electron Acceptors on PAH-degrading Ability 158
5.4.2 Effect of Enrichment PAH-degrading Bacterial Consortia on PAH-degrading Ability 163
5.4.3 Effect of Oxygen on PAH-degrading Ability 164
5.4.4 Proof for Biological Utilization of Fe(III) 164
5.4.5 Concentration of Anaerobic Gases 165
5.4.6 pH and Eh Change 166
5.5 Conclusions 167

Chapter 6 Anaerobic Biodegradation of Polycyclic Aromatic Hydrocarbons with Sulfate and Methanogenic (NaHCO$_3$) Amendment in Mangrove Sediment Slurry

6.1 Introduction 169
6.2 Materials and Methods 172
 6.2.1 Collection of Sediments 172
 6.2.2 Preparation of PAH Stock Solution 172
 6.2.3 Preparation of Bacterial Growth Medium 172
 6.2.4 Sulfate and CO$_2$ Source 172
 6.2.5 PAH Biodegradation Experiment 173
 6.2.6 Analytical Methodology 174
 6.2.7 Biodegradation Kinetics 175
 6.2.8 Statistical Analysis 175
6.3 Results 176
 6.3.1 PAH Biodegradation 176
 6.3.2 Bacterial Population Sizes 181
 6.3.3 Bacterial Activity under PAH Stress 185
Table of contents

6.3.4 Electron Acceptors
 6.3.4.1 Sulfate Amendment
 6.3.4.2 NaHCO$_3$ Amendment
 6.3.5 Anaerobic Gases
 6.3.6 pH and Eh

6.4 Discussion
 6.4.1 Effect of the Amendment of Electron Acceptors on PAH-degrading Ability
 6.4.2 Effect of Enrichment PAH-degrading Bacterial Consortia on PAH-degrading Ability
 6.4.3 pH and Eh change

6.5 Conclusions

Chapter 7 General Discussion and Conclusions

7.1 Vertical Distribution of PAHs in Mangrove Sediments and Their Anaerobic Biodegradation Potential

7.2 Amendment of Electron Acceptors on Anaerobic Biodegradation of PAHs

7.3 Role of Enriched PAH-degrading Bacterial Consortia

7.4 Effect of Oxygen Conditions on PAH-degradation

7.5 Contributions to Our Knowledge

7.6 Limitations of Present Study and Further Researches

7.7 Conclusions
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>References</td>
<td>218</td>
</tr>
<tr>
<td>Appendix: Publications and Awards</td>
<td>257</td>
</tr>
</tbody>
</table>
List of Tables

<table>
<thead>
<tr>
<th>Table 2.1</th>
<th>Physical and chemical properties of individual PAH (ATSDR, 1995)</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.2</td>
<td>Half lives of four PAHs in sediment under aerobic and anaerobic environments (Park et al., 1990; Howard et al., 1991; Wilson and Jones, 1993; MacRae and Hall, 1998)</td>
<td>9</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>The carcinogenicity of 16 PAHs (NAS, 1983; IARC, 1987; USEPA,1993)</td>
<td>16</td>
</tr>
<tr>
<td>Table 2.4</td>
<td>Aerobic bacterial species reported to degrade polycyclic aromatic hydrocarbons (2 to 3 rings) in recent years</td>
<td>22</td>
</tr>
<tr>
<td>Table 2.5</td>
<td>Aerobic bacterial species reported to degrade polycyclic aromatic hydrocarbons (4 rings or more) in recent years</td>
<td>23</td>
</tr>
<tr>
<td>Table 2.6</td>
<td>The redox potential (Eh) and released energy during different electron reaction (pH=7)</td>
<td>29</td>
</tr>
<tr>
<td>Table 2.7</td>
<td>Previous researches on biodegradation of Nap under nitrate-reducing condition</td>
<td>32</td>
</tr>
<tr>
<td>Table 2.8</td>
<td>Previous researches on biodegradation of 3-4 ring PAHs under nitrate-reducing condition</td>
<td>33</td>
</tr>
<tr>
<td>Table 2.9</td>
<td>Previous researches on biodegradation of 5-6 ring and other PAHs under nitrate-reducing condition</td>
<td>34</td>
</tr>
<tr>
<td>Table 2.10</td>
<td>Previous researches on biodegradation of PAHs under Mn(IV) condition</td>
<td>36</td>
</tr>
<tr>
<td>Table 2.11</td>
<td>Previous researches on biodegradation of Nap under Fe(III)-reducing condition</td>
<td>38</td>
</tr>
<tr>
<td>Table 2.12</td>
<td>Previous researches on biodegradation of PAHs other than Nap under Fe(III)-reducing condition</td>
<td>39</td>
</tr>
<tr>
<td>Table 2.13</td>
<td>Previous researches on biodegradation of Nap under sulfate-reducing condition</td>
<td>41</td>
</tr>
<tr>
<td>Table</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>2.14</td>
<td>Previous researches on biodegradation of 3-4 ring PAHs under sulfate-reducing condition</td>
<td>42</td>
</tr>
<tr>
<td>2.15</td>
<td>Previous researches on biodegradation of 5-6 ring and other PAHs under sulfate-reducing condition</td>
<td>43</td>
</tr>
<tr>
<td>2.16</td>
<td>Previous researches on biodegradation of PAHs under methanogenic condition</td>
<td>45</td>
</tr>
<tr>
<td>2.17</td>
<td>Concentrations of total 16 US EPA priority PAHs (ng g⁻¹ d.w.) in mangrove sediment around the world</td>
<td>54</td>
</tr>
<tr>
<td>3.1</td>
<td>Quality control on PAH analysis based on CRM results</td>
<td>67</td>
</tr>
<tr>
<td>3.2</td>
<td>Mean recovery (MR), standard deviation of recovery (s.d.), percentage relative standard deviation (%RSD) and limit of detection (LOD) of 16 PAHs for spiking samples (n=10)</td>
<td>67</td>
</tr>
<tr>
<td>3.3</td>
<td>Concentrations of 16 US EPA priority PAHs (ng g⁻¹ dry wt sediment) at different sediment depths and percentages of HMW PAHs to total PAHs in Ma Wan mangrove sediment (mean and standard deviation of triplicates are shown; different letters at the superscript position within each row indicated that they were significantly different at P≤0.05 according to one-way ANOVA test)</td>
<td>75</td>
</tr>
<tr>
<td>3.4</td>
<td>Salinity, moisture, TOM and percentage of fine sand in different sediment layers (means and standard deviations of triplicates are shown; different letters at the superscript position within each column indicated that they were significantly different at P≤0.05 according to one-way ANOVA test)</td>
<td>76</td>
</tr>
<tr>
<td>4.1</td>
<td>The effects of enrichment period, PAH compound and oxygen condition on biodegradation percentages of PAHs; MANOVA analysis results showing the effects of enrichment period on the biodegradation percentages of four PAHs under low-oxygen and non-oxygen conditions, respectively; two-way ANOVA analysis results showing the effects of PAH compound and oxygen condition on the biodegradation percentages of the four PAHs.</td>
<td>93</td>
</tr>
<tr>
<td>4.2</td>
<td>Anaerobic PAH-degrading bacteria isolated from Ma Wan sediment collected at a depth of 10-15 cm under two oxygen conditions</td>
<td>96</td>
</tr>
</tbody>
</table>
Table 5.1 The biodegradation rates (k, day$^{-1}$) and half-lives ($t_{1/2}$, days) of PAH degradation and r^2 (correlation coefficient) under **low-oxygen condition amended with nitrate** (IB: with indigenous bacteria, IB+N: with indigenous bacteria and nitrate addition, and EB(I)+N: with enriched bacterial consortia (type I) and nitrate addition)

Table 5.2 The biodegradation rates (k, day$^{-1}$) and half-lives ($t_{1/2}$, days) of PAH degradation and r^2 (correlation coefficient) under **non-oxygen condition amended with nitrate** (IB: with indigenous bacteria, IB+N: with indigenous bacteria and nitrate addition, and EB(II)+N: with enriched bacterial consortia (type II) and nitrate addition)

Table 5.3 The biodegradation rates (k, day$^{-1}$) and half-lives ($t_{1/2}$, days) of PAH degradation and r^2 (correlation coefficient) under **low-oxygen condition amended with Fe(III)** (IB: with indigenous bacteria, IB+Fe: with indigenous bacteria and Fe(III) addition, EB(I): with enriched bacteria consortia(type I) addition; and EB(I)+Fe: with enriched bacterial consortia (type I) and Fe(III) addition)

Table 5.4 The biodegradation rates (k, day$^{-1}$) and half-lives ($t_{1/2}$, days) of PAH degradation and r^2 (correlation coefficient) under **non-oxygen condition amended with Fe(III)** (IB: with indigenous bacteria, IB+Fe: with indigenous bacteria and Fe(III) addition, EB(II): with enriched bacteria consortia(type II) addition; and EB(II)+Fe: with enriched bacterial consortia (type II) and Fe(III) addition)

Table 5.5 The biodegradation rates (k, day$^{-1}$) and half-lives ($t_{1/2}$, days) of PAH degradation and r^2 (correlation coefficient) under **low-oxygen condition amended with Mn(IV)** (IB: with indigenous bacteria, IB+Mn: with indigenous bacteria and Mn(IV) addition, EB(I): with enriched bacterial consortia (type I) addition and EB(I)+Mn: with enriched bacterial consortia (type I) and Mn(IV) addition)

Table 5.6 The biodegradation rates (k, day$^{-1}$) and half-lives ($t_{1/2}$, days) of PAH degradation and r^2 (correlation coefficient) under **non-oxygen condition amended with Mn(IV)** (IB: with indigenous bacteria, IB+Mn: with indigenous bacteria and Mn(IV) addition, EB(II): with enriched bacterial consortia (type II)
addition and EB(II)+Mn: with enriched bacterial consortia (type II) and Mn(IV) addition)

Table 5.7 Three-way MANCOVA analysis results showing the effects of nitrate amendment, inoculation of enriched PAH-degrading bacterial consortia and oxygen condition on the biodegradation rate \((k, \text{day}^{-1}) \) of four PAHs, with time as the covariate

Table 5.8 Three-way MANCOVA analysis results showing the effects of Fe(III) amendment, inoculation of enriched PAH-degrading bacterial consortia and oxygen condition on the biodegradation rate \((k, \text{day}^{-1}) \) of four PAHs, with time as the covariate

Table 5.9 Three-way MANCOVA analysis results showing the effects of Mn(IV) amendment, inoculation of enriched PAH-degrading bacterial consortia and oxygen condition on the biodegradation rate \((k, \text{day}^{-1}) \) of four PAHs, with time as the covariate

Table 5.10 Three-way ANCOVA analysis results showing the effects of nitrate amendment, inoculation of enriched PAH-degrading bacterial consortium and oxygen condition on the population sizes of total anaerobic heterotrophic bacteria (THB), nitrate-reducing bacteria (NRB) and PAH-degrading bacteria (PDB), and bacterial activity under PAH stress (ETS), with time as the covariate

Table 5.11 Three-way ANCOVA analysis results showing the effects of Fe(III) amendment, inoculation of enriched PAH-degrading bacterial consortium and oxygen condition on the population sizes of total anaerobic heterotrophic bacteria (THB), Fe-reducing bacteria (FRB) and PAH-degrading bacteria (PDB), and bacterial activity under PAH stress (ETS), with time as the covariate

Table 5.12 Three-way ANCOVA analysis results showing the effects of Mn(IV) amendment, inoculation of enriched PAH-degrading bacterial consortium and oxygen condition on the population sizes of total anaerobic heterotrophic bacteria (THB), Mn(IV)-reducing bacteria (MRB) and PAH-degrading bacteria (PDB), and bacterial activity under PAH stress (ETS), with time as the covariate

Table 5.13 Three-way ANCOVA analysis results showing the effects of nitrate amendment, inoculation of enriched PAH-degrading bacterial consortium and oxygen condition on the concentrations of electron acceptors (nitrate and sulfate) with time as the covariate
Table 5.14 Three-way ANCOVA analysis results showing the effects of Fe(III) amendment, inoculation of enriched PAH-degrading bacterial consortium and oxygen condition on the concentrations of electron acceptors (Fe(III), sulfate and nitrate), with time as the covariate

Table 5.15 Three-way ANCOVA analysis results showing the effects of Mn(IV) amendment, inoculation of enriched PAH-degrading bacterial consortium and oxygen condition on the concentrations of electron acceptors (Mn(IV), Fe(III), nitrate and sulfate) and Mn(II) with time as the covariate

Table 5.16 Three-way ANCOVA analysis results showing the effects of Fe(III) amendment, inoculation of enriched PAH-degrading bacterial consortium and oxygen condition on the concentration of \(\text{CH}_4\) and \(\text{CO}_2\) gases, with time as the covariate

Table 5.17 Three-way ANCOVA analysis results showing the effects of Mn(IV) amendment, inoculation of enriched PAH-degrading bacterial consortium and oxygen condition on the concentration of \(\text{CH}_4\) and \(\text{CO}_2\) gases, with time as the covariate

Table 5.18 Three-way ANCOVA analysis results showing the effects of nitrate amendment, inoculation of enriched PAH-degrading bacterial consortium and oxygen condition on the value of pH and Eh, with time as the covariate

Table 5.19 Three-way ANCOVA analysis results showing the effects of Fe(III) amendment, inoculation of enriched PAH-degrading bacterial consortium and oxygen condition on the value of pH and Eh, with time as the covariate

Table 5.20 Three-way ANCOVA analysis results showing the effects of Mn(IV) amendment, inoculation of enriched PAH-degrading bacterial consortium and oxygen condition on the value of pH and Eh, with time as the covariate

Table 5.21 The percentage decrease (%) in biodegradation rate \((k, \text{ day}^{-1})\) in groups, with the amendment of Mn(IV) under low-oxygen and non-oxygen conditions based on comparison with IB and EB groups (the percentage decrease(%) of \(k_{\text{IB+Mn}}\) based on IB= \((k_{\text{IB+Mn}} - k_{\text{IB}}) / k_{\text{IB}}\) *100; the percentage decrease(%) of \(k_{\text{EB+Mn}}\) based on IB= \((k_{\text{EB+Mn}} - k_{\text{IB}}) / k_{\text{IB}}\) *100; the percentage decrease(%) of \(k_{\text{EB+Mn}}\) based on IB= ...
based on $EB = (k_{EB+M} - k_{EB}) / k_{EB} * 100$

Table 6.1 The biodegradation rates (k, day$^{-1}$) and half-lives ($t_{1/2}$, days) of PAH degradation and r^2 (correlation coefficient) in the experiment amended with sulfate (IB: with indigenous bacteria, IB+S: with indigenous bacteria and sulfate addition, and EB(II) +S: with enriched bacterial consortia (type II) and sulfate addition)

Table 6.2 The biodegradation rates (k, day$^{-1}$) and half-lives ($t_{1/2}$, days) of PAH degradation and r^2 (correlation coefficient) in the experiment amended with NaHCO$_3$ (IB+C: with indigenous bacteria and NaHCO$_3$ addition, EB(II): with enriched bacterial consortia (type II) addition, and EB(II)+C: with enriched bacterial consortia (type II) and NaHCO$_3$ addition)

Table 6.3 Two-way MANCOVA analysis results showing the effects of sulfate amendment and inoculation of enriched PAH-degrading bacterial consortia on the biodegradation rates (k, day$^{-1}$) of biodegradation of four PAHs, with time as the covariate

Table 6.4 Two-way MANCOVA analysis results showing the effects of NaHCO$_3$ amendment and inoculation of enriched PAH-degrading bacterial consortia on the biodegradation rates (k, day$^{-1}$) of biodegradation of four PAHs, with time as the covariate

Table 6.5 Two-way ANCOVA analysis results showing the effects of sulfate amendment, inoculation of enriched PAH-degrading bacterial consortia on the population sizes of total anaerobic heterotrophic bacteria (THB), sulfate-reducing bacteria (SRB) and PAH-degrading bacteria (PDB), and bacterial activity under PAH stress (ETS), with time as the covariate

Table 6.6 Two-way ANCOVA analysis results showing the effects of NaHCO$_3$ amendment, inoculation of enriched PAH-degrading bacterial consortia on the population sizes of total anaerobic heterotrophic bacteria (THB), methanogens and PAH-degrading bacteria (PDB), and bacterial activity under PAH stress (ETS), with time as the covariate

Table 6.7 Two-way ANCOVA analysis results showing the effects of sulfate amendment and inoculation of enriched PAH-degrading bacterial consortia on the concentrations of electron acceptors (nitrate and sulfate) with time as the covariate
Table 6.8 Two-way ANCOVA analysis results showing the effects of NaHCO$_3$ amendment and inoculation of enriched PAH-degrading bacterial consortia on the concentrations of electron acceptors (nitrate and sulfate) with time as the covariate 192

Table 6.9 Two-way ANCOVA analysis results showing the effects of NaHCO$_3$ amendment and inoculation of enriched PAH-degrading bacterial consortia on the residual concentration of CH$_4$ and CO$_2$ gases, with time as the covariate 195

Table 6.10 Two-way ANCOVA analysis results showing the effects of sulfate amendment and inoculation of enriched PAH-degrading bacterial consortium on pH and Eh, with time as the covariate 198

Table 6.11 Two-way ANCOVA analysis results showing the effects of NaHCO$_3$ amendment and inoculation of enriched PAH-degrading bacterial consortium on pH and Eh, with time as the covariate 198

Table 6.12 The improvement percentages (%) in biodegradation rate (day$^{-1}$) comparing with IB group, with the amendment of nitrate and sulfate 199

Table 7.1 Improvements in biodegradation rate (in percentages, %) with the amendment of different electron acceptors under non-oxygen condition based on comparison between IB+EA and IB groups (EA: electron acceptor; negative values indicate the electron acceptor had inhibitory effects on biodegradation) 208

Table 7.2 Comparison of the half lives (day) of PAHs under low-oxygen and non-oxygen conditions with the amendments of electron acceptors 212
List of Figures

Fig. 2.1 Different fate of petrogenic and pyrogenic PAHs in the environment (Lee, 1980; Douben, 2003) 13

Fig. 2.2 Electron free diagram (Zehnder, 1988) 28

Fig. 3.1 The sampling site in Ma Wan mangrove swamp 61

Fig. 3.2 Chromatography of 16 PAHs standards for calibration, with the following elution order: naphthalene (Nap), acenaphylene (Acpy), acenaphthene (Acp), fluorene (Fl), phenanthrene (Phe), anthracene (Ant), fluoranthene (Flua), pyrene (Pyr), m-terphenyl (IS), benz[a]anthracene (BaA), chrysene (Chr), benzo[b]fluoranthene (BbF), benzo[k]fluoranthene (BkF), benzo[a]pyrene (BaP), dibenzo[a,h]anthracene (DA), benzo[g,h,i]perylene (BghiP), and indeno[1,2,3-c,d]pyrene (IP). 65

Fig. 3.3 Vertical distribution of Eh and pH in Ma Wan mangrove sediment (mean and standard deviation of triplicates are shown; the mean having different letters indicated that they were significantly different at $p \leq 0.05$ according to one-way ANOVA test) 74

Fig. 3.4 Vertical distribution of electron acceptors in Ma Wan mangrove sediment (mean and standard deviation of triplicates are shown; the mean having different letters indicated that they were significantly different at $p \leq 0.05$ according to one-way ANOVA test) 78

Fig. 3.5 Vertical distribution of total aerobic and anaerobic heterotrophic bacteria in Ma Wan mangrove sediment (mean and standard deviation of triplicates are shown; the mean having different letters indicated that they were significantly different at $p \leq 0.05$ according to one-way ANOVA test) 79

Fig. 3.6 Vertical distribution of ETS activity in Ma Wan mangrove sediment (mean and standard deviation of triplicates are shown; the mean having different letters indicated that they were significantly different at $p \leq 0.05$ according to one-way ANOVA test) 80

Fig. 3.7 Anaerobic biodegradation by the indigenous bacteria in fresh
subsurface sediment (10-15 cm deep) under low-oxygen and non-oxygen conditions at the end of 50-days biodegradation experiment (mean and standard deviation of triplicates are shown)

Fig. 4.1 Biodegradation percentages of four PAHs under low-oxygen and non-oxygen enrichment conditions (mean and standard deviation of triplicates are shown; the mean having different letters at each enrichment period under each oxygen condition indicated that they were significantly different at p ≤ 0.05 according to two-way ANOVA test)

Fig. 4.2 Bacterial population size during enrichment (mean ± standard deviation, n=3; THB: total anaerobic heterotrophic bacteria; PDB: PAH-degrading bacteria; N.D.: not detected)

Fig. 5.1 PAH biodegradation and the best fit kinetic models under low-oxygen condition amended with nitrate (mean and standard deviation of triplicates are shown; SC: sterile control, IB: with indigenous bacteria, IB+N: with indigenous bacteria and nitrate addition, and EB(I)+N: with enriched bacterial consortia (type I) and nitrate addition; the lines show the best fit kinetic models $C = C_0 e^{-kt}$)

Fig. 5.2 PAH biodegradation and the best fit kinetic models under non-oxygen condition amended with nitrate (mean and standard deviation of triplicates are shown; SC: sterile control, IB: with indigenous bacteria, IB+N: with indigenous bacteria and nitrate addition, and EB(II)+N: with enriched bacterial consortia (type II) and nitrate addition; the lines show the best fit kinetic models $C = C_0 e^{-kt}$)

Fig. 5.3 PAH biodegradation and the best fit kinetic models under low-oxygen condition amended with Fe(III) (mean and standard deviation of triplicates are shown; SC: sterile control, IB: with indigenous bacteria, IB+Fe: with indigenous bacteria and Fe(III) addition, EB(I): with enriched bacterial consortia (type I) addition and EB(I)+Fe: with enriched bacterial consortia (type I) and Fe(III) addition; the lines show the best fit kinetic models $C = C_0 e^{-kt}$)

Fig. 5.4 PAH biodegradation and the best fit kinetic models under non-oxygen condition amended with Fe(III) (mean and standard deviation of triplicates are shown; SC: sterile control, IB: with indigenous bacteria, IB+Fe: with indigenous bacteria and Fe(III)
addition, EB(II): with enriched bacterial consortia (type II) addition and EB(II)+Fe: with enriched bacterial consortia (type II) and Fe(III) addition; the lines show the best fit kinetic models $C = C_0 e^{-kt}$

Fig. 5.5 PAH biodegradation and the best fit kinetic models under **low-oxygen condition amended with Mn(IV)** (mean and standard deviation of triplicates are shown; SC: sterile control, IB: with indigenous bacteria, IB+Mn: with indigenous bacteria and Mn(IV) addition, EB(I): with enriched bacterial consortia (type I) addition and EB(I)+Mn: with enriched bacterial consortia (type I) and Mn(IV) addition; the lines show the best fit kinetic models $C = C_0 e^{-kt}$)

Fig. 5.6 PAH biodegradation and the best fit kinetic models under **non-oxygen condition amended with Mn(IV)** (mean and standard deviation of triplicates are shown; SC: sterile control, IB: with indigenous bacteria, IB+Mn: with indigenous bacteria and Mn(IV) addition, EB(II): with enriched bacterial consortia (type II) addition and EB(II)+Mn: with enriched bacterial consortia (type II) and Mn(IV) addition; the lines show the best fit kinetic models $C = C_0 e^{-kt}$)

Fig. 5.7 Population sizes of THB, NRB and PDB during biodegradation experiment **amended with nitrate** (mean and standard deviation of triplicates are shown; IB: with indigenous bacteria, IB+N: with indigenous bacteria and nitrate addition, and EB(I)+N: with enriched bacterial consortia (type I) and nitrate addition, EB(II)+N: with enriched bacterial consortia (type II) and nitrate addition)

Fig. 5.8 Population sizes of THB, FRB and PDB during biodegradation experiment **amended with Fe(III)** (mean and standard deviation of triplicates are shown; IB: with indigenous bacteria, IB+Fe: with indigenous bacteria and Fe(III) addition, EB(I): with enriched bacterial consortia (type I) addition, EB(II): with enriched bacterial consortia (type II), EB(I)+Fe: with enriched bacterial consortia (type I) and Fe(III) addition, and EB(II)+Fe: with enriched bacterial consortia (type II) and Fe(III) addition)

Fig. 5.9 Population sizes of THB, MRB and PDB during biodegradation experiment **amended with Mn(IV)** (mean and standard deviation of triplicates are shown; IB: with indigenous bacteria, IB+Mn: with indigenous bacteria and Mn(IV) addition, EB(I): with
enriched bacterial consortia (type I) addition, EB(II): with enriched bacterial consortia (type II), EB(I)+Mn: with enriched bacterial consortia (type I) and Mn(IV) addition, and EB(II)+Mn: with enriched bacterial consortia (type II) and Mn(IV) addition)

Fig. 5.10 ETS activities in the slurry during PAH biodegradation experiment amended with nitrate (mean and standard deviation of triplicates are shown; IB: with indigenous bacteria, IB+N: with indigenous bacteria and nitrate addition, and EB(I)+N: with enriched bacterial consortia (type I) and nitrate addition, EB(II)+N: with enriched bacterial consortia (type II) and nitrate addition)

Fig. 5.11 ETS activities in the slurry during PAH biodegradation experiment amended with Fe(III) (mean and standard deviation of triplicates are shown; IB: with indigenous bacteria, IB+Fe(III): with indigenous bacteria and Fe(III) addition, EB(I): with enriched bacterial consortia (type I); EB(II): with enriched bacterial consortia (type II); EB(I)+Fe(III): with enriched bacterial consortia (type I) and Fe(III) addition, and EB(II)+Fe(III): with enriched bacterial consortia (type II) and Fe(III) addition)

Fig. 5.12 ETS activities in the slurry during PAH biodegradation experiment amended with Mn(IV) (mean and standard deviation of triplicates are shown; IB: with indigenous bacteria, IB+Mn: with indigenous bacteria and Mn(IV) addition, EB(I): with enriched bacterial consortia (type I) addition, EB(II): with enriched bacterial consortia (type II), EB(I)+Mn: with enriched bacterial consortia (type I) and Mn(IV) addition, and EB(II)+Mn: with enriched bacterial consortia (type II) and Mn(IV) addition)

Fig. 5.13 Electron acceptor concentrations in the slurry during PAH biodegradation experiment amended with nitrate (mean and standard deviation of triplicates are shown; IB: with indigenous bacteria, IB+N: with indigenous bacteria and nitrate addition; EB(I)+N: with enriched bacterial consortia (type I) and nitrate addition, and EB(II)+N: with enriched bacterial consortia (type II) and nitrate addition)

Fig. 5.14 Concentrations of electron acceptors in the slurry during PAH biodegradation experiment amended with Fe(III) (mean and standard deviation of triplicates are shown; IB: with indigenous bacteria, IB+Fe(III): with indigenous bacteria and Fe(III) addition, EB(I): with enriched bacterial consortia (type I); EB(II): with enriched bacterial consortia (type II); EB(I)+Fe(III): with enriched
bacterial consortia (type I) and Fe(III) addition, and
EB(II)+Fe(III): with enriched bacterial consortia (type II) and
Fe(III) addition)

Fig. 5.15 Mn(IV) and Mn(II) concentrations in the slurry during PAH
biodegradation experiment **amended with Mn(IV)** (mean and
standard deviation of triplicates are shown; IB: with indigenous
bacteria, IB+Mn: with indigenous bacteria and Mn(IV) addition,
EB(I): with enriched bacterial consortia (type I) addition, EB(II):
with enriched bacterial consortia (type II), EB(I)+Mn: with
enriched bacterial consortia (type I) and Mn(IV) addition, addition
and EB(II)+Mn: with enriched bacterial consortia (type II) and
Mn(IV) addition)

Fig. 5.16 Electron acceptor concentrations other than Mn(IV) in the slurry
during PAH biodegradation experiment **amended with Mn(IV)**
(mean and standard deviation of triplicates are shown; IB: with
indigenous bacteria, IB+Mn: with indigenous bacteria and Mn(IV)
addition, EB(I): with enriched bacterial consortia (type I) addition,
EB(II): with enriched bacterial consortia (type II), EB(I)+Mn: with
enriched bacterial consortia (type I) and Mn(IV) addition, addition
and EB(II)+Mn: with enriched bacterial consortia (type II) and
Mn(IV) addition)

Fig. 5.17 CH$_4$ and CO$_2$ concentrations in the headspace of culture flasks
during PAH biodegradation experiment **amended with Fe(III)**
(mean and standard deviation of triplicates are shown; IB: with
indigenous bacteria, IB+Fe(III): with indigenous bacteria and
Fe(III) addition, EB(I): with enriched bacterial consortia (type I);
EB(II): with enriched bacterial consortia (type II); EB(I)+ Fe(III):
with enriched bacterial consortia (type I) and Fe(III) addition, and
EB(II)+ Fe(III): with enriched bacterial consortia (type II) and
Fe(III) addition)

Fig. 5.18 CH$_4$ and CO$_2$ concentrations in the headspace of culture flasks
during PAH biodegradation experiment **amended with Mn(IV)**
(mean and standard deviation of triplicates are shown; IB: with
indigenous bacteria, IB+Mn: with indigenous bacteria and Mn(IV)
addition, EB(I): with enriched bacterial consortia (type I); EB(II):
with enriched bacterial consortia (type II); EB(I)+Mn: with
enriched bacterial consortia (type I) and Mn(IV) addition, and
EB(II)+Mn: with enriched bacterial consortia (type II) and Mn(IV)
addition)
List of Figures

Fig. 5.19 pH and Eh in the slurry during PAH biodegradation experiment *amended with nitrate* (mean and standard deviation of triplicates are shown; IB: with indigenous bacteria, IB+N: with indigenous bacteria and nitrate addition; EB(I)+N: with enriched bacterial consortia (type I) and nitrate addition, and EB(II)+N: with enriched bacterial consortia (type II) and nitrate addition)

Fig. 5.20 pH and Eh in the slurry during PAH biodegradation experiment *amended with Fe(III)* (mean and standard deviation of triplicates are shown; IB: with indigenous bacteria, IB+Fe(III): with indigenous bacteria and Fe(III) addition, EB(I): with enriched bacterial consortia (type I); EB(II): with enriched bacterial consortia (type II); EB(I)+Fe(III): with enriched bacterial consortia (type I) and Fe(III) addition, and EB(II)+Fe(III): with enriched bacterial consortia (type II) and Fe(III) addition)

Fig. 5.21 pH and Eh in the slurry during PAH biodegradation experiment *amended with Mn(IV)* (mean and standard deviation of triplicates are shown; IB: with indigenous bacteria, IB+Mn: with indigenous bacteria and Mn(IV) addition, EB(I): with enriched bacterial consortia (type I); EB(II): with enriched bacterial consortia (type II); EB(I)+Mn: with enriched bacterial consortia (type I) and Mn(IV) addition, and EB(II)+Mn: with enriched bacterial consortia (type II) and Mn(IV) addition)

Fig. 6.1 PAH biodegradation and the best fit kinetic models in the experiment *amended with sulfate* (mean and standard deviation of triplicates are shown; SC: sterile control, IB: with indigenous bacteria, IB+S: with indigenous bacteria and sulfate addition, and EB(II)+S: with enriched bacterial consortia (type II) and sulfate addition; the lines show the best fit kinetic models \(C = C_0 e^{-kt} \))

Fig. 6.2 PAH biodegradation and the best fit kinetic models in the experiment *amended with NaHCO_3* (mean and standard deviation of triplicates are shown; SC: sterile control, IB: with indigenous bacteria, IB+C: with indigenous bacteria and NaHCO_3 addition, EB(II): with enriched bacterial consortia (type II) addition, and EB(II)+C: with enriched bacterial consortia (type II) and NaHCO_3 addition; the lines show the best fit kinetic models \(C = C_0 e^{-kt} \))

Fig. 6.3 Population sizes of THB, SRB and PDB during biodegradation experiment *amended with sulfate* (mean and standard deviation of triplicates are shown, IB: with indigenous bacteria, IB+S: with
Fig. 6.4 Population sizes of THB, methanogens and PDB during biodegradation experiment amended with NaHCO₃ (mean and standard deviation of triplicates are shown, IB: with indigenous bacteria, IB+C: with indigenous bacteria and NaHCO₃ addition, EB(II): with enriched bacterial consortia (type II) addition, and EB(II)+C: with enriched bacterial consortia (type II) and NaHCO₃ addition)

Fig. 6.5 ETS activities in the slurry during PAH biodegradation experiment amended with sulfate (mean and standard deviation of triplicates are shown, IB: with indigenous bacteria, IB+S: with indigenous bacteria and sulfate addition, and EB(II)+S: with enriched bacterial consortia (type II) and sulfate addition)

Fig. 6.6 Bacterial activities of PAH-degrading bacteria during biodegradation experiment amended with NaHCO₃ (mean and standard deviation of triplicates are shown, IB: with indigenous bacteria, IB+C: with indigenous bacteria and NaHCO₃ addition, EB(II): with enriched bacterial consortia (type II) addition, and EB(II)+C: with enriched bacterial consortia (type II) and NaHCO₃ addition)

Fig. 6.7 Electron acceptor concentrations in the slurry during PAH biodegradation experiment amended with sulfate (mean and standard deviation of triplicates are shown; IB: with indigenous bacteria, IB+S: with indigenous bacteria and sulfate addition, and EB(II)+S: with enriched bacterial consortia (type II) and sulfate addition)

Fig. 6.8 Electron acceptor concentrations in the slurry during PAH biodegradation experiment amended with NaHCO₃ (mean and standard deviation of triplicates are shown; IB: with indigenous bacteria, IB+C: with indigenous bacteria and NaHCO₃ addition, EB(II): with enriched bacterial consortia (type II) addition, and EB(II)+C: with enriched bacterial consortia (type II) and NaHCO₃ addition)

Fig. 6.9 CH₄ and CO₂ concentrations during PAH biodegradation experiment amended with NaHCO₃ (mean and standard deviation of triplicates are shown; IB: with indigenous bacteria, IB+C: with indigenous bacteria and NaHCO₃ addition, EB(II):
with enriched bacterial consortia (type II) addition, and EB(II)+C: with enriched bacterial consortia (type II) and NaHCO\textsubscript{3} addition

Fig. 6.10 pH and Eh in the slurry during PAH biodegradation experiment amended with sulfate (mean and standard deviation of triplicates are shown; IB: with indigenous bacteria, IB+S: with indigenous bacteria and sulfate addition, and EB(II)+S: with enriched bacterial consortia (type II) and sulfate addition)

Fig. 6.11 pH and Eh in the slurry during PAH biodegradation experiment amended with NaHCO\textsubscript{3} (mean and standard deviation of triplicates are shown; IB: with indigenous bacteria, IB+C: with indigenous bacteria and NaHCO\textsubscript{3} addition, EB(II): with enriched bacterial consortia (type II) addition, and EB(II)+C: with enriched bacterial consortia (type II) and NaHCO\textsubscript{3} addition)