QUANTITATIVE PROTEOMICS STUDY OF CARBON NANOTUBES BINDING PROTEINS AND CARBON NANOTUBES BIOCOMPATIBILITY INVESTIGATION

CAI XIAONING

DOCTOR OF PHILOSOPHY

CITY UNIVERSITY OF HONG KONG

FEBRUARY 2009

CITY UNIVERSITY OF HONG KONG 香港城市大學

Quantitative Proteomics study of Carbon Nanotubes binding proteins and Carbon nanotubes biocompatibility investigation 利用定量蛋白組學技術研究碳納米管結合 蛋白以及碳納米管的生物適應性檢測

Submitted to Department of Biology and Chemistry

生物及化學系

In Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy

哲學博士學位

By

Cai Xiaoning 蔡小寧 February 2009 二零零九年二月

Abstract

Carbon nanotubes (CNTs) are the most important and most studied nanomaterials which are allotropes of carbon with nano-sized fullerene-related structures. CNTs have shown promise for much applications as molecular electronics, biomedical materials, ultrasensitive biosensors.

The absorption of various proteins on the sidewalls of CNTs has been reported. some proteins or peptides were also observed to interact with CNTs with high selectivity, and these interactions can apparently modulate protein structures and functions.

In this study, I have confirmed and extended the study of the protein-binding characteristics of CNTs. I showed that MWNTs (Multi-Walled Carbon Nanotubes) could bind to specific subsets of proteins from a wide diversity of organisms, including human cell line, zebrafish, mouse liver, drosophila and algae. I have then employed SILAC (Stable Isotope Labeling by Amino Acids in Cell Culture)-based mass spectrometry (MS), a powerful quantitative proteomic technique to systematically identify proteins from a total human cell lysate that bound to MWNTs. The relative CNTs-binding efficiency of each identified proteins was also measured. In parallel, I investigated by SILAC-based MS the protein binding properties of carbon black (CB), another allotrope of carbon, Of the 1477 proteins identified in one proteomics detection, I found that MWNTs specifically bound to 485 proteins, whereas, only 50 proteins were found to bind to CB. Furthermore, when the CNTand CB-binding proteins were examined, I concluded that these two allotropes of carbon bound to a distinct group of cellular proteins under the same conditions. Statistical analysis of cell component, sequence length, PI, amino acid composition was performed to clarify the properties of the MWNTs specific binding proteins.

To investigate the interactions between CNTs and proteins, a comparison of the amount of binding proteins were performed in CNTs with different size. It was found that MWNTs with a diameter of 20-40 nm or more could bind a significant amount of proteins, whereas those with a diameter below 10nm bound to virtually none. The interactions, however, were independent on the length of the CNTs used. Moreover, the interactions between MWNTs and proteins were not affected by washing with gradient NaCl and Trition-X-100 and that the bound proteins could not be eluted by various organic solvents such as acetonitrile, Chloroform/Methanol or DMSO. Taken together, the interactions between protein and MWNTs were not only protein-specific but also highly stable.

The study of MWNTs binding proteins provides information on the MWNTs potential target proteins of MWNTs in organisms, which will facilitate a comprehensive evaluation of the risks of CNTs. Moreover, it provides new insights into handling and manipulating CNTs, such as non-covalent functionalized CNTs with specific proteins. This will ensure that the functionalized CNTs are more biocompatible with the target organism and more effective to be as drug delivery or biosensors.

To this end, the biocompatibility of MWNTs was tested both *in vitro* and *in vivo*, it showed that the cell proliferation of HeLa, HEK293T, 3T3 and HepG2 were not significantly inhibited by MWNTs. In addition, after injecting mice with MWNTs, I revealed that the levels of various members of the heat shock protein family remained unchanged in mouse liver, suggesting that no physiological stress occurred even through the liver was filled with MWNTs after the injection. Although MWNTs seems to have presented no significant toxicity to the cell line and mouse in this study,

an integrated study of the potential risks of CNTs still needs to be carried out before they can be applied in the biomedical field.

List of Figures

Fig.1-1	Potential environmental impact and health concern of nanomaterials.	4
Fig.1-2	SWNTs with different chiralities.	8
Fig.1-3	Scheme of three kind of CNTs: SWNT, DWNT and MWNT	9
Fig.1-4	Transmission electron micrograph of human epidermal	19
	keratinocytes.	
Fig.1-5	Cartoon of protein binding to f-MWNT with different diameters.	23
Fig.1-6	Particle curvature affects protein conformation.	24
Fig.1-7 A	PDB (Protein Data Bank)structure of SBP showing the hydrophobic	29
	pocket.	
Fig.1-7 B	A schematic hypothesizing the adsorption of SBP onto SWNTs via	29
	the hydrophobic pocket on SBP.	
Fig.1-8	Schematic of SILAC workflow.	36
Fig.2-1	CNTs of different size observed under TEM	51
Fig.2-2	FBS and Hela cell lysate proteins pulled down by different size of	53
	CNTs	
Fig.2-3	L-MWNTs-2040 binding proteins from HEK293T Cell, Zebrafish	55
	lysate mouse liver, algae and Drosophila lysate	
Fig.2-4	5mg L-MWNTs-2040 pulled down with different concentration of	57
	BSA	
Fig.2-5	5mg/ml BSA incubated with 5mg, 2.5mg, 1.25mg and 0.625mg of	58
	L-MWNTs-2040.	
Fig.2-6	HEK 293T cell lysate pulled down by L-MWNT-2040 after washing	60
	with buffers containing different concentration of salt and detergent	

performed and on 8% SDS-PAGE gel.

Fig.2-7	L-MWNTs-2040 binding proteins washed by graident Acetonitrile.	62
Fig.2-8	Elute L-MWNTs-2040 binding proteins with different solvent	63
Fig.2-9	HEK 293T cell proteins pulled down with detergent pre-treated L-	65
	MWNTs-2040.	
Fig.3-1	Selective binding of HEK 293T lysate proteins to L-MWNT-2040	87
	resolved by 2-D protein gel.	
Fig.3-2	Selective binding of HEK 293T cell proteins and Zebrafish proteins	89
	to L-MWNT-2040 resolved by 1-D protein gel.	
Fig.3-3	MWNTs(or CB) pull down experiment.	95
Fig.3-4	Scheme of SILAC-based quantitative proteomics detection of	96
	carbon matrix binding proteins in pull down experiment.	
Fig.3-5	L-MWNTs-2040 bound proteins detected by MS.	97
Fig.3-6	Compare sequence length distribution of total detected proteins	99
	(ratio>0) and top40 MWNTs binding proteins (ratio>5).	
Fig.3-7	Compare Cellular component distribution of MWNTs binding	101
	proteins and unbinding proteins.	
Fig.3-8	PI distribution of MWNTs binding and unbinding proteins.	103
	Unbinding proteins with PI>10 were labeled with circle.	
Fig.3-9	Sequence length (Left) and Cellular component (Right) distribution	103
	of 114 proteins with PI>10.	
Fig.3-10	Hydrophobicity of a part of binging and unbinding proteins.	104
Fig.3-11	CB binding proteins detected by MS.	108
Fig.3-12A	Comparison of CNTs and CB bound proteins with ratio>1 in 2	109
	independent test.	

Fig.3-12B	Identity of common total proteins, CNTs and CB binding proteins in 10	
	2 independent tests.	
Fig.3-13	Comparison of CNTs and CB binding proteins detected by MS.	110
Fig.3-14	Comparison of Cellular component distribution of MWNTs and CB	111
	binding proteins.	
Fig.3-15	L-MWNTs-2040 and proteins binding in present of Urea.	114
Fig.3-16	Validation of MS detected L-MWNTs-2040 binding proteins from	116
	cell by westernblot.	
Fig.3-17	Immuolabeling proteins bind to L-MWNT-2040.	117
Fig.4-1	Hela cell treated with 250mg/ml SWNT, S-MWNT-10, L-MWNT-	145
	10, S-MWNT-2040 and L-MWNT-2040 for 24hr, after cell	
	embedded in resin and sectioned, observed under TEM.	
Fig.4-2	Cell immunostaining of Tubulin and cytochrome C.	143
Fig.4-3	Cell immunostaining of Actin and cytochrome C.	144
Fig.4-4	Cell immunostaining of HSP60 and cytochrome C.	145
Fig.4-5	Cell immunostaining of mitochondria and cytochrome C	146
Fig.4-6	Cell immunostaining of Golgi and cytochrome C.	147
Fig.4-7	Observation and cell number counting of 3T3 cell exposed with	149
	250mg/ml CB, L-MWNT-2040 and S-MWNT-10 for 48hr.	
Fig.5-1	TEM image of synthetic MWNTs-NH ₂ , they keep intact after	166
	functionization.	
Fig.5-2	MWNTs-NH ₂ injected in mouse by tail vein and accumulated in	168
	liver after injection.	
Fig.5-3	Hematoxylin&Eosin staining of mouse liver section after treatment	169
	of naive mouse with 1mg/ml MWNT-NH ₂ , black particles showed	

on figures were MWNT-NH₂.

- Fig.5-4 Hematoxylin&Eosin staining of mouse liver section after treatment 171 of naive mouse with 1mg/ml MWNT-NH₂, black particles showed on figures were MWNT-NH₂.
- Fig.5-5 Heat shock proteins (Hsps) levels in mouse liver 6, 10, or 24 hours 173 post injection with 1mg MWNTs.
- Fig.5-6 Immunostaining detection of hsp60 and hsp70 in mouse liver 6hr, 175 10hr, 24hr after treatment with MWNTs-NH₂.

List of Tables

Table 1-1	Nanostructures and their assemblies	2
Table 1-2	Nanomaterials effects as the basis for pathophysiology and	6
	toxicity.	
Table 2-1	Properties of CNTs with different size	50
Table 3-1	List of 157 common L-MWNTs-2040 binding proteins	213
	detected in 2 independent experiments	
Table 3-2	List of L-MWNTs-2040 unbinding proteins with PI>10	218
Table 4-1	Summary of methods and cell lines used in CNTs	156
	cytotoxicity tests.	

List of Abbreviations

2-DE	Two-Dimension gel electrophoreis
AFM	Atomic Force Microscope
BE	Binding efficiency
BR	Bacteriorhodopsin
BSA	Bovine serum albumin
СВ	Carbon Black
CVD	Chemical vapour deposition
CD	Circular dichroism spectroscopies
CNTs	Carbon Naotubes
CRIg	Complement receptor of the immunoglobulin family
СТ	R-chymotrypsin
cyt-c	Cytochrome C
DAPI	4',6-diamidino-2-phenylindole
DMEM medium	Dulbecco's Modified Eagle's Medium
DMF	N,N-dimethylformamide
DWNTs	Double-walled carbon nanotubes
ESI	Electrospray ionization source
FBS	Fetal Bovine Serum
FMDV	Foot and mouth disease virus
f-MWNTs	Functionalized MWNTs
FT	Fourier transform ion cyclotron
FT-IR	Fourier-transform infrared
GIT	Strointestinal tract

HCAI	Human carbonic anhydrase I
HEK293T	Human Embryonic Kidney 293T cells
HiPco	High-pressure carbon monoxide method
HPLC	High performance liquid chromatography
Hsp	Heat shock proteins
IEF	Isoelectric focusing
IL-8	Interleukin 8
IPG	pH gradient strip
LDS	Lithium Dodecyl Sulfate
L(S)-MWNTs-2040	Long (Short) Multi-Walled Carbon Nanotubes with diameter of
	20-40nm
L(S)-MWNTs-60100	Long (Short) Multi-Walled Carbon Nanotubes with diameter of
	60-100nm
L(S)-MWNTs-10	Long (Short) Multi-Walled Carbon Nanotubes with diameter of
	<10nm
MALDI	Matrix-assisted laser desorption/ionization
MS	Mass spectrometry
MTT	3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
MW	Molecular weight
MWNTs	Multi-Walled Carbon Nanotubes
NF-κB	Nuclear factor kB
NMR	Nuclear Magnetic Resonance
PBS	Phosphate Buffered Saline
PCR	Polymerase chain reaction
PDB	Protein Data Bank

PI	Isoelectric point
PMF	Peptide Mass Fingerprint
PNTs	Purified nanotubes
RNase A	Ribonuclease A
SBP	Soybean peroxidase
SDS	Sodium dodecyl sulfate
SDS-PAGE	Sodium dodecyl sulfate polyacrylamide gel
SILAC	Stable isotope labeling by amino acids in cell cuture
SWNT	Single-Walled Carbon Nanotube
TEM	Transmission electron microscopy
TOF	Time-of-flight

Table of Contents

Declaration	i
Abstract	iii
Thesis Acceptance Form	V
Acknowledgements	vi
List of Figures	viii
List of Tables	xii
List of Abbreviations	xiii
Table of Contents	xvi
Chapter 1 Introduction	1
1.1 Nanoscience and nanotechnology	2
1.2 Heath and environment impact of Nanomaterials	3
1.3 Carbon nanotubes	7
1.4 Dispersion and functionalization of carbon nanotubes	10
1.5 Biomedical applications of carbon nanotubes	12
1.6 Carbon nanotube toxicity	14
1.6.1 Lung toxicity	14
1.6.2 Cytotoxicity of carbon nanotubes	15
1.7 Carbon nanotubes and protein interaction	20
1.7.1 Proteins adsorbed on CNTs and their effect factors	21
1.7.2 Protein conformation change upon CNTs binding	25
1.7.3 Peptides and proteins that selectively bind to CNTs	26
1.7.4 Effect or risk of binding on organisms	27

Page 1	No.
--------	-----

1.8	Mass spectrometry (MS) - based proteomics	30
	1.8.1 Separation techniques	32
	1.8.2 Mass spectrometry	34
	1.8.3 SILAC based quantitative proteomics	35
1.9	Hypothesis and study objective	37
1.10) Study strategy	38
Cha	pter 2 Study of the interactions between proteins and CNTs	39
2.1	Introduction	40
2.2	Materials and Methods	42
	2.2.1 Pristine CNTs samples	42
	2.2.2 Cell culture	42
	2.2.3 Cell harvest	42
	2.2.4 CNTs and proteins pull down assay	43
	2.2.5 Pull down experiment of different size MWNTs with FBS and	44
	cell lysate	
	2.2.6 Pull down experiment of L-MWNTs-2040 incubated with	44
	BSA	
	2.2.7 MWNTs pulled down proteins washed by gradient Triton X-	45
	100 or NaCl	
	2.2.8 MWNTs pulled down proteins washed by different organic	45
	solvent	
	2.2.9 Proteins pulled down with Tween 20 pre-blocked MWNTs and	46
	Triton-X-100 pre-washed MWNTs	

	2.2.10 SDS-PAGE	47
	2.2.11 Protein extraction from Zebrafish, mouse liver, algae and	47
	Drosophila	
2.3	Result	49
	2.3.1 Observation of CNTs with different size	49
	2.3.2 Proteins binding with CB and different sizes of CNTs	52
	2.3.3 L-MWNTs-2040 binding proteins from HEK293T	54
	Cell,Zebrafish lysate mouse liver, algae and Drosophila lysate	
	2.3.4 Interaction between BSA and L-MWNT-2040	56
	2.3.5 HEK 293T cell lysate pulled down by L-MWNT-2040 after	59
	washing with buffers containing different concentration of salt and	
	detergent	
	2.3.6 L-MWNTs-2040 binding proteins eluted by different organic	61
	solvent	
	2.3.7 HEK 293T cell proteins pulled down with detergent pre-treated	64
	L-MWNTs-2040.	
2.4	Discussion	66
	2.4.1 Interaction between different sizes of MWNTs with FBS	66
	2.4.2 Proteins from different organisms selectively bind to L-	67
	MWNTs-2040	
	2.4.3 Study of the interaction between individual proteins and L-	68
	MWNTs-2040	
	2.4.4 Stable binding between proteins and CNTs	70
	2.4.4.1 The effect of NaCl, organic solvent, Triton-100, Tween-20,	70

Page	No.
1 450	1,0.

and PH on the MWNT-binding proteins	
2.4.4.2 MWNTs pre-treated by Triton-X-100 and Tween-20	71
decrease protein and CNTs binding efficiency	

Chapter 3 Identify CNTs binding proteins by quantitative proteomics		76
3.1	Introduction	77
3.2	Materials and Methods	79
	3.2.1 1-D gel based Mass spectrometery	79
	3.2.2 2-D gel	79
	3.2.3 Labeled cell culture	79
	3.2.4 labeled cell harvest and pull down	80
	3.2.5 Electrophoresis and Trypsin digestion	81
	3.2.6 Mass spectrometry	82
	3.2.7 Statistics analysis of proteins properties	83
	3.2.8 Western blotting	84
	3.2.9 Immunolabeling of CNTs binding proteins	85
3.3	Results	86
	3.3.1 Selective binding of HEK 293T lysate proteins to L-MWNT-	86
	2040 resolved by 2-D protein gel	
	3.3.2 Selective binding of HEK 293T cell proteins to L-MWNT-	87
	2040 detected by 1-D gel based Mass spectrometery	
	3.3.3 L-MWNTs-2040 selectively binding proteins indentified by	90
	SILAC based Quantitative proteomics	
	3.3.4 Sequence length characterization of L-MWNTs-2040 binding	98

	proteins	
	3.3.5 Cellular component distribution of L-MWNTs-2040 binding	100
	proteins	
	3.3.6 Isoelectric point (PI) characterization of L-MWNTs-2040	102
	binding proteins	
	3.3.7 Hydrophility characterization of L-MWNTs-2040 binding	104
	proteins	
	3.3.8 Comparison of CNTs and CB binding proteins	105
	3.3.9 Comparison of cell component distribution of CNTs and CB	111
	binding proteins	
	3.3.10 Investigate L-MWNTs-2040 and proteins binding in present	113
	of Urea	
	3.3.11 Evaluation of CNTs binding proteins by westernblot and	115
	immuno-gold labeling	
3.4	Discussion	118
	3.4.1 Identification of L-MWNTs-2040 binding proteins from cell	118
	lysate by Proteomics study	
	3.4.2 Proteins specifically bound to L-MWNTs-2040 detected by	120
	SILAC -based quantitative proteomics	
	3.4.3 Sequence length, cellular components, and PI characterization	122
	of L-MWNTs-2040 binding proteins.	
	3.4.4 Comparison of CNTs and CB binding proteins	125
	3.4.5 Evaluation of CNTs-binding proteins by western blot and	127
	immunogold labeling	

Chapter 4 In vitro- primary investigation of MWNTs cytotoxicity		
4.1	Introduction	134
4.2	Materials and methods	135
	4.2.1 Transmission electron microscopy of cells exposed to different	135
	types of CNTs	
	4.2.2 Hela Cell exposed with different types of CNTs	137
	4.2.3 Cell immunostaining of Hela cell treated with L-MWNTs-	137
	2040	
	4.2.4 Concentration effect of CNTs on the proliferaton of different	138
	cell lines (Hela, 3T3, HepG2)	
4.3	Results	140
	4.3.1 MWNTs enter Hela cell investigated by TEM	140
	4.3.2 Cell Immunostaining of Hela cell treated with L-MWNTs-	142
	2040	
	4.3.3 Cell counting showed no proliferation inhibition happened to	148
	Hela, 3T3 and HepG2 cell	
	4.4. Discussion	150
Chapter 5: In vivo- Mouse liver and functional CNTs biocompatibility		159
5.1	Introduction	160
5.2	Materials and Methods	162
	5.2.1 Synthesis and characterization of MWNTs-NH2	162
	5.2.2 Mouse injected with MWNTs	163
	5.2.3 Mouse liver lysis and westernblot	163

	5.2.4 Mouse liver Cryosection and fluorescence immunostaining	164		
5.3	Results	166		
	5.3.1 Characterization of MWNTs-NH2	166		
	5.3.2 Three kinds of MWNTs all accumulated in mouse liver after	167		
	injection			
	5.3.3 MWNTs enter liver kupffer cell and sinusoid	170		
	5.3.4 Westernblot of Hsps	172		
	5.3.5 Immunostaining of hsp60 and hsp70	174		
5.4	Discussions	176		
	5.4.1 Three kinds of MWNTs all accumulated in mouse liver after	176		
	injection			
	5.4.2 No heat shock protein induced by CNTs in mouse liver	178		
Chapter 6 Summary and Conclusions		182		
6.1	Summary	183		
6.2	Contributions of this study	185		
6.3	Study limitations and future work	186		
6.4	Overall Conclusions	188		
Refe	erence	190		
App	endix I: Table3-1. List of 157 common L-MWNTs-2040 binding	207		
	proteins detected in 2 independent experiments			
Appendix II: Table3-2. List of L-MWNTs-2040 unbinding proteins with				
	PI>10			