ENVIRONMENTAL CONCENTRATIONS, TOXICOLOGY, AND DEVELOPMENT OF NEW METHODS FOR EXTRACTION AND MASS BALANCE ANALYSIS OF PERFLUORINATED COMPOUNDS IN ENVIRONMENTAL SAMPLES

YEUNG WAI YIN, LEO

DOCTOR OF PHILOSOPHY
CITY UNIVERSITY OF HONG KONG
AUGUST 2009
CITY UNIVERSITY OF HONG KONG
香港城市大學

ENVIRONMENTAL CONCENTRATIONS, TOXICOLOGY, AND DEVELOPMENT OF NEW METHODS FOR EXTRACTION AND MASS BALANCE ANALYSIS OF PERFLUORINATED COMPOUNDS IN ENVIRONMENTAL SAMPLES
環境樣品中有機全氟化物的濃度、毒性、新提取方法以及物質平衡分析的研究

SUBMITTED TO
DEPARTMENT OF BIOLOGY AND CHEMISTRY
生物及化學系
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
哲學博士學位

by

YEUNG WAI YIN, LEO
楊偉賢

AUGUST 2009
二零零九年八月
ABSTRACT

Polyfluorinated and perfluorinated compounds (PFCs) are emerging chemicals of concern. They are widely used in a variety of consumer goods and industrial products because of their unique physico-chemical properties. Concern about fluorinated organic compounds, particularly the fully fluorinated PFCs, has been growing since the late 1990’s because of their ubiquitous occurrence in the environment. Perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) are representative and commonly occurring PFCs.

The aims of the present PhD research project are to extend the current knowledge of PFC distribution in developing countries (i.e. India and South China), as well as to develop a new concept for understanding and explaining PFC pollution patterns by demonstrating the presence of unidentified organic fluorine-containing compounds in environmental samples other than PFCs. As part of this work, a new extraction method using acetonitrile (ACN) and solid phase extraction (SPE) and an ion exchange column to separate possible interferences from target PFCs was developed to improve PFC detection. The final goal of the project was to investigate the toxicity of several PFCs using laboratory studies.

Two monitoring studies were conducted in South China and India. For the first one, concentrations and profiles of PFCs were investigated in surface waters (rivers, lakes, coastal seas and untreated sewage; n=42) including Ganges River water, and biota such as shrimp (n=2), fish (n=28), and the Ganges River dolphin (*Platanista gangetica*; n=15) in India. PFOS was the dominant PFC found in most of the samples analyzed including water samples, with the exception of untreated sewage (water: <0.04-3.91 ng/L; biota: 0.248-27.9 ng/g wet weight (ww)) in India. Long-chain (C11-C18) perfluorocarboxylates (PFCAs) were not detected in the water samples (<0.2 ng/L), although perfluorodecanoate (PFDA) (0.061-0.923 ng/g ww) and perfluoroundecanoate (PFUnDA) (0.072-0.998 ng/g ww) were found in biological samples. Overall, concentrations of PFCs in water and biological samples from India were lower than the concentrations reported for other countries so far. PFC profiles in Indian waters were dominated by PFOS, followed by PFOA, which differ from the pattern reported for other countries such as Korea, Japan and USA, where PFOA was the predominant compound in water samples.

The second study measured the concentrations of 10 PFCs (PFOS, perfluorohexane sulfonate (PFHxS), perfluorooctanesulfonamide (PFOSA), N-ethyl perfluorooctanesulfonamide (N-EtFOSA), N-ethyl perfluorooctanesulfonamidoacetate (N-EtFOSAA), perfluorododecanoate (PFDoDA), PFUnDA, PFDA, perfluorononanoate
(PFNA), PFOA, and perfluoroheptanoate (PFHpA)) in liver samples of Indo-Pacific humpback dolphins (*Sousa chinensis*; n=10) and finless porpoises (*Neophocaena phocaenoides*; n=10) stranded in Hong Kong, South China, between 2003 and 2007. PFOS was found to be the dominant PFC in dolphin and porpoise tissues at concentrations ranging from 26-693 ng/g ww in dolphins and 51.3-262 ng/g ww in porpoises. The PFOS concentrations in liver samples were comparable to those reported in other studies on marine mammals. PFC composition profiles were similar between dolphins and porpoises: PFOS (75-83% of total PFCs), PFUnDA (10%), PFDA (3%) and PFNA (2%). In contrast, PFOSA contributed 5% of total PFCs in dolphin liver samples, whereas PFOSA only accounted for around 1% in porpoise liver samples, possibly due to different habitats and dietary habits between the two species. No significant correlations were found between PFC concentrations and other persistent environmental pollutants, namely total polybrominated diphenyl ethers (PBDEs) (and individual PBDE congeners) and total polychlorinated biphenyls (PCBs), in the dolphin and porpoise samples. These results imply that the sources and the exposure pathways of PCBs/PBDEs and PFCs are likely to be different.

Mass balance analysis was conducted by measuring total fluorine (TF) and extractable organic fluorine (EOF) in several types of environmental samples by combustion ion chromatography for fluorine. Human blood (n=30) from 6 cities in China was analyzed for TF analyses. Analysis of known PFCs and EOF showed that known PFCs accounted for >70% of EOF in Chinese human blood samples from Beijing, Shenyang and Guiyang, whereas known PFCs only accounted for around 30% of EOF in samples from Jintan. In wild animals, measurement of known PFCs and EOF in the marine mammal from South China (i.e. Indo-Pacific humpback dolphin and finless porpoise) livers showed that a large proportion (~70%) of the organic fluorine in both species is of unknown origin. Wild rat blood was also used to further demonstrate the presence of unidentified organic fluorine-containing compounds in terrestrial wild animals. The contribution of known PFCs to EOF varied from 9 to 89% (mean: 56%), suggesting that wild animals are exposed to a wider range of PFCs than humans. These investigations are critical for a comprehensive assessment of the risks of these compounds to humans and other receptors. Characterization and identification of these unidentified fluorinated compounds will be also instructive in terms of human and environmental risk assessment.
Limitations of the currently used PFC-extraction method and the observation that unidentified organic fluorine-containing compounds were present in environmental samples led to the development of a better extraction method for PFCs in biota samples. A method using ACN extraction with SPE cleanup was developed which can be used to measure more than 28 perfluorinated compounds (perfluoroalkyl sulfonates: C4, C6, C8, C10; perfluoroalkyl sulfinites: C6, C8, C10; PFOSA, N-EtFOSA, N-EtFOSAA, perfluorocarboxylates: C4-C14; fluorotelomer carboxylates: 7:3, 8:2) in whole blood with recoveries ranging from 70-120%. This new method can extract and quantify more individual PFCs in whole blood samples than the concurrent ion pairing extraction method. As part of this method, separation of possible interferences such as taurodeoxycholic acid was accomplished using an ion exchange JJ50-2D column.

In this project, toxicological and toxicokinetic parts are given to chickens because many other studies focused on mammalian species such as rats and monkeys. Health risk is also importance to avian species, however, these sources of information are limited. Two studies were conducted to extend the knowledge of possible health effects on chickens. These studies looked into the gene expression patterns and toxicokinetics of PFCs in domestic chickens (Gallus gallus) exposed in the laboratory. The effects of PFOS and PFOA on the gene expression patterns of chickens that were exposed to either compound at low doses were investigated with the use of microarray techniques. Twelve Genechip Chicken Genome Arrays were used to study hepatic gene expression in six-week-old chickens that were exposed to either PFOA (0.1, 0.5, or 5 mg/mL), PFOS (0.02 or 0.1 mg/mL), or a saline vehicle control (0.9% NaCl in Milli-Q water) via subcutaneous implantation of a 2 mL osmotic pump for four weeks or for four weeks with a further four weeks of depuration. The genes that were affected after four weeks of PFOS exposure were mainly related to the transport of electrons and oxygen and the metabolism of lipids and fatty acids, while the genes that were affected after four weeks of exposure with a further four weeks of depuration were mainly related to the transport of electrons and ions, and protein amino acid phosphorylation and proteolysis. The genes that were affected after four weeks of PFOA exposure were related to the transport of ions, lipids, and electrons and cytochromes, while the genes that were affected after four weeks of exposure with a further four weeks of depuration were related to protein amino acid phosphorylation and proteolysis, the transport of ions, and the metabolism of fatty acids and lipids. The results also showed that the gene expression patterns between chickens that were treated with PFOS and those that were
treated with PFOA were different, which points to the importance of the separate evaluation of the toxicities of PFOS and PFOA.

The other toxicity study examined the effects of exposure of one-day-old male chicks to mixtures of PFOS, PFOA, and PFDA at either a low dose (0.1 mg/kg body weight (bw)) or a high dose (1.0 mg/kg bw), or a saline/ethanol vehicle control via oral gavage thrice a week for three weeks. After three weeks of exposure, half of the chicks were sacrificed and the other half were allowed to depurate for a further three weeks. No dose-dependent statistically significant differences in body/organ weights were observed among treatment and control groups after three weeks of exposure or after three weeks of depuration. Neither 15 histological nor 14 plasma biochemical parameters were significantly different in chicks from the exposed groups and vehicle controls. PFOS and PFDA accumulated at much higher concentrations than PFOA in blood/liver/kidney during the experimental periods. The half-lives for each PFC at the 0.1 mg/kg and 1.0 mg/kg doses were, respectively, approximately 15 and 17 days for PFOS, 11 and 16 days for PFDA, and 3.9 and 3.9 days for PFOA. These results indicated that exposure to 1.0 mg mixture of PFOS/PFDA/PFOA/kg bw has no adverse effects on the endpoints measured in juvenile chickens.

Future research directions are given at the end of this thesis. In the present project, only PFCAs and PFASs were evaluated in different environmental matrices. PFCs (C2-C3) could be detected as high as PFOS or PFOA in environmental samples, however, the recoveries were less than 10%. Effort should be made to development methods to determine these PFCs in the environmental samples. In addition, other precursors like FTOHs, FOSAs, FOSEs, and other new PFCs like PAPs are getting much attention because they are thought to be degraded to PFCAs or PFASs. Tracing these precursors can identify whether these chemicals are major sources of these PFCAs or PFASs. Biomagnifications of PFCs had been evaluated in aquatic food web, however, biomagnifications of EOF and the patterns of EOF and known PFCs should be carried out to have a broader analysis of the accumulation and transfer of fluorine compounds in the environment. The characterization of this unknown organic fluorine should be conducted.
TABLE OF CONTENTS

Abstract i
Preface v
List of publications arising from the present research study vii
List of awards arising from the present research study ix
Acknowledgements x
Table of Contents xiii
List of Figures xvii
List of Tables xix
List of abbreviations xxi
Chapter 1. General Introduction 1
Chapter 2. Literature Review 6
 2.1 General information of perfluorinated compounds (PFCs) 6
 2.1.1 Perfluorinated compounds (PFCs) 6
 2.1.2 Production of PFCs 9
 2.1.3 Chemical identity 9
 2.1.3.1 PFOS 9
 2.1.3.2 PFOA 10
 2.2 Environmental concentrations 12
 2.2.1 Environmental concentrations in China 13
 2.2.1.1 Water 13
 2.2.1.2 Biota 14
 2.2.1.3 Human exposure 15
 2.2.2 Conclusion 15
 2.3 Regulations 17
 2.4 Toxicology 18
 2.4.1 Toxicology of PFOS in mammals 18
 2.4.1.1 Absorption 18
 2.4.1.2 Elimination 18
 2.4.1.3 Accumulation and tissue distribution 18
 2.4.1.4 Acute toxicity 19
 2.4.1.5 Subchronic toxicity 19
 2.4.1.6 Carcinogenicity 19
 2.4.1.7 Molecular toxicology 22
 2.4.2 Toxicology of PFOA in mammals 22
 2.4.2.1 Absorption 22
 2.4.2.2 Elimination 22
 2.4.2.3 Accumulation 23
 2.4.2.4 Acute toxicity tests 23
 2.4.2.5 Subchronic toxicity tests 24
 2.4.2.6 Oncogenicity tests 26
 2.4.2.7 Systemic toxicity 26
 2.4.2.8 Peroxisome proliferation and effects on lipid 27
 2.4.2.8 Molecular toxicology 28
2.4.3 Toxicology and pharmacokinetics of PFOS and PFOA in avian species
2.4.4 Conclusion
2.5 Total fluorine analysis
2.5.1 Present methodologies
 2.5.1.1 Aluminum monofluoride molecular absorption spectrometry (AlF-MAS)
 2.5.1.2 Nuclear magnetic resonance (NMR) analysis
 2.5.1.3 Proton-induced gamma-ray emission analysis (PIGE)
 2.5.1.4 Combustion or fusion-ion chromatography (IC) or fluoride ion selective electrode (FISE)
2.5.2 Recent developments
 2.5.2.1 Co-elution of fluoride and organic acids
 2.5.2.2 Removal of interferences
 2.5.2.3 Instrumental and reagent blanks
 2.5.2.4 Separation of organic and inorganic fluorine
2.5.3 Conclusion

Chapter 3. Objectives

Chapter 4. An Overview Of The Key Techniques Employed
 4.1 Chemicals and reagents
 4.2 Animal exposure experiments
 4.2.1 Gene expression profiling on chicken
 4.2.1.1 RNA extraction
 4.2.1.2 Microarray analysis
 4.2.1.3 Quality control
 4.2.1.4 Gene tree, Condition tree and Pathway analysis
 4.2.2 Biochemical responses and accumulation properties of PFOS/PFDA/PFOA in juvenile chickens
 4.2.2.1 Clinical biochemistry
 4.3 Chemical extraction methods
 4.3.1 PFC extraction methods
 4.3.1.1 Water
 4.3.1.2 Biota
 4.3.1.3 PFC extraction methods for total fluorine analysis
 4.4 Instrumental analysis
 4.4.1 PFC analysis
 4.4.2 Total fluorine and extractable organic fluorine analysis
 4.5 Quality assurance and quality control
 4.5.1 Individual PFC analysis
 4.5.2 Total fluorine analyses
Chapter 5. Individual Projects On Perfluorinated Compounds

5.1 Environmental Concentrations

5.1.1 A survey of perfluorinated compounds in surface water and biota including Ganges River Dolphin (Platanista gangetica) from the Ganges River and other waterbodies in India

5.1.1.1 Introduction

5.1.1.2 Material and Methods

5.1.1.2.1 Sample collection

5.1.1.2.2 PFC extraction

5.1.1.2.3 Quality control and Quality assurance

5.1.1.2.4 Statistical analyses

5.1.1.3 Results and Discussion

5.1.2 PFOS and other related fluorochemicals in liver of Indo-Pacific humpback dolphins (Sousa chinensis) and finless porpoises (Neophocaena phocaenoides) from South China

5.1.2.1 Introduction

5.1.2.2 Material and Methods

5.1.2.2.1 Sample collection

5.1.2.2.2 PFC extraction method

5.1.2.2.3 Quality assurance/quality control

5.1.2.2.4 Statistical analyses

5.1.2.3 Results and Discussion

5.2 Toxicology

5.2.1 Differential expression of chicken hepatic genes responsive to PFOA and PFOS

5.2.1.1 Introduction

5.2.1.2 Materials and Methods

5.2.1.3 Results

5.2.1.4 Discussion

5.2.2 Biochemical responses and accumulation properties of long-chain PFCs (PFOS/PFDA/PFOA) in juvenile chickens (Gallus gallus)

5.2.2.1 Introduction

5.2.2.2 Materials and Methods

5.2.2.3 Results

5.2.2.4 Discussion

5.3 Mass balance analysis

5.3.1 Perfluorinated compounds, and total and extractable organic fluorine in human blood and marine mammal (Indo-Pacific humpback dolphin (Sousa chinensis) and finless porpoise (Neophocaena phocaenoides) liver samples from China

5.3.1.1 Introduction

5.3.1.2 Materials and Methods

5.3.1.2.1 Sample collection

5.3.1.2.2 Statistical analyses
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.1</td>
<td>Structural formula of PFOA (CF₃(CF₂)₆COO⁻).</td>
<td>6</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Fold-changes in expression of genes involved in β-oxidation of peroxisomal and mitochondrial fatty acids.</td>
<td>28</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Components of total fluorine analyses.</td>
<td>31</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Development of analytical techniques for fluorine analyses.</td>
<td>33</td>
</tr>
<tr>
<td>2.5.3</td>
<td>Chromatograms of fluoride, chloride, and sulfate before and after treatment of samples with OnGuard II Ba/Ag/H cartridges. Peak ‘a’ corresponds to fluoride ion; peak ‘b’ corresponds to chloride ion; peak ‘c’ corresponds to sulfate ion.</td>
<td>39</td>
</tr>
<tr>
<td>2.5.4</td>
<td>Absolute amount of fluoride in CIC instrumental blanks (n=4). (A) With use of standard gases and equipment; (B) after changing from standard gases to high purity gases; (C) after removal of fluoropolymer parts in ion chromatograph, gas lines, valves, and regulators; (D) after addition of activated carbon to trap impurities from the gases; and (E) after changing from syringe pump made up of fluoropolymers to ceramic syringe pump.</td>
<td>41</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Electrophoresis gel photo of the RNA samples (28S – 28S rRNA; 18S – 18S rRNA.</td>
<td>46</td>
</tr>
<tr>
<td>4.2.2</td>
<td>An example of B2 illuminating the corner of the array.</td>
<td>47</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Schematic diagram showing individual PFC, EOF and TF analyses.</td>
<td>53</td>
</tr>
<tr>
<td>5.1.1.1</td>
<td>Distribution of PFOS and PFOA in river water samples (ng/L) from India.</td>
<td>58</td>
</tr>
<tr>
<td>5.1.1.2</td>
<td>Mean PFC concentrations (ng/g ww) in shrimp (n=2p), fishes (12 species, n=28), and Ganges River dolphins (n=15) from the Ganges River (Patna), India.</td>
<td>69</td>
</tr>
<tr>
<td>5.1.1.3</td>
<td>PFC composition profiles of PFOS, PFUnDA, and PFDA in shrimp (n=2p), fishes (12 species, n=28), and Ganges River dolphins (n=15) from the Ganges River (Patna), India.</td>
<td>70</td>
</tr>
<tr>
<td>5.1.1.4</td>
<td>Global comparison of PFOS (PFAS) and PFOA (PFCA) concentrations (ng/L) in river waters.</td>
<td>73</td>
</tr>
<tr>
<td>5.1.1.5</td>
<td>PFOS/PFOA concentrations in water (ng/L), altitude (m) and possible industrial sources along the Ganges River system in India.</td>
<td>74</td>
</tr>
<tr>
<td>5.1.1.6</td>
<td>PPFeA and PFHxA composition profiles in the Ganges River in India.</td>
<td>75</td>
</tr>
<tr>
<td>5.1.1.7</td>
<td>PFNA and PFOA correlation – Ganges River water.</td>
<td>76</td>
</tr>
<tr>
<td>5.1.1.8</td>
<td>Global comparison of PFOS concentrations in liver samples from different species (marine mammals and seabirds).</td>
<td>81</td>
</tr>
<tr>
<td>5.1.1.9</td>
<td>Schematic diagram of bioconcentration / biomagnification factors of perfluorochemicals in the Ganges River dolphin foodweb.</td>
<td>83</td>
</tr>
<tr>
<td>5.1.2.1</td>
<td>PFOS, PFOSA, and PFCAs concentrations (ng/g ww) in marine mammals in Hong Kong.</td>
<td>91</td>
</tr>
<tr>
<td>5.2.1.1a</td>
<td>Gene tree dendrogram comparison of PFOA-/PFOS- exposure groups with vehicle control after 4 weeks of exposure.</td>
<td>102</td>
</tr>
<tr>
<td>5.2.1.1b</td>
<td>Gene tree dendrogram comparison of PFOA-/PFOS-exposure groups with vehicle control after 4 weeks of exposure with 4 weeks of depuration.</td>
<td>103</td>
</tr>
</tbody>
</table>
Figure 5.2.1.2 A schematic diagram showing the syntheses of cholic acid and chenodeoxycholic acid.

Figure 5.2.2.1 PFOS/PFDA/PFOA concentrations (low dose, 0.1 mg PFC/kg bw) in blood of PFOS/PFDA/PFOA-treated chickens during 3 weeks of exposure and 3 weeks of depuration.

Figure 5.2.2.2 PFOS/PFDA/PFOA concentrations (high dose, 1.0 mg PFC/kg bw) in blood of PFOS/PFDA/PFOA-treated chickens during 3 weeks of exposure and 3 weeks of depuration.

Figure 5.2.2.3 Relative mass (%) of PFOS, PFDA, and PFOA in body reservoirs (blood, liver, and kidney) after receiving different doses (low dose, 0.1 mg PFC/kg bw; high dose, 1.0 mg PFC/kg bw) after 3 weeks of exposure (day 21) and after 3 weeks of depuration (day 42), respectively. Total volume of blood was assumed to comprise 5% of body weight in the experimental chickens.

Figure 5.2.2.4 Elimination kinetics of PFOS/PFDA/PFOA (low dose, 0.1 mg PFC/kg bw) in blood of PFOS/PFDA/PFOA-treated chicken during 3 weeks of depuration.

Figure 5.2.2.5 Elimination kinetics of PFOS/PFDA/PFOA (high dose, 1.0 mg PFC/kg bw) of PFOS/PFDA/PFOA-treated chicken during 3 weeks of depuration.

Figure 5.3.1.1 PFC composition profiles in Chinese blood samples.

Figure 5.3.1.2 Total fluorine, extractable organic fluorine and known PFC concentrations (ng-F/mL).

Figure 5.3.1.3 Composition profile of extractable organic fluorine (EOF) in Chinese human blood.

Figure 5.3.1.4 Composition profile of fluorine in Chinese human blood.

Figure 5.3.2.1 a) Concentration and b) contribution of sum PFCs, extractable organic fluorine (EOF) and total fluorine (TF) in whole blood.

Figure 5.3.2.2 Relationship between sum of a)PFOA, b)PFCs and total fluorine in blood samples.

Figure 5.4.1.1 A schematic diagram showing the experimental design for the method comparison for PFC analysis.

Figure 5.4.1.2 PFC matrix recovery (%) using various extraction methods in chicken blood.

Figure 5.4.1.3 PFC matrix recoveries (%) of ACN extraction with WAX SPE method on various blood samples.

Figure 5.4.1.4 Chromatograms of a) PFOS and b) PFBA after formic acid extraction.

Figure 5.4.1.5 Chromatograms of PFOS and TDC standards at different m/z transitions monitored.

Figure 5.4.1.6 Mass spectra of a) PFOS and b) TDC.

Figure 5.4.1.7 PFOS chromatograms of different animal blood samples.
LIST OF TABLES

Table 2.1.1 Names and structures of some PFCs of interest. 8
Table 2.1.2 Chemical information for PFOA and PFOS and their salts. 11
Table 2.1.3 Chemical properties of PFOS and PFOA. 11
Table 2.2.1 PFOS and PFOA concentrations (ng/L) in water samples from around the world. 14
Table 2.2.2 PFC concentrations in mussel and oyster samples. 16
Table 2.4.1 Acute toxicity of PFOS. 19
Table 2.4.2 Subchronic toxicity studies of PFOS. 20
Table 2.4.3 Summary of carcinogenicity of PFOS in rats. 21
Table 2.4.4 Acute toxicity of PFOA. 24
Table 2.4.5 Subchronic toxicity studies of PFOA. 25
Table 2.4.6 Summary of hyperplasia/ neoplasia incidence in the liver, testes, and pancreas from rats fed PFOA. 26
Table 2.5.1 Comparison of the detection limits of analytical methods for fluorine analyses. 37
Table 4.2.1 Optical density (260/280nm) and the concentration (μg/μL) of the RNA samples. 56
Table 5.1.1.1 Descriptions of a) water sampling locations b) biota in India. 60
Table 5.1.1.2 Qualify control and Quality assurance – Procedural blanks (ng/L), procedural and matrix spike recoveries (%) for PFCs for a) water analysis b) biotic. 63
Table 5.1.1.3 A summary for the PFC concentrations in a) surface water (ng/L) and b) biotic (ng/g ww) samples of Northern (Ganges) and Southern (Goa, Coimbatore, Mettur, Chennai) from India. 66
Table 5.1.1.4 Comparison of PFC flux estimates (kg/yr) in selected rivers from several countries. 78
Table 5.1.2.1 Detailed information for the individual cetaceans analyzed in this study. 87
Table 5.1.2.2 Procedural blank (ng/mL) and recoveries (%), and PFC concentrations (ng/g ww) in livers samples of Indo-Pacific humpback dolphin and finless porpoise. 88
Table 5.1.2.3 Significant (p<0.05) correlation coefficient of Pearson correlation analyses among (a) liver PFC concentrations, and (b) liver PFC and blubber POP concentrations in the same individual marine mammals in Hong Kong. 96
Table 5.2.1.1 Number of genes whose expression changed significantly (p<0.0025) by PFOS and PFOA at different exposure regimes. 100
Table 5.2.1.2 Summary the genes induced by PFOS/ PFOA at different exposure regimes according to their biological and molecular functions. 104
Table 5.2.1.3 Summary the genes suppressed by PFOS/ PFOA at different exposure regimes according to their biological and molecular functions. 105
Table 5.2.1.4 List of genes shown significant expression by the exposure PFOS. 107
Table 5.2.1.5 List of genes showed consistent expression upon PFOA exposure. 109
Table 5.2.1.6 Lists of pathway affected by PFOS and PFOA at different exposure. 112
Table 5.2.1.7 List of genes of particular interest affected by PFOS or PFOA at different exposure regimes. 117
Table 5.2.2.1 Mean values of the clinical chemistry measurements in experimental chickens determined after exposure to a mixture of PFOS/PFDA/PFOA and depuration at different doses. 127
Table 5.2.2.2 PFC concentrations in blood (ng/mL) and liver/kidney (ng/g ww) of experimental chickens at different exposure regimes. 131
Table 5.3.1.1 Details of human blood samples analyzed in 2004. 141
Table 5.3.1.2 Procedural blanks, recoveries and matrix-spiked recoveries for PFCs. 144
Table 5.3.1.3 PFC concentrations (ng/mL) in Chinese blood samples. 145
Table 5.3.1.4 Total fluorine, extractable organic fluorine and known PFC concentrations (ng-F/mL) in Chinese blood samples. 149
Table 5.3.1.5 Known PFCs, extractable organic fluorine (EOF) and total fluorine (TF) concentrations (ng-F/g ww) in marine mammal. 157
Table 5.3.2.1 Details of the male wild rat samples analyzed in this study. 163
Table 5.3.2.2 PFC concentrations (ng/mL) in the whole blood samples of male wild rat from Japan. 165
Table 5.3.2.3 Known PFCs, EOF (Fr1), EOF (Fr2), and TF concentrations (ng-F/mL) in rat whole blood samples from Japan. 167
Table 5.3.2.4 Mean PFOA and TF concentrations (ng-F/mL) in PFOA-exposed laboratory male rat plasma samples (the values in bracket indicate the standard errors). 170
Table 5.4.1.1 A comparison on the advantages and disadvantages of concurrent sample pretreatment, extraction and cleanup methods for PFC analysis. 179
Table 5.4.1.2 Procedural recoveries of WAX SPE under different concentrations of either formic acid or ACN conditions. (Standard deviations are given parentheses for the duplicate analysis.) 184
Table 5.4.1.3 PFC procedural recoveries (%) among ion pairing, formic acid and ACN with WAX SPE method. (Standard deviations are given for the duplicate analysis.) 186
Table 5.4.1.4 PFC matrix recoveries (%) among ion pairing, formic acid and ACN with WAX SPE method. (Standard deviations for duplicate analysis are given parentheses.) 188
Table 5.4.1.5 PFC matrix recovery (%) and concentration (pg/mL) of various extraction methods with WAX SPE in human blood. 191
Table 5.4.1.6 A summary for recent PFOS instrumental analysis. 195
Table 5.4.1.7 PFOS and TDC concentrations (pg/mL) in various animals. 199
LIST OF ABBREVIATION

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFC</td>
<td>Perfluorinated compound/Perfluorochemical</td>
</tr>
<tr>
<td>PFAS</td>
<td>Perfluoroalklysulfonate</td>
</tr>
<tr>
<td>PFCA</td>
<td>Perfluorocarboxylate</td>
</tr>
<tr>
<td>PFetS</td>
<td>Perfluoroethanesulfonate</td>
</tr>
<tr>
<td>PFPrS</td>
<td>Perfluoropropanesulfonate</td>
</tr>
<tr>
<td>PFBS</td>
<td>Perfluorobutanesulfonate</td>
</tr>
<tr>
<td>PFHxS</td>
<td>Perfluorohexanesulfonate</td>
</tr>
<tr>
<td>PFOS</td>
<td>Perfluorooctanesulfonate</td>
</tr>
<tr>
<td>PFDS</td>
<td>Perfluorodecanesulfonate</td>
</tr>
<tr>
<td>PFHxSi</td>
<td>Perfluorohexanesulfinate</td>
</tr>
<tr>
<td>PFOSi</td>
<td>Perfluorooctanesulfinate</td>
</tr>
<tr>
<td>PFDSi</td>
<td>Perfluorodecanesulfinate</td>
</tr>
<tr>
<td>TFA</td>
<td>Trifluoroacetate</td>
</tr>
<tr>
<td>PFPrA</td>
<td>Perfluoropropanoate</td>
</tr>
<tr>
<td>PFBA</td>
<td>Perfluorobutanoate</td>
</tr>
<tr>
<td>PFPeA</td>
<td>Perfluoropentanoate</td>
</tr>
<tr>
<td>PFHxA</td>
<td>Perfluorohexanoate</td>
</tr>
<tr>
<td>PFHpA</td>
<td>Perfluoroheptanoate</td>
</tr>
<tr>
<td>PFOA</td>
<td>Perfluorooctanoate</td>
</tr>
<tr>
<td>PFNA</td>
<td>Perfluorononanoate</td>
</tr>
<tr>
<td>PFDA</td>
<td>Perfluorodecanoate</td>
</tr>
<tr>
<td>PFUnDA</td>
<td>Perfluoroundecanoate</td>
</tr>
<tr>
<td>PDoDA</td>
<td>Perfluorododecanoate</td>
</tr>
<tr>
<td>PFTeDA</td>
<td>Perfluorotetradecanoate</td>
</tr>
<tr>
<td>PFHxDA</td>
<td>Perfluorohexadecanoate</td>
</tr>
<tr>
<td>PFOcDA</td>
<td>Perfluoroctadecanoate</td>
</tr>
<tr>
<td>PFOSA</td>
<td>Perfluorooctanesulfonamide</td>
</tr>
<tr>
<td>N-EtFOSA</td>
<td>N-ethyl perfluorooctanesulfonamide</td>
</tr>
<tr>
<td>N-EtFOSAA</td>
<td>N-ethyl perfluorooctanesulfonamidoacetate</td>
</tr>
<tr>
<td>FTCA</td>
<td>Fluorotelomer saturated carboxylate</td>
</tr>
<tr>
<td>FTUCA</td>
<td>Fluorotelomer unsaturated carboxylate</td>
</tr>
<tr>
<td>FTOH</td>
<td>Fluorotelomer alcohol</td>
</tr>
<tr>
<td>PCB</td>
<td>Polychorinated biphenyl</td>
</tr>
<tr>
<td>PBDE</td>
<td>Polybrominated diphenyl ether</td>
</tr>
<tr>
<td>TDC</td>
<td>Taurodeoxycholic acid</td>
</tr>
<tr>
<td>bw</td>
<td>body weight</td>
</tr>
<tr>
<td>lw</td>
<td>lipid weight</td>
</tr>
<tr>
<td>ww</td>
<td>wet weight</td>
</tr>
<tr>
<td>CI</td>
<td>Confidence Interval</td>
</tr>
<tr>
<td>EOF</td>
<td>Extractable organic fluorine</td>
</tr>
<tr>
<td>IF</td>
<td>Inorganic fluorine</td>
</tr>
<tr>
<td>LOQ</td>
<td>Limit of quantification</td>
</tr>
<tr>
<td>NEOF</td>
<td>Non-extractable organic fluorine</td>
</tr>
<tr>
<td>OF</td>
<td>Organic fluorine</td>
</tr>
<tr>
<td>POP</td>
<td>Persistent organic pollutant</td>
</tr>
<tr>
<td>PP</td>
<td>Polypropylene</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>SE</td>
<td>Standard error</td>
</tr>
<tr>
<td>TF</td>
<td>Total fluorine</td>
</tr>
</tbody>
</table>