CITY UNIVERSITY OF HONG KONG

香港城市大學

Syntheses and Studies of Multifunctional Inhibitors for Enzymes in Mevalonate Pathway

甲羥戊酸途徑中酶的多功能抑制劑的合成及研究

Submitted to

Department of Biology and Chemistry

生物及化學系

in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy

哲學博士學位

by

Gao Jinbo

高金波

July 2009

二零零九年七月

Syntheses and Studies of Multifunctional Inhibitors for Enzymes in Mevalonate Pathway

Abstract

The mevalonate pathway is an important biosynthetic pathway, which plays a key role in multiple cellular processes for synthesizing cholesterol, prenylated proteins, isopentenyl tRNA, dolichol, hormones, ubiquinone, heme A, and N-glycosylation. These end-products are vital for diverse cellular processes including cell growth and differentiation, signal transduction pathways, and mitochondrial electron transport. Manipulation of this pathway results in alteration of malignant cell growth and survival in cell culture and animal models, with promising potential interesting therapeutic targets for many other areas of ongoing research, including oncology, autoimmune disorders, atherosclerosis, Alzheimer disease, and cardiovascular disease.

The mevalonate pathway has been exploited in the design of cholesterol-lowering drugs by inhibiting the enzyme HMG-CoA reductase with statin drugs as a means of reducing the risk of cardiovascular disease. Statin is not satisfactory in treatment of cardiovascular disease due to significant side effects, such as headaches, nausea, fever, extreme muscle pain, serious liver problems, and even deaths. Therefore, it is important to design and develop other cholesterol-lowering inhibitors targeting other enzymes instead of HMG-CoA reductase for the inhibition of cholesterol biosynthesis. Several enzymes in mevalonate pathway, such as mevalonate kinase, phosphomevalonate kinase, mevalonate 5-diphosphate decarboxylase, farnesyl pyrophosphate synthase, and squalene synthase, have also been suggested as important regulatory enzymes in the biosynthesis of cholesterol and cell growth and differentiation.

The objective of the present study is to design, synthesize, and study multifunctional inhibitors for simultaneous inactivation of more than one enzyme in the mevalonate pathway, which may block effectively the formation of cholesterol and downstream products and regulate cell growth and differentiation for the treatment of heart disease and cancer. In the present study, various types of potential multifunctional inhibitors based on bisphosphonates were designed and synthesized to inhibit mevalonate kinase, phosphomevalonate kinase, mevalonate 5-diphosphate decarboxylase, and farnesyl pyrophosphate synthase.

The results showed that these compounds exhibited potent inhibition on the four enzymes simultaneously and the IC₅₀ values are at several nanomole to micromole range. One bisphosphonate compound with geranyl and mevalonate group exhibits potent inhibition for rat mevalonate kinase, phosphomevalonate kinase, mevalonate 5-diphosphate decarboxylase, and farnesyl pyrophosphate synthase with IC₅₀ values of 2.7 μM, 4.2 μM, 0.8 μM, and 0.029 μM, respectively. This inhibitor also strongly inactivate the corresponding enzymes from *S. pneumoniae* with low IC₅₀ values of 0.9 μM, 6.5μM, 1.1 μM, and 0.015 μM, respectively. The results show that the bisphosphonate moiety and the mevalonate analogs all make important contribution for the inhibition of the four enzymes. It is usually difficult to inhibit efficiently one enzyme completely with a single inhibitory drug, which potentially result in toxic side effects. The inhibition of more than one enzyme in a metabolic pathway using a combined drug treatment might be more effective than inhibition of only one individual enzyme.

To predict the structure and orientation of the multifunctional inhibitors in the binding cavity of these four enzymes, the binding interactions between small molecule inhibitor and enzyme were also investigated by using the computer molecular docking simulation.

Molecular docking analysis illustrated that these compounds bind to the active site of

the enzyme in a favorable position via hydrogen bonds, metal ions, hydrophobic and van der Waals interactions with the amino acid residues. These results indicated that the active compounds are likely to be competitive inhibitors. Characterization of enzyme kinetics is in good agreement with the predicted binding mode based on simulation study.

Meanwhile, a convenient colorimetric high throughput assay method was developed for the measurement of FPPS activity and inhibitor screening instead of traditional radioactive assay that is inconvenient, expensive, time-consuming, and inaccurate due to product inhibition. This novel sensitive high-throughput screening assay is based on the amount of free phosphate generated in a reaction. The resulting Pi reacted with molybdate to form a colorless Keggin type phosphomolybdate (PMo₁₂MoO₄₀³⁻) complex, which was then reduced to give a phosphomolybdate-blue (PMo₁₂MoO₄₀⁷⁻) complex with absorbance at 830 nm. The sensitivity of this assay method was found to be much higher than that of the traditional radioactive assay method. This FPPS assay method can be used in high-throughput screening procedures for rapid screening of large numbers of compounds under similar test conditions.

The bisphosphonates can induce cancer cell apoptosis by inhibiting enzymes in mevalonate pathway, preventing the generation of isoprenoid moieties and thereby impairing the isoprenylation of small GTP proteins. So the bisphosphonate compounds were also evaluated against cancer cell lines using MTT assay methods with high-throughput screening. Some multifunctional inhibitors also inhibited effectively cancer cell growth and induced apoptosis. One bisphosphonate compound with geranyl and mevalonate group showed a significant anti-proliferative activity on Hela cells with IC $_{50}$ of about 20 μ M. In addition, Hela cancer cells treated with our fluorescent inhibitors were examined by confocal fluorescence microscopy. Many fluorescent particles appear

in both cytoplasm and nucleus. The particle density is higher in the cytoplasm than that in the nucleus, indicating that the fluorescent inhibitors can get into cell although they are highly charged compounds.

In conclusion, a series of multifunctional inhibitors based on bisphosphonate analogs were designed and synthesized, which show potent inhibition for mevalonate kinase, phosphomevalonate kinase, mevalonate 5-diphosphate decarboxylase, and farnesyl pyrophosphate synthase from both rat and *S. pneumoniae*. An efficient colorimetric high-throughput enzyme assay method for FPPS was successfully established, which provided a convenient screening method for inhibitors of FPPS. The confirmation of multi-targeted inhibition and establishment of SAR analysis with concurrent aid of computational simulation helped to unravel the identified multifunctional compounds as a new class of multifunctional enzyme inhibitors. Cell survival assay with new bisphosphonate analogs demonstrated their potential usage for cancer treatment. Therefore, inactivation of these enzymes involved in mevalonate pathway provides an alternative potentially useful method for treating cardiovascular disease, cancer, and bacteria infection.

LIST OF ABBREVIATIONS

ATP Adenosine triphosphate

AD Alzheimer's disease

ADP Adenosine diphosphate

APP Amyloid precursor protein

bHLH Basic helix-loop-helix

ApoB-100 Apolipoprotein B-100

CVD Cardiovascular disease

DMAPP Dimethylallyl diphosphate

eNOS endothelial nitric oxide synthase

FPP Farnesyl pyrophosphate

FPPS Farnesyl pyrophosphate synthase

FTase Farnesyl transferase

FTIs Farnesyl transferase inhibitors

GPP Geranyl pyrophosphate

GGPP Geranylgeranyl pyrophosphate

GGTases Geranylgeranyl transferase

GGTIs Geranyl geranyltransferase inhibitors

HDL High-density lipoprotein

HIV-1 Human immunodeficiency virus 1

HMG-COA 3-Hydroxy-3-methylglutaryl-coenzyme

IPP Isopentenyl diphosphate

IPTG Isopropyl-beta-D-thiogalactopyranoside

KM Michaelis-Menten Constant

LBMD Low bone mineral density

LDL Low-density lipoprotein

MDD Mevalonate 5-diphosphate decarboxylase

MVA Mevalonate, or mevalonic acid

MVAP Mevalonate 5-phosphate

MVAPP Mevalonate 5-diphosphate

MVK Mevalonate kinase

(3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl-

MTT

tetrazolium bromide

NADH (reduced) Nicotinamide adenine dinucleotide

N-BPs Nitrogen-containing bisphosphonates

NMR Nuclear magnetic resonance

PCR Polymerase chain reaction

PDB Protein data bank (http://www.rcsb.org/pdb/)

PKB Protein kinase B

PMK Phosphomevalonate kinase

PSQPP Presqualene diphosphate

Sodium dodecyl sulfate polyacrylamide gel

SDS-PAGE

electrophoresis

SMCs Smooth muscle cells

SREBPs Sterol regulatory element binding proteins

Streptococcus pneumoniae

THF Tetrahydrofuran

THP Tetrahydropyranoxy group

TG Triglyceride

TLC Thin layer chromatography

VLDL Very low density lipoproteins

LIST OF FIGURES, SCHEMES AND TABLES

Figure 1.1	The mevalonate pathway and the targets of inhibitors	2
Figure 1.2	Structures of end products of the mevalonate pathway	3
Figure 1.3	The mevalonate pathway: diseases and drugs	7
Figure 1.4	Detail Pathway of cholesterol biosynthesis	12
Figure 1.5	Cholesterol products	14
Figure 1.6	The structure and classification of the lipoproteins particles	16
Figure 1.7	Endogenously, exogenous and the transport pathways of cholesterol	17
Figure 1.8	Sterol regulatory element binding protein regulation of cholesterol metabolism	21
Figure 1.9	Diagram summarizing the membrane organization of lipid rafts and caveolae	24
Figure 1.10	Schematic of the life history of an atheroma	33
Figure 1.11	Stages in the development of atherosclerotic plaques	35
Figure1.12	Aggregation of the amyloid β -peptide and subsequent plaque formation in Alzheimer's disease	38
Figure 1.13	The relationship of Cav-1 and caveolae to tumour initiation and progression	40
Figure 1.14	Role of lipid rafts in fusion of human immunodeficiency virus 1to CD4 ⁺ T cells.	42
Figure 1.15	An overview of CAAX-protein processing	46
Figure 1.16	Distribution of drug targets	48
Figure 1.17	The reaction catalyzed by HMG-CoA reductase in mevalonate pathway	50
Figure 1.18	Statin inhibitors and the HMG-CoA reductase substrate	51
Figure 1.19	Ribbon diagram of the <i>P. mevalonii</i> HMG-CoA reductase	52

Figure 1.20	Statin interactions mimic substrate binding in Pseudomonas mevalonii HMG-CoA reductase	53
Figure 1.21	Ribbon diagrams of human HMG-CoA reductase	55
Figure 1.22	Statins exploit the conformational flexibility of human HMG-CoA reductase	56
Figure 1.23	The pleiotropic effects of the statins	58
Figure 1.24	The reaction catalyzed by MVK	60
Figure 1.25	The inhibitors of MVK	61
Figure 1.26	The structures of <i>Leishmania major</i> , rat, and human MVK	62
Figure 1.27	Stereodiagram of the vicinity of the ligand binding site in rat MVK	64
Figure 1.28	A schematic of the proposed catalytic mechanism of mevalonate kinase	65
Figure 1.29	The reaction catalyzed by PMK	66
Figure 1.30	RIBBONS drawing of <i>S. pneumoniae</i> phosphomevalonate kinase	68
Figure 1.31	Stereo ribbon representation of human PMK	69
Figure 1.32	The inhibitors of PMK	70
Figure 1.33	The reaction catalyzed by MDD	71
Figure 1.34	Ribbon drawings of yeast MDD	72
Figure 1.35	The architecture of TbMDD and SaMDD	73
Figure 1.36	A mechanism for TbMDD and the chemical structures of compounds	74
Figure 1.37	Human MDD structure and models of substrate complexes	75
Figure 1.38	The inhibitors of MDD	77
Figure 1.42	The reaction catalyzed by FPPS in mevalonate pathway	80
Figure 1.40	The inhibitors of FPPS	81
Figure 1.41	X-ray crystallographic results for minodronate/FPPS	83
Figure 1.42	Structure of human farnesyl pyrophosphate synthase	85

Figure 1.43	Illustration for the high in vivo efficacy of FPPS inhibition by N-BPs	86
Figure 1.44	Stereo illustration of the FPPS carbocation-binding site	87
Figure 1.45	The objective of our research	94
Figure 1.46	The planned synthetic multifunctional enzyme inhibitors	95
Figure 1.47	Study strategies and methods of the multifunctional enzyme inhibitors	96
Figure 2.1	SDS-PAGE analyses of rat and <i>Stp</i> MVK, PMK, MDD, FPPS	115
Figure 2.2	A spectrophotometric assay method for monitoring the MVK, PMK, and MDD activity	119
Figure 2.3	Strategies for assaying FPPS activity through determination of PPi or Pi concentration	121
Figure 2.4	Absorbance spectra of the complexes	122
Figure 2.5	UV-Vis absorbance spectra and calibration curves	124
Figure 2.6	Absorbance spectra of Pi-molybdate complex formed in the presence of IPP	125
Figure 2.7	Absorbance spectra of Pi-molybdate complex formed in the presence of DMAPP	126
Figure 2.8	Colorimetric high throughput screening assay method for FPPS inhibitors	127
Figure 2.9	UV-Vis absorbance spectra of different concentration of inhibitors for FPPS	129
Figure 2.10	The color change of the assay system	129
Figure 2.11	MTT assay method for cell viability and proliferation	136
Figure 2.12	Competitive inhibition of compound 83 against Stp MVK	143
Figure 2.13	Compound 83 is uncompetitive with MVA against <i>Stp</i> MVK	144
Figure 2.14	Inhibition of Stp PMK by compound 55	145
Figure 2.15	Compound 55 is competitive with ATP against Stp PMK	146
Figure 2.16	Competitive inhibition of compound 55 against <i>Stp</i> PMK	147

Figure 2.17	Inhibition of <i>Stp</i> MDD by compound 55	148
Figure 2.18	Competitive inhibition of compound 55 against Stp MDD	149
Figure 2.19	Competitive inhibition of compound 55 against Stp MDD	150
Figure 2.20	Protein structure of angiotensin converting <i>Stp</i> MVK and PMK	151
Figure 2.21	The binding modes of the compounds to <i>Stp</i> MVK and PMK predicted	153
Figure 2.22	Scatter plots of experimental IC ₅₀ versus predicted docking energies for <i>Stp</i> MVK	156
Figure 2.23	Scatter Plots of experimental IC ₅₀ versus predicted docking energies for <i>Stp</i> PMK	156
Figure 2.24	Docking of compounds 16 and 43 into the StpMVK	159
Figure 2.25	Docking of compounds 55 and 56 into the StpMVK	161
Figure 2.26	Docking of compounds 64 and 65 into the StpMVK	162
Figure 2.27	Docking of compounds 83 and 84 into the StpMVK	163
Figure 2.28	Docking of compounds 83 into the <i>Stp</i> PMK with the best docked conformation	164
Figure 2.29	Various interactions of compound 83 with StpMVK	166
Figure 2.30	Various interactions of compound 84 with StpMVK	167
Figure 2.31	Various interactions of compound 83 with StpPMK	168
Figure 2.32	Various interactions of compound 84 with StpPMK	169
Figure 2.33	The alignment structures of the compounds with compound 83 as the template	171
Figure 2.34	The features of the compounds superimposed on the structure of an active compound 83	173
Figure 2.35	Compound 44 is competitive with ATP against rat MVK	178
Figure 2.36	Compound 44 is uncompetitive with MVA against rat MVK	179
Figure 2.37	Compound 84 is competitive with ATP against rat MVK.	180
Figure 2.38	Compound 84 is uncompetitive with MVA against rat	181

Figure 2.39	Compound 84 is competitive with ATP against rat PMK	182
Figure 2.40	Competitive inhibition of compound 84 against rat MDD	183
Figure 2.41	Compound 84 is competitive inhibition of rat MDD with ATP.	184
Figure 2.42	Competitive inhibition of compound 84 against rat MDD with MVAPP	185
Figure 2.43	Compound 55 is competitive inhibition of rat MDD with ATP.	186
Figure 2.44	Competitive inhibition of compound 55 against rat MDD	187
Figure 2.45	The binding modes of the compounds 83 and 84 to rat MVK, PMK, MDD, and FPPS	194
Figure 2.46	The binding modes of the compounds 64 and 65 to rat MVK, PMK, MDD, and FPPS	195
Figure 2.47	Various interactions of compound 83 with rat MVK	197
Figure 2.47	Various interactions of compound 84 with rat MVK	198
Figure 2.49	Various interactions of compound 83 with human PMK	199
Figure 2.50	Various interactions of compound 84 with human PMK	200
Figure 2.51	Various interactions of compound 83 with human MDD	201
Figure 2.52	Various interactions of compound 84 with human MDD	202
Figure 2.53	Various interactions of compound 83 with human FPPS	203
Figure 2.54	Various interactions of compound 84 with human FPPS	204
Figure 2.55	The binding modes of the bisphosphonate to rat MVK, PMK, MDD, and FPPS	207
Figure 2.56	Scatter plots of experimental IC_{50} versus MVD predicted binding energies of rat MVK	210
Figure 2.57	Scatter plots of experimental IC ₅₀ versus MVD predicted binding energies of rat PMK	210
Figure 2.58	Scatter plots of experimental IC ₅₀ versus MVD predicted binding energies of rat MDD	211
Figure 2.59	Scatter plots of experimental IC ₅₀ versus MVD predicted binding energies of rat FPPS	211

Figure 2.60	Stereoview of aligned compounds with compound 83 as the template	213
Figure 2.61	The features of the compounds superimposed on the structure of an active compound 84 .	215
Figure 2.62	Bisphosphonate analogues 83 and 84 inhibit the growth of Hela cancer cells	221
Figure 2.63	Bisphosphonate analogues inhibit the growth of Hela cancer cells	222
Figure 2.64	Effects of compound 84 on cell viability of Hela cancer cell line	223
Figure 2.65	Uptake of bisphosphonate analogue 83 by human Hela cells	225
Figure 2.66	Uptake of bisphosphonate analogue 84 by human Hela cells	226
Figure 2.67	Uptake of bisphosphonate analogue 84 by human Hela cells	227
Scheme 2.1	Structure of type I with P-C(R_1) R_2 -P and type II with R_1 -P-C(H) R_2 -P	98
Scheme 2.2	Synthetic process and structures of the type I inhibitors	100
Scheme 2.3	Synthetic process and structures of the type II inhibitors	103
Scheme 2.4	Synthetic pathway for fluorinated phosphomevalonate analogues	104
Scheme 2.5	Synthetic pathway for blue fluorescent pyrophosphate analogue	106
Scheme 2.6	Synthetic pathway for blue fluorescent multifunctional enzyme inhibitors	108
Scheme 2.7	Synthesis of coumarin type red fluorescent bisphosphonate inhibitor	110
Scheme 2.8	Syntheses of substrates for MVK, PMK, MDD and FPPS	112
Scheme 2.9	Rat and <i>S. pneumoniae</i> gene expression and purification process of MVK, PMK, MDD and FPPS	114
Scheme 2.10	The binding orientation of small molecule drug to the protein targets	132

Table 1.1	Cholesterol and sphingolipid binding proteins and their putative functions	25
Table 1.2	Diseases for which rafts and raft proteins are targets	28
Table 1.3	Genetic and environmental factors associated with atherosclerosis and coronary heart disease	30
Table 1.4	Enzyme inhibitors applied clinically in mevalonate pathway	49
Table 2.1	Kinetic date for inhibition of FPPS	130
Table 2.2	Experimental results for bisphosphonate inhibition of <i>Stp</i> MVK, PMK, MDD, and FPPS	141
Table 2.3	Predicted binding energies and hydrogen bonds results for bisphosphonate against <i>Stp</i> MVK and PMK	154
Table 2.4	Similarity scores and the contributions of steric, H-bond donor and acceptor, negative charge, and ring of these compounds	172
Table 2.5	Experimental results for bisphosphonate inhibition of rat MVK, PMK, MDD, and FPPS	176
Table 2.6	Predicted binding energies results for bisphosphonate against rat MVK, PMK, MDD, and FPPS	208
Table 2.7	Similarity scores and the contributions of steric, H-bond donor and acceptor, negative charge, and ring of these compounds compared with compound 84	214
Table 2.8	The IC ₅₀ values for all bisphosphonates against human Hela cell line.	219

TABLE OF CONTENTS

Declaration	İ
Abstract	ii
Thesis acceptance form	vi
Acknowledgement	vii
List of abbreviations	ix
List of figures, schemes and tables	xi
List of publications	xviii
Table of contents	xix
Chapter 1 Introduction	1
1.1 The mevalonate pathway	1
1.2 Therapeutic target in mevalonate pathway	5
1.3 Cholesterol, lipid rafts, and diseases	9
1.3.1 Sources of cellular cholesterol	9
1.3.1.1 The cholesterol biosynthetic pathway	10
1.3.1.2 Dietary cholesterol: The LDL receptor pathway	14
1.3.2 Regulation of cholesterol biosynthesis	18
1.3.3 Lipid rafts and caveolae	22
1.3.4 Cholesterol and lipid rafts related diseases	26
1.3.4.1 Atherosclerosis and cardiovascular disease	28
1.3.4.2 Alzheimer disease	37
1.3.4.3 Cancer	39
1.3.4.4 Viral infection	41

1.4. Protein prenylation and cancer	45
1.5 Enzymes and inhibitors in mevalonate pathway.	48
1.5.1 Inhibition of HMG-CoA reductase: Statins	50
1.5.2 Mevalonate kinase and inhibitors	59
1.5.3 Phosphomevalonate kinase and inhibitors	66
1.5.4 Mevalonate pyrophosphate decarboxylase and inhibitors	71
1.5.5 Inhibition of farnesyl pyrophosphate synthase: Bisphosphonates	78
1.6 Summary and prospects of the mevalonate pathway	89
1.7 Objective of study	93
Chapter 2 Results and Discussion	97
2.1 Syntheses of multifunctional enzyme inhibitors	97
2.1.1 Syntheses and characterization of type I inhibitors	99
2.1.2 Syntheses and characterization of type II inhibitors	101
2.1.3 Syntheses of fluorinated phosphomevalonate analogues	104
2.1.4 Syntheses of fluorescent multifunctional enzyme inhibitors	105
2.1.4.1 Syntheses of blue fluorescent bisphosphonate inhibitors	105
2.1.4.2 Syntheses of red fluorescent bisphosphonate inhibitor	109
2.2 Syntheses of substrates for MVK, PMK, MDD, and FPPS	111
2.3 Expression and purification of MVK, PMK, MDD and FPPS	113
2.4 Assay methods of MVK, PMK, MDD, and FPPS	116
2.4.1 Assay method of ATP-dependent enzymes MVK, PMK, and MDD	118
2.4.2 Development of Colorimetric FPPS Assay Method	119
2.5 Computational molecular docking	132
2.6 Cell Viability Assay	135
2.7 Interaction study with multifunctional hisphosphonate inhibitors. Stn	137

	2.8 Interaction study with multifunctional bisphosphonate inhibitors-Rat	175
	2.8.1 Bisphosphonates against rat MVK, PMK, MDD, and FPPS	175
	2.8.2 3D-QSAR investigations	191
	2.9 Study of human Hela cell with multifunctional inhibitors	217
	2.10. Conclusions	229
Cha	apter 3 Materials and Methods	230
	General Procedures.	230
	3.1 Organic syntheses of multifunctional inhibitors	231
	3.1.1 Syntheses of type I inhibitors with P-C(R_1) R_2 -P.	231
	3.1.2 Syntheses of type II inhibitors with P-C(R_1) R_2 -P.	236
	3.1.3 Syntheses of fluorinated phosphomevalonate analogues	246
	3.1.4 Syntheses of blue fluorescent multifunctional enzyme inhibitors	249
	3.1.5 Syntheses of red fluorescent multifunctional enzyme inhibitors	255
	3.2 Substrates syntheses of MVK, PMK, MDD, and FPPS	258
	3.3 Expression and purification of MVK, PMK, MDD and FPPS	263
	3.3.1 rat and <i>S. pneumonia</i> mevalonate kinase	263
	3.3.2 rat and <i>S. pneumonia</i> phosphomevalonate kinase	264
	3.3.3 rat and <i>S. pneumonia</i> mevalonate 5-pyrophosphate decarboxylase	264
	3.3.4 rat and S. pneumonia farnesyl pyrophosphate synthase	265
	3.4. Enzymatic studies	265
	3.4.1. Determination of IC ₅₀ of mevalonate kinase	265
	3.4.2. Kinetic constant (K _i) of MVK with respect to ATP	265
	3.4.3. Kinetic constant (K _i) of MVK with respect to MVA	266
	3.4.4. Determination of IC ₅₀ of phosphomevalonate kinase	266
	3.4.5. Kinetic constant (K _i) of PMK with respect to ATP	267

3.4.6. Kinetic constant (K _i) of PMK with respect to MVAP	267
3.4.7. Determination of IC ₅₀ of MDD	268
3.4.8. Kinetic constant (K _i) of MDD with respect to ATP	268
3.4.9. Kinetic constant (K _i) of MDD with respect to MVAPP	269
3.4.10. Determination of IC ₅₀ of farnesyl pyrophosphate synthase	269
3.5 Molecular Docking	270
3.6 Hela Cell Culture	270
3.7 Cell Growth Inhibition Assays	270
References	272