Characterization and Inactivation Studies of Enzymes Involved in Fatty Acid Oxidation

WU LONG

DOCTOR OF PHILOSOPHY CITY UNIVERSITY OF HONG KONG AUGUST 2008

CITY UNIVERSITY OF HONG KONG 香港城市大學

Characterization and Inactivation Studies of Enzymes Involved in Fatty Acid Oxidation

參與脂肪酸代謝的酶的表征和失活研究

Submitted to Department of Biology and Chemistry

生物及化學系

in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

哲學博士學位

by

Wu Long

武龍

August 2008

二零零八年八月

Characterization and Inactivation Study of the Enzymes Involved in Fatty Acid Oxidation Abstract

Numerous diseases have been reported in relation to fatty acids, such as cardiovascular disease, cancer, diabetes, etc. The regulation of fatty acid oxidation has been reported as a potential method treating non-insulin dependent diabetes mellitus (NIDDM) and inhibitors of enzymes involved in the metabolism of fatty acids have been synthesized and studied as potential medicines. Mitochondrial trifunctional protein (MTP), 3-ketoacyl-CoA thiolase (KT), and 2-enoyl-CoA hydratase 2 (ECH 2) are three key enzymes involved in the β -oxidation of fatty acid. Glutaryl-CoA dehydrogenase (GCD) and isobutyryl-CoA dehydrogenase (IBD) catalyze the oxidation of branched chain fatty acids from the catabolism of amino acids.

MTP catalyzes the last three steps of the β -oxidation of long-chain fatty acids. The 3-hydroxyacyl-CoA dehydrogenase and enoyl-CoA hydratase activities reside on the α -subunit, whereas the 3-ketoacyl-CoA thiolase activity is located on the β -subunit. This enzyme complex is bound to the mitochondrial inner membrane. Both the α and the β subunit were overexpressed and purified separately with nickel-metal affinity column to apparent homogeneity. The pMIS3.0E:: β plasmid was then transformed into competent cells containing pMIS3.0E:: α plasmid, and the MTP containing both the α and the β subunit was overexpressed and purified as a protein complex. FPLC analysis indicates that the MTP contains two α subunits and two β subunits. Kinetic studies of the α subunit, the β subunit, and the MTP $\alpha_2\beta_2$ protein complex were carried out. The results show that all three enzymatic activities including enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase, and acyl-CoA thiolase activities.

increased when the α and the β subunit form $\alpha_2\beta_2$ complex. The MTP $\alpha_2\beta_2$ complex prefers longer chain substrate in both binding capacity and catalytic rate. (Methylenecyclopropyl)formyl-CoA (MCPF-CoA) was found to be a mechanism-based irreversible inhibitor of the α subunit, while trimetazidine and oct-2-yn-4-enoyl-CoA were found to be two mechanism-based irreversible inhibitors of the β subunit. The mechanistic studies of the inactivation of the α and the β subunit by above three inhibitors were carried out. Glu151, Cys105 and Cys424 were found to be labeled by MCPF-CoA, trimetazidine and oct-2-yn-4-enoyl-CoA, respectively.

KT catalyzes the last step reaction of the β-oxidation cycle, which involves thiolytic cleavage of 3-ketoacyl-CoA substrate by free coenzyme A. We found that the enzyme has intrinsic isomerase activity, which was confirmed using incubation followed with HPLC analysis. The isomerase activity of the enzyme was thoroughly characterized through studies of kinetics, substrate specificity, pH dependence, and enzyme inhibition. Cys382 was identified as the catalytic residue for both thiolase and isomerase activities of the enzyme. In addition, we found that Cys92 was covalently labeled by oct-2-ynoyl-CoA. This result clearly demonstrated that oct-2-ynoyl-CoA is an irreversible inhibitor of the thiolase. This study of selective inactivation of KT by 2-alkynoyl-CoA via its intrinsic isomerase activity provides an example for rationally developing mechanism-based inhibitors based on a side activity of the enzyme, and may become a supplemental method for better treatment of cardiovascular disease and cancer.

ECH 2 is the middle part of the mammalian peroxisomal multifunctional enzyme type 2 (MFE-2), which catalyzes the second reaction of the fatty acid β -oxidation. We cloned the gene of rat ECH 2 to a bacterial expression vector pLM1 with six continuous histidine codons attached to the N-terminus of the gene. Cloned gene of ECH 2 was overexpressed in *Escherichia coli* and purified. MCPF-CoA,

v

oct-3-ynoyl-CoA and oct-2-yn-4-enoyl-CoA were identified as three new irreversible inhibitors of ECH 2 and Glu47 of ECH 2 was covalently labeled by these inhibitors. Comparative inhibition studies of ECH 1 and ECH 2 were carried out. This result indicates ECH1 and ECH2 have certain difference in active site geometry. Oct-3-ynoyl-CoA may selectively inactivate the β -oxidation in peroxisomes without significant effect on the β -oxidation in mitochondria.

GCD and IBD are two enzymes involved in oxidation of branched chain fatty acids, which are in the pathways for the catabolism of lysine and valine, respectively. We cloned the genes of rat GCD and IBD in a bacterial expression vector pET28a. Cloned genes of GCD and IBD were overexpressed in *Escherichia coli* and purified. We found that oct-4-en-2-ynoyl-CoA and oct-2-ynoyl-CoA are two irreversible inhibitors of GCD, but these two compounds have no inhibition on IBD. Glu419 was found to be labeled by oct-4-en-2-ynoyl-CoA and oct-2-ynoyl-CoA. In addition, we also noted that oct-3-ynoyl-CoA and oct-2-ynoyl-CoA are two competitive inhibitors of GCD. We also found that GCD has intrinsic isomerase activity, which was confirmed using incubation followed with HPLC analysis. IBD did not show this intrinsic isomerase activity. Glu370 was identified as the catalytic residue for both dehydrogenase and isomerase activities of the enzyme. Study for straight chain substrate specificity of rat GCD and IBD was also carried out. The results indicate that the straight chain substrate pattern of GCD was broader than that of IBD.

Moreover, based on above results, oct-2-yn-4-enoyl-CoA was identified as the first multifunctional irreversible enzyme inhibitor of fatty acid oxidation, which can inactivate long-chain fatty acid metabolism in both mitochondria and peroxisomes.

Table of Contents

Declaration	iii
Abstract	iv
Thesis acceptance form	vii
Acknowledgement	viii
Table of contents	ix
List of abbreviation	XV
List of figures	XX
List of tables	XXX
Publications	xxxii

Chapter 1 General introduction	1
1.1. Introduction of fatty acid oxidation	1
1.1.1. Introduction of fatty acid	1
1.1.2. Uptake, transport and activation of fatty acid in mammalian cell	4
1.1.3. Pathway for fatty acid oxidation	7
1.1.4. β-Oxidation	9
1.1.5. Auxiliary enzymes of PUFA oxidation	19
1.2. Introduction of metabolism of amino acid degradation	21
1.2.1. Pathway of amino acid degradation	22
1.2.2. The oxidation of α -keto acids from the degradation of branched-chain	
amino acid	27
1.3. 3-Ketoacyl-CoA thiolase (KT)	29
1.3.1. Structure of 3-ketoacyl-CoA thiolase	30
1.3.2. Catalytic mechanism of 3-ketoacyl-CoA thiolase	36
1.3.3. Inhibitors of 3-ketoacyl-CoA thiolase	40

1.3.4. 3-ketoacyl-CoA thiolase deficiency	. 42
1.4. Mitochondrial trifunctional protein (MTP)	. 42
1.4.1. Structure of mitochondrial trifunctional protein	. 44
1.4.2. Catalytic mechanism of mitochondrial trifunctional protein	. 52
1.4.3. Mitochondrial trifunctional protein deficiency	. 57
1.5. Glutaryl-CoA dehydrogenase (GCD)	. 59
1.5.1. Structure of glutaryl-CoA dehydrogenase	. 60
1.5.2. Catalytic mechanism of glutaryl-CoA dehydrogenase	. 64
1.5.3. Glutaryl-CoA dehydrogenase deficiency	. 67
1.6. Isobutyryl-CoA dehydrogenase (IBD)	. 67
1.6.1. Structure of isobutyryl-CoA dehydrogenase	. 68
1.6.2. Catalytic mechanism of isobutyryl-CoA dehydrogenase	. 75
1.6.3. Isobutyryl-CoA dehydrogenase deficiency	. 76
1.7. 2-Enoyl-CoA hydratase 2 (ECH 2)	. 77
1.7.1. Structure of 2-enoyl-CoA hydratase 2	. 80
1.7.2. Catalytic mechanism of 2-enoyl-CoA hydratase 2	. 83
1.7.3. Multifunctional enzyme type 2 (MFE-2) deficiency	. 86
1.8. Research foundation and objectives	. 87
Chapter 2 Materials and methods	
2.1. Materials	
2.2. Molecular cloning and gene mutagenesis	
2.2.1. General procedures	
2.2.2. Cloning of rat peroxisomal 2-enoyl-CoA hydratase 2 (ECH 2) gene	. 94
2.2.3. Cloning of rat mitochondrial glutaryl-CoA dehydrogenase (GCD) gene	
and construction of its mutants E370A and E370Q	
2.2.4. Cloning of rat mitochondrial isobutyryl-CoA dehydrogenase (IBD) gene	
and construction of its mutant E376D	. 98
2.2.5. Construction of rat mitochondrial 3-ketoacyl-CoA thiolase (KT) gene	
mutants C382A, C382S and C92S	
2.3. Gene expression and purification of wild-type and variant enzymes	101

2.4. Enzymatic studies
2.4.1. Determination of kinetic parameters for wild-type and variant enzymes 104
2.4.2. Methods for inhibitor studies
2.5. Preparation of CoA thioesters
2.6. Preparation of apoprotein of glutaryl-CoA dehydrogenase (GCD) 110
2.7. Protease digestion of enzyme-inhibitor complex
2.8. HPLC analysis methods
2.9. Separation of the enzyme complex of mitochondrial trifunctional protein by
FPLC system 113
2.10. Electrospray mass spectrometry
Chapter 3 Further studies of rat liver 3-ketoacyl-CoA thiolase
3.1. Studies of KT mutants
3.1.1. Construction of KT mutants C382S, C382A and C92S and expression and
purification of variant enzymes 115
3.1.2. Kinetic studies of KT mutants C382S, C382A and C92S 117
3.2. Intrinsic isomerase activity of KT
3.2.1. Kinetic studies for isomerase activity of KT 118
3.2.1. Kinetic studies for isomerase activity of KT
-
3.2.2. HPLC analysis of enzymatic incubation mixture
 3.2.2. HPLC analysis of enzymatic incubation mixture
 3.2.2. HPLC analysis of enzymatic incubation mixture
 3.2.2. HPLC analysis of enzymatic incubation mixture
 3.2.2. HPLC analysis of enzymatic incubation mixture
 3.2.2. HPLC analysis of enzymatic incubation mixture
 3.2.2. HPLC analysis of enzymatic incubation mixture
 3.2.2. HPLC analysis of enzymatic incubation mixture

Chapter 4 Characterization of rat liver mitochondrial trifunctional protein
and its inactivation study for medicine development
4.1. Overexpression and purification of MTP
4.1.1. Overexpression and purification of the α subunit, the β subunit and the
$\alpha_2\beta_2$ protein complex
4.1.2. Construction, overexpression and purification of the β subunit mutants
C105A, H395A and C425A
4.2. FPLC identification and separation of the protein complex of mitochondrial
trifunctional protein
4.3. Kinetic studies of MTP
4.3.1. Comparative kinetic studies of the α subunit, the β subunit and the $\alpha_2\beta_2$
protein complex
4.3.2. Effect of NAD ⁺ on the thiolase activity of the β subunit
4.3.3. Kinetic studies of the β subunit mutants C105A, C395A and C425A 152
4.4. Studies for inactivation of the MTP β subunit by trimetazidine
4.4.1. Studies for activity of trimetazidine on the MTP β subunit
4.4.2. Kinetic studies for inactivation of the MTP β subunit by trimetazidine 153
4.4.3. Mechanistic studies for inactivation of the MTP β subunit by trimetazidine
4.5. Studies for inactivation of the MTP β subunit by oct-2-yn-4-enoyl-CoA 166
4.5.1. Studies for activity of oct-2-yn-4-enoyl-CoA on the MTP β subunit 166
4.5.2. Kinetic studies for inactivation of the MTP β subunit by
oct-2-yn-4-enoyl-CoA
4.5.3. Mechanistic studies for inactivation of the MTP β subunit by
oct-2-yn-4-enoyl-CoA
4.6. Studies for inactivation of the MTP α subunit by enantiomerically pure (R)- and
(S)-(methylenecyclopropyl)formyl-CoA (MCPF-CoA) 174
4.6.1. Studies for activity of MCPF-CoA on the MTP α subunit
4.6.2. Kinetic studies for inactivation of the MTP α subunit by MCPF-CoA 176
4.6.3. Mechanistic studies for inactivation of the MTP α subunit by MCPF-CoA

Chapter 5 Comparative studies of glutaryl-CoA dehydrogenase and
isobutyryl-CoA dehydrogenase
5.1. Subcloning of the recombinant pET28a::GCD and pET28a::IBD plasmid 187
5.2. Expression and purification of rat mitochondrial GCD and IBD wild-type
enzymes and mutants
5.3. Comparative study on substrate specificity of rat mitochondrial GCD and IBD192
5.3.1. The effect of pH on the dehydrogenase activities of rat GCD and IBD 192
5.3.2. Kinetic studies of rat GCD and IBD194
5.3.3. The straight chain substrate specificity of rat GCD and IBD 195
5.4. Comparative study on inhibitors of rat mitochondrial GCD and IBD 196
5.4.1. Interaction of oct-2-ynoyl-CoA with rat GCD and IBD 196
5.4.2. Interaction of oct-2-yn-4-enoyl-CoA with rat GCD and IBD 199
5.5. Comparative study on intrinsic isomerase activity of rat mitochondrial GCD and
IBD 201
5.5.1. The kinetic characterization of isomerase activity of rat GCD 202
5.5.2. HPLC analysis of incubation mixture of rat GCD wild-type and mutants
with enoyl-CoA substrates
5.6. Further study for inactivation of the rat mitochondrial GCD by its inhibitors 207
5.6.1. Competitive inhibitors of rat mitochondrial GCD
5.6.2. Irreversible inhibitors of rat mitochondrial GCD
Chapter 6 Studies of rat peroxisomal 2-enoyl-CoA hydratase 2
6.1. Subcloning of the recombinant pLM1::ECH 2 plasmid
6.2. Expression and purification of rat peroxisomal ECH 2 wild-type protein 224
6.3. Kinetic studies of rat peroxisomal ECH 2
6.4. Studies for inactivation of the ECH 2 by enantiomerically pure (R)- and
(S)-(methylenecyclopropyl)formyl-CoA (MCPF-CoA)
6.4.1. Studies for activity of MCPF-CoA on the ECH 2

6.4.2. Kinetic studies for inactivation of the ECH 2 by MCPF-CoA 228
6.4.3. Mechanistic studies for inactivation of the ECH 2 by MCPF-CoA 231
6.5. Studies for inactivation of the ECH 2 by oct-3-ynoyl-CoA
6.5.1. Studies for activity of oct-3-ynoyl-CoA on the ECH 2
6.5.2. Kinetic studies of inactivation of the ECH2 by oct-3-ynoyl-CoA
6.5.3. Mechanistic studies for inactivation of the ECH 2 by oct-3-ynoyl-CoA. 240
6.6. Studies for inactivation of the ECH 2 by oct-2-yn-4-enoyl-CoA
6.6.1. Studies for activity of oct-2-yn-4-enoyl-CoA on the ECH 2
6.6.2. Kinetic studies for inactivation of the ECH2 by oct-2-yn-4-enoyl-CoA . 247
6.6.3. Mechanistic studies for inactivation of the ECH 2 by
oct-2-yn-4-enoyl-CoA
6.7. Oct-2-yn-4-enoyl-CoA as a multifunctional enzyme inhibitor in fatty acid
Oxidation
6.7.1. Studies for inactivation of the medium-chain acyl-CoA dehydrogenase by
oct-2-yn-4-enoyl-CoA
6.7.2. Oct-2-yn-4-enoyl-CoA as a multifunctional enzyme inhibitor in fatty acid
oxidation
Chapter 7 Summary and perspectives
References

List of Abbreviations

Å	Angstrom
AACoA	acetoacetyl-CoA
AcAcCoA	acetoacetyl-CoA
ABC	ATP-binding cassette
ACADSB	gene of short/branched chain acyl-CoA dehydrogenase
ACBP	acyl-CoA-binding protein
ACD/ACAD	acyl-CoA dehydrogenase
ACS	acyl-CoA synthetase
AD	Alzheimer's disease
ADP	adenosine diphosphate
AMP	Adenosine monophosphate
AOX	alcohol oxidase
ATP	adenosine triphosphate
B-factor	temperature factor
bp	base pair(s)
BSA	bovine serum albumin
4-CBA	4-chlorobenzoyl coenzyme A
CD	circular dichroism
cDNA	complementary deoxyribonucleic acid
Cn	carnitine
СоА	coenzyme A

СРТ	carnitine palmitoyltransferase
C-terminus	carboxyl terminus
DCIP	2,6-dichlorophenol indophenol
DNA	deoxyribonucleic acid
DTT	dithiothreitol
ECH 2	2-enoyl-CoA hydratase 2
ECI	$\Delta 3$ - $\Delta 2$ -enoyl-CoA isomerase
E. coli	Escherichia coli
EDTA	ethylenediaminetetraacetate
ER	endoplasmic reticulum
ETF	oxidized electron transfer flavoprotein
ETFH	reduced electron transfer flavoprotein
FA	fatty acids
FABP	fatty acid binding protein
FAD	flavin adenine dinucleotide (oxidized form)
FPLC	fast protein liquid chromatography
GBP	gastrin-binding protein
GCAD/GCD	glutaryl-CoA dehydrogenase
GC-MS	gas chromatography/mass spectrometry
GFP	green fluorescent protein
HADHA	the gene of the α -subunit of MTP
HADHB	the gene of the β -subunit of MTP

HADHSC	the gene of L-3-hydroxyacyl-CoA dehydrogenase
4-HBA	4-hydroxybenzoyl coenzyme A
HAD	L-3-hydroxyacyl-CoA dehydrogenase
HPLC	high-performance liquid chromatography
IBD	isobutyryl-CoA dehydrogenase
IPTG	isopropyl β -D-1-thiogalactopyranoside
IVA	isovaleric academia
IVD	isovaleryl-CoA dehydrogenase
kb	kilobase(s)
KT / KAT	3-ketoacyl-CoA thiolase
kDa	Kilodalton
LCAD	long-chain acyl-CoA dehydrogenase
LCHAD	long-chain 3-hydroxyacyl-CoA dehydrogenase
2MBCD	2-methylbutyryl-CoA dehydrogenase
MCAD	medium chain acyl-CoA dehydrogenase
MCPA-CoA	methylenecyclopropylacetyl-CoA
MFE-1, -2	multifunctional enzyme type 1, type 2
MIM	mitochondrial inner membrane
MISTIC	membrane-integrating sequence for translation of integral
	membrane protein constructs
mmBCFAs	monomethyl branched-chain fatty acids
MS/MS	tandem mass spectrometry

MTP / TFP	mitochondrial trifunctional protein	
NAD^+	nicotinamide adenine dinucleotide (oxidized form)	
NADH	nicotinamide adenine dinucleotide (reduced form)	
NCS	noncrystallographic symmetry	
NSAID	nonsteroidal anti-inflammatory drug	
nt	nucleotide(s)	
N-terminus	amino terminus	
ORE	oleate response element	
ORF	open reading frame	
PCR	polymerase chain reaction	
PD	Parkinson's disease	
PDB	protein data bank	
pFOX	partial fatty acid oxidation	
РННІ	persistent hyperinsulinemic hypoglycemia of infancy	
PMS	phenazine methosulfate	
PPi	pyrophosphate	
PUFA	poly unsaturated fatty acid	
RC	respiratory chain	
RNA	ribonucleic acid	
SBCAD	short/branched chain acyl-CoA dehydrogenase	
SCAD	short chain acyl-CoA dehydrogenase	
SCEH	short chain enoyl-CoA hydratase	

SCHAD	short chain 3-hydroxyacyl-CoA dehydrogenase
SDR	short-chain alcohol dehydrogenase/reductase
SDS-PAGE	sodium dodecyl sulfate polyacrylamide gel electrophoresis
UTR	untranslated region
UV	ultraviolet
VLCAD	very long-chain acyl-CoA dehydrogenase

List of Figures

Figure 1.1	Structures of the fatty acid
Figure 1.2	Schematic structures of the fatty acid molecules stearic acid (C18:0),
	oleic acid (C18:1 ω-9), linoleic acid (C18:2 ω-6), alpha-linolenic acid
	(C18:3 ω-3)
Figure 1.3	Hydrolysis of triacylglycerol by lipases
Figure 1.4	Fatty acids are activated by reaction with coenzyme A and ATP to
	yield fatty acyl-CoA7
Figure 1.5	Omega-oxidation pathways9
Figure 1.6	Transport of long-chain fatty acids from the cytoplasm to the inner
	mitochondrial space for oxidation
Figure 1.7	Model of the functional and physical organization of β -oxidation
	enzymes in mitochondria
Figure 1.8	Enzymology of mitochondrial inner-membrane-bound long-chain
	fatty acid β-oxidation system16
Figure 1.9	The routes for the degradation of double bonds in unsaturated fatty
	acids
Figure 1.10	Overview of the catabolism of amino acids
Figure 1.11	Outline of oxidative metabolism in mammalian tissue cells
Figure 1.12	A summary of the points of entry of the standard amino acids into the
	citric acid cycle
Figure 1.13	Metabolic pathway of the branched-chain amino acids, valine,
	isoleucine and leucine
Figure 1.14	The reactions catalyzed by thiolases
Figure 1.15	The sequence and secondary structure of 3-ketoacyl-CoA thiolase
	from Yeast
Figure 1.16	The active site of 3-ketoacyl-CoA thiolase
Figure 1.17	The modeled structure showing the relative position of acetoacetyl

	group and the catalytic residues	35
Figure 1.18	The proposed reaction mechanism for the degradative reaction of	
	thiolase	36
Figure 1.19	The two reactions catalysed in the active site of thiolase	38
Figure 1.20	"Ping-pong" mechanisms for thiolase reaction	39
Figure 1.21	β -Oxidation of long-chain fatty acyl-CoA by mitochondrial	
	trifunctional protein	44
Figure 1.22	Annotated sequences of (top panel) α - and (bottom panel) β -subuni	t of
	the mitochondrial trifunctional protein	47
Figure 1.23	Crystal Structure of <i>Pf</i> FOM complex.	50
Figure 1.24	Homology model of the human MTP complex.	51
Figure 1.25	Schematic diagram of a dehydrogenase of E. coli multienzyme	
	complex -NADH-3-ketoacyl-CoA ternary complex.	53
Figure 1.26	Schematic diagram of a model of the active site of <i>E. coli</i>	
	L-3-hydroxyacyl-CoA dehydrogenase.	54
Figure 1.27	Channelling mode.	56
Figure 1.28	Overall polypeptide fold of GCD	61
Figure 1.29	Subunit interactions involving the extreme carboxyl-terminal residu	ıes
	located in helix K of GCD	62
Figure 1.30	Structure-based sequence alignment of six acyl-CoA dehydrogenas	es
		63
Figure 1.31	Covalent bond-breaking and bond-forming reactions that occur wit	hin
	the active site of glutaryl-CoA dehydrogenase during the conversion	n of
	glutaryl-CoA to crotonyl-CoA	65
Figure 1.32	Peptide fold of the IBD monomer	69
Figure 1.33	Structure-based sequence alignments of the ACDs with known	
	structure	71
Figure 1.34	Binding cavities of ACDs.	74

Figure 1.35	Overlay of IBD subunit A (uncomplexed structure, green) and subunit
	C (product-bound structure, colored by atom colors)76
Figure 1.36	Alternative pathways for trans-2-enoyl-CoA to 3-ketoacyl-CoA in
	β-oxidation
Figure 1.37	Schematic domain distributions of the multifunctional enzymes of
	peroxisomal β-oxidation79
Figure 1.38	The crystal structure of 2-enoyl-CoA hydratase 2 part of C. tropicalis
	multifunctional enzyme type 2
Figure 1.39	alignment of the amino acid sequence of 2-enoyl-CoA hydratase 2 part
	of <i>C. tropicalis</i> Mfe2p (<i>Ct_H2</i>) with the corresponding parts of
	Saccharomyces cerevisiae (Sc_H2), human (Hs_H2), and rat (Rn_H2)
	multifunctional enzyme type 2s, as well as with monofunctional
	PhaJ2 from <i>P. aeruginosa</i> (<i>Pa_H2</i>) and <i>A. caviae</i> (<i>R</i>)-hydratase
	(<i>Ac_H2</i>)
Figure 1.40	The proposed reaction mechanism of hydratase 2
Figure 1.41	Architectures of the catalytic sites of hydratase 1 and 2
Figure 3.1	Coomassie blue-stained SDS-PAGE of the purified rat liver thiolase
	wild-type and variant enzymes
Figure 3.2	Analysis of incubation mixture using HPLC
Figure 3.3	Effect of pH on thiolase (\blacklozenge) and isomerase (\blacktriangle) activities of rat liver
	thiolase
Figure 3.4	The sequences of thiolases from various sources
Figure 3.5	HPLC profile of tryptic digests of rat liver thiolase (a) and inactivated
	thiolase (b)
Figure 3.6	Rat liver thiolase amino acid sequence
Figure 3.7	Mass spectrum of the peak eluted at 39 min from HPLC 130

Figure 3.8	Structure and degradation pattern of oct-2-ynoyl-CoA
Figure 3.9	MS/MS spectrum analysis of a 2309 Da peptide showing covalent
	modification of rat liver thiolase peptide (⁹¹ LCGSGFQSIVSGC
	QEICSK ¹⁰⁹) by oct-2-ynoyl-CoA132
Figure 3.10	HPLC profile of tryptic digests of rat liver thiolase C382A variant
	enzyme (a) and the incubation mixture of rat liver thiolase C382A
	variant enzyme with oct-2-ynoyl-CoA (b)
Figure 3.11	The proposed mechanism for the conversion of <i>trans</i> -3-enoyl-CoA to
	trans-2-enoyl-CoA by KT
Figure 3.12	The proposed mechanism for the inactivation of thiolase by
	3-alkynoyl-CoA
Figure 3.13	Proposed mechanism for the inactivation of the thiolase by
	2-alkynoyl-CoA
Figure 3.14	The proposed alternative mechanism for the inactivation of the
	thiolase by 2-alkynoyl-CoA through Michael addition
Figure 4.1	Agarose gel analysis for selection of positive clone including the α
	and the β subunit plasmids
Figure 4.2	Coomassie blue-stained SDS-PAGE of the purified rat MTP142
Figure 4.3	Coomassie blue-stained SDS-PAGE of the purified rat MTP
	β–subunit variant proteins
Figure 4.4	FPLC working curve for calculating protein molecular weight 145
Figure 4.5	Identification and separation of the MTP protein complex using
	FPLC
Figure 4.6	Relative activities of rat MTP protein complex with and without
	NAD ⁺ cofactor, the α -subunit, and the β -subunit
Figure 4.7	Inhibition of rat MTP β -subunit by trimetazidine
Figure 4.8	Kinetic studies for the inactivation of the MTP β -subunit by
	trimetazidine
Figure 4.9	HPLC profile for pepsin digestion of rat MTP β -subunit labeled by
	trimetazidine monitored with UV detector at 220 nm (A) and 250 nm

	(B)156
Figure 4.10	Control experiment of HPLC profile for pepsin digestion of rat MTP
	β -subunit monitored with UV detector at 220 nm (A) and 250 nm (B).
Figure 4.11	Rat MTP β–subunit amino acid sequence
Figure 4.12	Mass spectrum of the peak eluted at 46.9 minutes from HPLC 159
Figure 4.13	Structure of 1-(2,3,4-Trimethoxybenzyl) piperazine dihydrochloride
	(trimetazidine)
Figure 4.14	MS/MS spectrum analysis of a 2,902 Da peptide showing covalent
	modification of the β -subunit peptide (⁹³ SDKTPAHTVTMACIS
	SNQAMTTAVGL ¹¹⁸) by trimetazidine
Figure 4.15	The sequences of the MTP β -subunit and monofunctional
	3-ketoacyl-CoA thiolase from various sources
Figure 4.16	3D structure of rat MTP β -subunit obtained through homology
	modeling with SWISS-MODEL program highlighting three catalytic
	residues (C105, H395, and C425) in the center of the protein 165
Figure 4.17	Possible pathways for inactivation of the MTP β subunit by
	trimetazidine
Figure 4.18	Inhibition of rat MTP β-subunit by oct-2-yn-4-enoyl-CoA167
Figure 4.19	Kinetic studies for the inactivation of the MTP β -subunit by
	oct-2-yn-4-enoyl-CoA
Figure 4.20	HPLC profile for pepsin digestion of rat MTP β -subunit labeled by
	oct-2-yn-4-enoyl-CoA monitored with UV detector at 220 nm 170
Figure 4.21	HPLC profile for pepsin digestion of rat MTP β -subunit labeled by
	oct-2-yn-4-enoyl-CoA monitored with UV detector at 260 nm 170
Figure 4.22	Control experiment of HPLC profile for pepsin digestion of rat MTP
	β -subunit monitored with UV detector at 220 nm
Figure 4.23	Mass spectrum of the peak eluted at 49 minutes from HPLC 172
Figure 4.24	Structure and degradation pattern of oct-2-yn-4-enoyl-CoA 172
Figure 4.25	MS/MS spectrum analysis of a 1,865 Da peptide showing covalent

	modification of rat MTP β -subunit peptide (⁴²² VAA <u>C</u> AAGGQGHA
	MIVE ⁴³⁶) by oct-2-yn-4-enoyl-CoA
Figure 4.26	Proposed mechanism for inactivation of the MTP β subunit by
	oct-2-yn-4-enoyl-CoA
Figure 4.27	Inhibition of rat MTP α -subunit by (<i>R</i>)- and (<i>S</i>)-MCPF-CoA 175
Figure 4.28	Kinetic studies for time- and concentration-dependent inactivation of
	the MTP α subunit by (<i>R</i>)-MCPF-CoA
Figure 4.29	Kinetic studies for time- and concentration-dependent inactivation of
	the MTP α subunit by (S)-MCPF-CoA
Figure 4.30	HPLC profile for trypsin digestion of rat MTP α -subunit labeled by
	MCPF-CoA monitored with UV detector at 220 nm
Figure 4.31	HPLC profile for trypsin digestion of rat MTP α -subunit labeled by
	MCPF-CoA monitored with UV detector at 260 nm
Figure 4.32	Control experiment of HPLC profile for trypsin digestion of rat MTP
	α -subunit monitored with UV detector at 220 nm
Figure 4.33	Control experiment of HPLC profile for trypsin digestion of rat MTP
	α-subunit monitored with UV detector at 260 nm
Figure 4.34	Mass spectrum of the peak eluted at 50.2 minutes from HPLC 182
Figure 4.35	Structure and degradation pattern of MCPF-CoA
Figure 4.36	Rat MTP α–subunit amino acid sequence
Figure 4.37	MS/MS spectrum analysis of a 2,689 Da peptide showing covalent
	modification of the α -subunit peptide (¹³⁶ PVVAAISGSCLGG
	GL <u>E</u> LAIACQYR ¹⁵⁹) by MCPF-CoA
Figure 4.38	Proposed pathways for the inactivation of the MTP α -subunit by
	MCPF-CoA
Figure 5.1	(A) PCR product of glutaryl-CoA dehydrogenase; (B) Agarose gel
	analysis of the rat mitochondrial GCD
Figure 5.2	(A) PCR product of isobutyryl-CoA dehydrogenase; (B) Agarose gel
	analysis of the rat mitochondrial IBD
Figure 5.3	Coomassie blue-stained SDS-PAGE of the purified rat mitochondrial

	glutaryl-CoA dehydrogenase wild-type and variant enzymes	
Figure 5.4	Coomassie blue-stained SDS-PAGE of the purified rat mitochondrial	
	isobutyryl-CoA dehydrogenase wild-type and variant enzymes 192	
Figure 5.5	pH dependent curves of catalytic activity of rat GCD (A) and IBD (B)	
	wild-type for glutaryl-CoA and isobutyryl-CoA, respectively 193	
Figure 5.6	Inactivation of rat GCD by oct-2-ynoyl-CoA	
Figure 5.7	Kinetic studies for time- and concentration-dependent inactivation of	
	the GCD by oct-2-ynoyl-CoA	
Figure 5.8	Inactivation of rat GCD by oct-2-yn-4-enoyl-CoA 199	
Figure 5.9	Kinetic studies for the inactivation of the MTP β -subunit by	
	trimetazidine	
Figure 5.10	Analysis of incubation mixture using HPLC	
Figure 5.11	Inactivation of rat GCD by oct-2-en-4-ynoyl-CoA	
Figure 5.12	Competitive inhibition of rat GCD by oct-2-en-4-ynoyl-CoA 208	
Figure 5.13	Inhibition of rat GCD by oct-2-en-4-ynoyl-CoA	
Figure 5.14	Inactivation of rat GCD by oct-3-ynoyl-CoA	
Figure 5.15	Competitive inhibition of rat GCD by oct-3-ynoyl-CoA	
Figure 5.16	Inhibition of rat GCD by oct-3-ynoyl-CoA	
Figure 5.17	HPLC profile for trypsin digestion of rat GCD labeled by	
	oct-2-yn-4-enoyl-CoA monitored with UV detector at 220 nm 213	
Figure 5.18	HPLC profile for trypsin digestion of rat GCD labeled by	
	oct-2-ynoyl-CoA monitored with UV detector at 220 nm	
Figure 5.19	HPLC profile for trypsin digestion of rat GCD labeled by	
	oct-2-yn-4-enoyl-CoA monitored with UV detector at 260 nm 214	
Figure 5.20	HPLC profile for trypsin digestion of rat GCD labeled by	
	oct-2-ynoyl-CoA monitored with UV detector at 260 nm	
Figure 5.21	Control experiment of HPLC profile for trypsin digestion of rat GCD	
	monitored with UV detector at 220 nm	
Figure 5.22	Mass spectrum of the peak eluted at 57.6 minutes from HPLC 216	
Figure 5.23	Structure and degradation pattern of oct-2-yn-4-enoyl-CoA	

Figure 5.24	MS/MS spectrum analysis of a 2,942 Da peptide showing covalent
	modification of rat GCD peptide (⁴⁰⁸ HAMNLEAVNTY <u>E</u> GTHDIH
	ALILGR ⁴³¹) by oct-2-yn-4-enoyl-CoA
Figure 5.25	Rat GCD amino acid sequence
Figure 5.26	Mass spectrum of the peak eluted at 58.1 minutes from HPLC 219
Figure 5.27	Structure and degradation pattern of oct-2-ynoyl-CoA
Figure 5.28	MS/MS spectrum analysis of a 2,944 Da peptide showing covalent
	modification of rat GCD peptide (⁴⁰⁸ HAMNLEAVNTY <u>E</u> GTHD
	IHALILGR ⁴³¹) by oct-2-ynoyl-CoA
Figure 5.29	Proposed mechanism for inactivation of the GCD by
	oct-2-yn-4-enoyl-CoA
Figure 5.30	Proposed isomerization mechanism for inactivation of the GCD by
	oct-2-ynoyl-CoA
Figure 5.31	Proposed Michael addition mechanism for inactivation of the GCD
	by oct-2-ynoyl-CoA
Figure 6.1	(A) PCR product of 2-enoyl-CoA hydratase 2; (B) Agarose gel
	analysis of the rat peroxisomal ECH 2
Figure 6.2	Coomassie blue-stained SDS-PAGE of the purified rat ECH 2 225
Figure 6.3	pH dependent curve of catalytic activity of rat peroxisomal ECH 2
	wild-type for 2- <i>trans</i> -octenoyl-CoA
Figure 6.4	Inhibition of rat ECH 2 by (<i>R</i>)- and (<i>S</i>)-MCPF-CoA
Figure 6.5	Kinetic studies for time- and concentration-dependent inactivation of
	the ECH 2 by (<i>R</i>)-MCPF-CoA
Figure 6.6	Kinetic studies for time- and concentration-dependent inactivation of
	the ECH 2 by (<i>S</i>)-MCPF-CoA
Figure 6.7	Effect of (R) - and (S) -MCPF-CoA on the catalytic activity of rat
	ECH2
Figure 6.8	HPLC profile for trypsin digestion of rat ECH 2 labeled by
	MCPF-CoA monitored with UV detector at 220 nm
Figure 6.9	HPLC profile for trypsin digestion of rat ECH 2 labeled by

	MCPF-CoA monitored with UV detector at 260 nm	
Figure 6.10	Control experiment of HPLC profile for trypsin digestion of rat ECH	
	2 monitored with UV detector at 220 nm	
Figure 6.11	Mass spectrum of the peak eluted at 57.5 minutes from HPLC 234	
Figure 6.12	Rat ECH 2 amino acid sequence	
Figure 6.13	MS/MS spectrum analysis of a 2,719 Da peptide showing covalent	
	modification of the ECH 2 peptide (⁴⁴ FVY <u>E</u> GSADFSCLPTFGVIVA	
	QK ⁶⁵) by MCPF-CoA	
Figure 6.14	Inhibition of rat ECH 2 by oct-3-ynoyl-CoA	
Figure 6.15	Kinetic studies for time- and concentration-dependent inactivation of	
the ECH 2 by	oct-3-ynoyl-CoA	
Figure 6.16	Effect of oct-3-ynoyl-CoA on the catalytic activity of rat ECH 2 239	
Figure 6.17	HPLC profile for trypsin digestion of rat ECH 2 labeled by	
	oct-3-ynoyl-CoA monitored with UV detector at 220 nm	
Figure 6.18	HPLC profile for trypsin digestion of rat ECH 2 labeled by	
	oct-3-ynoyl-CoA monitored with UV detector at 260 nm	
Figure 6.19	Control experiment of HPLC profile for trypsin digestion of rat ECH	
	2 monitored with UV detector at 220 nm	
Figure 6.20	Mass spectrum of the peak eluted at 39 minutes from HPLC	
Figure 6.21	Structure and degradation pattern of oct-3-ynoyl-CoA	
Figure 6.22	MS/MS spectrum analysis of a 2,647 Da peptide showing covalent	
	modification of the ECH 2 peptide (⁴⁴ FVY <u>E</u> GSADFSCLPTFGVIVA	
	QK ⁶⁵) by oct-3-ynoyl-CoA	
Figure 6.23	Proposed Michael addition mechanism for inactivation of the ECH 2	
	by oct-3-ynoyl-CoA	
Figure 6.24	Inhibition of rat ECH 2 by oct-2-yn-4-enoyl-CoA	
Figure 6.25	Kinetic studies for time- and concentration-dependent inactivation of	
	the ECH 2 by oct-2-yn-4-enoyl-CoA	

Figure 6.26	Effect of oct-2-yn-4-enoyl-CoA on the catalytic activity of rat
	ECH 2
Figure 6.27	HPLC profile for trypsin digestion of rat ECH 2 labeled by
	oct-2-yn-4-enoyl-CoA monitored with UV detector at 220 nm 250
Figure 6.28	HPLC profile for trypsin digestion of rat ECH2 labeled by
	oct-2-yn-4-enoyl-CoA monitored with UV detector at 260 nm 250
Figure 6.29	Control experiment of HPLC profile for trypsin digestion of rat
	ECH2 monitored with UV detector at 220 nm
Figure 6.30	Mass spectrum of the peak eluted at 63 minutes from HPLC 251
Figure 6.31	MS/MS spectrum analysis of a 2,758 Da peptide showing covalent
modification of	of rat ECH 2 peptide (⁴⁴ FVY <u>E</u> GSADFSCLPT FGVIVAQK ⁶⁵) by
	oct-2-yn-4-enoyl-CoA
Figure 6.32	HPLC profile for trypsin digestion of rat MCAD labeled by
	oct-2-yn-4-enoyl-CoA monitored with UV detector at 220 nm 255
Figure 6.33	HPLC profile for trypsin digestion of rat MCAD labeled by
	oct-2-yn-4-enoyl-CoA monitored with UV detector at 260 nm 255
Figure 6.34	Control experiment of HPLC profile for trypsin digestion of rat
	MCAD monitored with UV detector at 220 nm
Figure 6.35	Rat MCAD amino acid sequence
Figure 6.36	Mass spectrum of the peak eluted at 45.8 minutes from HPLC 257
Figure 6.37	MS/MS spectrum analysis of a 1,963 Da peptide showing covalent
	modification of rat MCAD peptide (371 IYQIY <u>E</u> GTAQIQR 383) by
	oct-2-yn-4-enoyl-CoA

List of Tables

Table 3.1	Kinetic parameters for the thiolase activity of rat thiolase wild-type
	and variant proteins using acetoacetyl-CoA as the substrate 118
Table 3.2	Kinetic parameters for isomerase activity of rat thiolase wild-type and
	variant enzymes using <i>cis</i> -3-hexenoyl-CoA as substrate
Table 3.3	Kinetic parameters for isomerase activity of rat thiolase with various
	substrates
Table 3.4	Kinetic properties of enoyl-CoA isomerase activities of enzymes from
	various sources
Table 4.1	Purification of rat MTP α , β subunit and MTP protein complex 143
Table 4.2	Kinetic parameters for enoyl-CoA hydratase activities of the α subunit
	and the MTP complex
Table 4.3	Kinetic parameters for 3-hydroxyacyl-CoA dehydrogenase activities
	of the α subunit and the MTP complex
Table 4.4	Kinetic parameters for 3-ketoacyl-CoA thiolase activities of the β
	subunit and the MTP complex149
Table 4.5	Kinetic parameters for enoyl-CoA hydratase activities of the MTP
	complex and mixed α subunit and β subunit <i>in vitro</i>
Table 4.6	Kinetic parameters for 3-hydroxyacyl-CoA dehydrogenase activities
	of MTP complex and mixed α subunit and β subunit <i>in vitro</i>
Table 4.7	Kinetic parameters for 3-ketoacyl-CoA thiolase activities of MTP
	complex and mixed α subunit and β subunit <i>in vitro</i>
Table 4.8	Effect of NAD ⁺ on the thiolase activity of the β subunit
Table 4.9	Kinetic parameters for 3-ketoacyl-CoA thiolase activities of the MTP
	β -subunit wild-type and variant enzymes with
	3-keto-hexadecanoyl-CoA as the substrate
Table 5.1	Kinetic parameters for the dehydrogenase activity of rat GCD and
	IBD wild-type and variant enzymes using their natural substrates 194

Table 5.2	Comparative study on straight chain substrate specificity of rat GCD	
	and IBD	195
Table 5.3	Kinetic parameters for isomerase activity of rat thiolase wild-typ	e and
	variant enzymes using cis-3-hexenoyl-CoA as substrate	202
Table 5.4	Kinetic parameters for isomerase activity of rat GCD with variou	S
	substrates	203
Table 6.1	Purification of rat 2-enoyl-CoA hydratase 2	226
Table 6.2	Kinetic parameters and labeled residue for inactivation of ECH 2	by
	its inhibitors	253
Table 6.3	Kinetic parameters and labeled residues for inactivation of enzym	nes
	by oct-2-yn-4-enoyl-CoA	260