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Characterization and Inactivation Study of the Enzymes 

 Involved in Fatty Acid Oxidation 

Abstract 

 

  Numerous diseases have been reported in relation to fatty acids, such as 

cardiovascular disease, cancer, diabetes, etc. The regulation of fatty acid oxidation has 

been reported as a potential method treating non-insulin dependent diabetes mellitus 

(NIDDM) and inhibitors of enzymes involved in the metabolism of fatty acids have 

been synthesized and studied as potential medicines. Mitochondrial trifunctional 

protein (MTP), 3-ketoacyl-CoA thiolase (KT), and 2-enoyl-CoA hydratase 2 (ECH 2) 

are three key enzymes involved in the β-oxidation of fatty acid. Glutaryl-CoA 

dehydrogenase (GCD) and isobutyryl-CoA dehydrogenase (IBD) catalyze the 

oxidation of branched chain fatty acids from the catabolism of amino acids. 

  MTP catalyzes the last three steps of the β-oxidation of long-chain fatty acids. The 

3-hydroxyacyl-CoA dehydrogenase and enoyl-CoA hydratase activities reside on the 

α-subunit, whereas the 3-ketoacyl-CoA thiolase activity is located on the β-subunit. 

This enzyme complex is bound to the mitochondrial inner membrane. Both the α and 

the β subunit were overexpressed and purified separately with nickel-metal affinity 

column to apparent homogeneity. The pMIS3.0E::β plasmid was then transformed 

into competent cells containing pMIS3.0E::α plasmid, and the MTP containing both 

the α and the β subunit was overexpressed and purified as a protein complex. FPLC 

analysis indicates that the MTP contains two α subunits and two β subunits. Kinetic 

studies of the α subunit, the β subunit, and the MTP α2β2 protein complex were carried 

out. The results show that all three enzymatic activities including enoyl-CoA 

hydratase, 3-hydroxyacyl-CoA dehydrogenase, and acyl-CoA thiolase activities, 
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increased when the α and the β subunit form α2β2 complex. The MTP α2β2 complex 

prefers longer chain substrate in both binding capacity and catalytic rate. 

(Methylenecyclopropyl)formyl-CoA (MCPF-CoA) was found to be a 

mechanism-based irreversible inhibitor of the α subunit,  while trimetazidine and 

oct-2-yn-4-enoyl-CoA were found to be two mechanism-based irreversible inhibitors 

of the β subunit. The mechanistic studies of the inactivation of the α and the β subunit 

by above three inhibitors were carried out. Glu151, Cys105 and Cys424 were found to 

be labeled by MCPF-CoA, trimetazidine and oct-2-yn-4-enoyl-CoA, respectively.   

  KT catalyzes the last step reaction of the β-oxidation cycle, which involves thiolytic 

cleavage of 3-ketoacyl-CoA substrate by free coenzyme A. We found that the enzyme 

has intrinsic isomerase activity, which was confirmed using incubation followed with 

HPLC analysis. The isomerase activity of the enzyme was thoroughly characterized 

through studies of kinetics, substrate specificity, pH dependence, and enzyme 

inhibition. Cys382 was identified as the catalytic residue for both thiolase and 

isomerase activities of the enzyme. In addition, we found that Cys92 was covalently 

labeled by oct-2-ynoyl-CoA. This result clearly demonstrated that oct-2-ynoyl-CoA is 

an irreversible inhibitor of the thiolase. This study of selective inactivation of KT by 

2-alkynoyl-CoA via its intrinsic isomerase activity provides an example for rationally 

developing mechanism-based inhibitors based on a side activity of the enzyme, and 

may become a supplemental method for better treatment of cardiovascular disease and 

cancer. 

  ECH 2 is the middle part of the mammalian peroxisomal multifunctional enzyme 

type 2 (MFE-2), which catalyzes the second reaction of the fatty acid β-oxidation. 

We cloned the gene of rat ECH 2 to a bacterial expression vector pLM1 with six 

continuous histidine codons attached to the N-terminus of the gene. Cloned gene of 

ECH 2 was overexpressed in Escherichia coli and purified. MCPF-CoA, 
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oct-3-ynoyl-CoA and oct-2-yn-4-enoyl-CoA were identified as three new irreversible 

inhibitors of ECH 2 and Glu47 of ECH 2 was covalently labeled by these inhibitors. 

Comparative inhibition studies of ECH 1 and ECH 2 were carried out. This result 

indicates ECH1 and ECH2 have certain difference in active site geometry. 

Oct-3-ynoyl-CoA may selectively inactivate the β-oxidation in peroxisomes without 

significant effect on the β-oxidation in mitochondria. 

  GCD and IBD are two enzymes involved in oxidation of branched chain fatty acids, 

which are in the pathways for the catabolism of lysine and valine, respectively. We 

cloned the genes of rat GCD and IBD in a bacterial expression vector pET28a. Cloned 

genes of GCD and IBD were overexpressed in Escherichia coli and purified. We 

found that oct-4-en-2-ynoyl-CoA and oct-2-ynoyl-CoA are two irreversible inhibitors 

of GCD, but these two compounds have no inhibition on IBD. Glu419 was found to be 

labeled by oct-4-en-2-ynoyl-CoA and oct-2-ynoyl-CoA. In addition, we also noted that 

oct-3-ynoyl-CoA and oct-2-en-4-yn-CoA are two competitive inhibitors of GCD. We 

also found that GCD has intrinsic isomerase activity, which was confirmed using 

incubation followed with HPLC analysis. IBD did not show this intrinsic isomerase 

activity. Glu370 was identified as the catalytic residue for both dehydrogenase and 

isomerase activities of the enzyme. Study for straight chain substrate specificity of rat 

GCD and IBD was also carried out. The results indicate that the straight chain 

substrate pattern of GCD was broader than that of IBD. 

  Moreover, based on above results, oct-2-yn-4-enoyl-CoA was identified as the first 

multifunctional irreversible enzyme inhibitor of fatty acid oxidation, which can 

inactivate long-chain fatty acid metabolism in both mitochondria and peroxisomes. 
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