Characterization and Inactivation
Studies of Enzymes Involved in Fatty
Acid Oxidation

WU LONG

DOCTOR OF PHILOSOPHY
CITY UNIVERSITY OF HONG KONG
AUGUST 2008
CITY UNIVERSITY OF HONG KONG
香港城市大學

Characterization and Inactivation Studies of Enzymes Involved in Fatty Acid Oxidation
參與脂肪酸代謝的酶的表征和失活研究

Submitted to
Department of Biology and Chemistry
生物及化學系
in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy
哲學博士學位

by

Wu Long
武龍

August 2008
二零零八年八月
Characterization and Inactivation Study of the Enzymes Involved in Fatty Acid Oxidation

Abstract

Numerous diseases have been reported in relation to fatty acids, such as cardiovascular disease, cancer, diabetes, etc. The regulation of fatty acid oxidation has been reported as a potential method treating non-insulin dependent diabetes mellitus (NIDDM) and inhibitors of enzymes involved in the metabolism of fatty acids have been synthesized and studied as potential medicines. Mitochondrial trifunctional protein (MTP), 3-ketoacyl-CoA thiolase (KT), and 2-enoyl-CoA hydratase 2 (ECH 2) are three key enzymes involved in the β-oxidation of fatty acid. Glutaryl-CoA dehydrogenase (GCD) and isobutyryl-CoA dehydrogenase (IBD) catalyze the oxidation of branched chain fatty acids from the catabolism of amino acids.

MTP catalyzes the last three steps of the β-oxidation of long-chain fatty acids. The 3-hydroxyacyl-CoA dehydrogenase and enoyl-CoA hydratase activities reside on the α-subunit, whereas the 3-ketoacyl-CoA thiolase activity is located on the β-subunit. This enzyme complex is bound to the mitochondrial inner membrane. Both the α and the β subunit were overexpressed and purified separately with nickel-metal affinity column to apparent homogeneity. The pMIS3.0E::β plasmid was then transformed into competent cells containing pMIS3.0E::α plasmid, and the MTP containing both the α and the β subunit was overexpressed and purified as a protein complex. FPLC analysis indicates that the MTP contains two α subunits and two β subunits. Kinetic studies of the α subunit, the β subunit, and the MTP αβ2 protein complex were carried out. The results show that all three enzymatic activities including enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase, and acyl-CoA thiolase activities,
increased when the α and the β subunit form α₂β₂ complex. The MTP α₂β₂ complex prefers longer chain substrate in both binding capacity and catalytic rate. (Methylenecyclopropyl)formyl-CoA (MCPF-CoA) was found to be a mechanism-based irreversible inhibitor of the α subunit, while trimetazidine and oct-2-yn-4-enoyl-CoA were found to be two mechanism-based irreversible inhibitors of the β subunit. The mechanistic studies of the inactivation of the α and the β subunit by above three inhibitors were carried out. Glu151, Cys105 and Cys424 were found to be labeled by MCPF-CoA, trimetazidine and oct-2-yn-4-enoyl-CoA, respectively.

KT catalyzes the last step reaction of the β-oxidation cycle, which involves thiolytic cleavage of 3-ketoacyl-CoA substrate by free coenzyme A. We found that the enzyme has intrinsic isomerase activity, which was confirmed using incubation followed with HPLC analysis. The isomerase activity of the enzyme was thoroughly characterized through studies of kinetics, substrate specificity, pH dependence, and enzyme inhibition. Cys382 was identified as the catalytic residue for both thiolase and isomerase activities of the enzyme. In addition, we found that Cys92 was covalently labeled by oct-2-ynoyl-CoA. This result clearly demonstrated that oct-2-ynoyl-CoA is an irreversible inhibitor of the thiolase. This study of selective inactivation of KT by 2-alkynoyl-CoA via its intrinsic isomerase activity provides an example for rationally developing mechanism-based inhibitors based on a side activity of the enzyme, and may become a supplemental method for better treatment of cardiovascular disease and cancer.

ECH 2 is the middle part of the mammalian peroxisomal multifunctional enzyme type 2 (MFE-2), which catalyzes the second reaction of the fatty acid β-oxidation. We cloned the gene of rat ECH 2 to a bacterial expression vector pLM1 with six continuous histidine codons attached to the N-terminus of the gene. Cloned gene of ECH 2 was overexpressed in *Escherichia coli* and purified. MCPF-CoA,
oct-3-ynoyl-CoA and oct-2-yn-4-enoyl-CoA were identified as three new irreversible inhibitors of ECH 2 and Glu47 of ECH 2 was covalently labeled by these inhibitors. Comparative inhibition studies of ECH 1 and ECH 2 were carried out. This result indicates ECH1 and ECH2 have certain difference in active site geometry. Oct-3-ynoyl-CoA may selectively inactivate the β-oxidation in peroxisomes without significant effect on the β-oxidation in mitochondria.

GCD and IBD are two enzymes involved in oxidation of branched chain fatty acids, which are in the pathways for the catabolism of lysine and valine, respectively. We cloned the genes of rat GCD and IBD in a bacterial expression vector pET28a. Cloned genes of GCD and IBD were overexpressed in *Escherichia coli* and purified. We found that oct-4-en-2-ynoyl-CoA and oct-2-ynoyl-CoA are two irreversible inhibitors of GCD, but these two compounds have no inhibition on IBD. Glu419 was found to be labeled by oct-4-en-2-ynoyl-CoA and oct-2-ynoyl-CoA. In addition, we also noted that oct-3-ynoyl-CoA and oct-2-en-4-yn-CoA are two competitive inhibitors of GCD. We also found that GCD has intrinsic isomerase activity, which was confirmed using incubation followed with HPLC analysis. IBD did not show this intrinsic isomerase activity. Glu370 was identified as the catalytic residue for both dehydrogenase and isomerase activities of the enzyme. Study for straight chain substrate specificity of rat GCD and IBD was also carried out. The results indicate that the straight chain substrate pattern of GCD was broader than that of IBD.

Moreover, based on above results, oct-2-yn-4-enoyl-CoA was identified as the first multifunctional irreversible enzyme inhibitor of fatty acid oxidation, which can inactivate long-chain fatty acid metabolism in both mitochondria and peroxisomes.
Table of Contents

Declaration iii
Abstract iv
Thesis acceptance form vii
Acknowledgement viii
Table of contents ix
List of abbreviation xv
List of figures xx
List of tables xxx
Publications xxxii

Chapter 1 General introduction ... 1
1.1. Introduction of fatty acid oxidation ... 1
 1.1.1. Introduction of fatty acid ... 1
 1.1.2. Uptake, transport and activation of fatty acid in mammalian cell 4
 1.1.3. Pathway for fatty acid oxidation .. 7
 1.1.4. β-Oxidation ... 9
 1.1.5. Auxiliary enzymes of PUFA oxidation .. 19
1.2. Introduction of metabolism of amino acid degradation 21
 1.2.1. Pathway of amino acid degradation .. 22
 1.2.2. The oxidation of α-keto acids from the degradation of branched-chain amino acid ... 27
1.3. 3-Ketoacyl-CoA thiolase (KT) ... 29
 1.3.1. Structure of 3-ketoacyl-CoA thiolase .. 30
 1.3.2. Catalytic mechanism of 3-ketoacyl-CoA thiolase 36
 1.3.3. Inhibitors of 3-ketoacyl-CoA thiolase .. 40
1.3.4. 3-ketoacyl-CoA thiolase deficiency ... 42
1.4. Mitochondrial trifunctional protein (MTP) .. 42
 1.4.1. Structure of mitochondrial trifunctional protein .. 44
 1.4.2. Catalytic mechanism of mitochondrial trifunctional protein 52
 1.4.3. Mitochondrial trifunctional protein deficiency ... 57
1.5. Glutaryl-CoA dehydrogenase (GCD) .. 59
 1.5.1. Structure of glutaryl-CoA dehydrogenase .. 60
 1.5.2. Catalytic mechanism of glutaryl-CoA dehydrogenase 64
 1.5.3. Glutaryl-CoA dehydrogenase deficiency ... 67
1.6. Isobutyryl-CoA dehydrogenase (IBD) ... 67
 1.6.1. Structure of isobutyryl-CoA dehydrogenase .. 68
 1.6.2. Catalytic mechanism of isobutyryl-CoA dehydrogenase 75
 1.6.3. Isobutyryl-CoA dehydrogenase deficiency .. 76
1.7. 2-Enoyl-CoA hydratase 2 (ECH 2) .. 77
 1.7.1. Structure of 2-enoyl-CoA hydratase 2 .. 80
 1.7.2. Catalytic mechanism of 2-enoyl-CoA hydratase 2 83
 1.7.3. Multifunctional enzyme type 2 (MFE-2) deficiency 86
1.8. Research foundation and objectives ... 87

Chapter 2 Materials and methods ... 89
 2.1. Materials ... 89
 2.2. Molecular cloning and gene mutagenesis ... 89
 2.2.1. General procedures ... 89
 2.2.2. Cloning of rat peroxisomal 2-enoyl-CoA hydratase 2 (ECH 2) gene 94
 2.2.3. Cloning of rat mitochondrial glutaryl-CoA dehydrogenase (GCD) gene and construction of its mutants E370A and E370Q... 96
 2.2.4. Cloning of rat mitochondrial isobutyryl-CoA dehydrogenase (IBD) gene and construction of its mutant E376D ... 98
 2.2.5. Construction of rat mitochondrial 3-ketoacyl-CoA thiolase (KT) gene mutants C382A, C382S and C92S ... 100
 2.3. Gene expression and purification of wild-type and variant enzymes 101
Chapter 3 Further studies of rat liver 3-ketoacyl-CoA thiolase 115

3.1. Studies of KT mutants .. 115

3.1.1. Construction of KT mutants C382S, C382A and C92S and expression and purification of variant enzymes ... 115

3.1.2. Kinetic studies of KT mutants C382S, C382A and C92S 117

3.2. Intrinsic isomerase activity of KT .. 118

3.2.1. Kinetic studies for isomerase activity of KT ... 118

3.2.2. HPLC analysis of enzymatic incubation mixture 120

3.2.3. pH dependence of thiolase and isomerase activities for KT 122

3.2.4. Comparison of KT with other enzymes for their isomerase activities 123

3.3. Sequence alignment of thiolases from various sources 125

3.4. Mechanistic studies for inactivation of KT by oct-2-ynoyl-CoA 127

3.4.1. Trypsin digestion of incubation mixture of KT wild-type enzyme and 2-octynoyl-CoA, and HPLC separation of the peptide mixture 127

3.4.2. Trypsin digestion of incubation mixture of KT variant enzyme C382A and 2-octynoyl-CoA, and HPLC separation of the peptide mixture 129

3.4.3. Mass and MS/MS analysis of resulting peptide 133

3.4.4. Proposed mechanism for inactivation of KT by oct-2-ynoyl-CoA 135
Chapter 4 Characterization of rat liver mitochondrial trifunctional protein

and its inactivation study for medicine development 138

4.1. Overexpression and purification of MTP .. 140

4.1.1. Overexpression and purification of the α subunit, the β subunit and the
 α2β2 protein complex .. 140

4.1.2. Construction, overexpression and purification of the β subunit mutants
 C105A, H395A and C425A .. 143

4.2. FPLC identification and separation of the protein complex of mitochondrial
 trifunctional protein .. 145

4.3. Kinetic studies of MTP .. 147

4.3.1. Comparative kinetic studies of the α subunit, the β subunit and the α2β2
 protein complex .. 147

4.3.2. Effect of NAD+ on the thiolase activity of the β subunit 151

4.3.3. Kinetic studies of the β subunit mutants C105A, C395A and C425A 152

4.4. Studies for inactivation of the MTP β subunit by trimetazidine 152

4.4.1. Studies for activity of trimetazidine on the MTP β subunit 152

4.4.2. Kinetic studies for inactivation of the MTP β subunit by trimetazidine .. 153

4.4.3. Mechanistic studies for inactivation of the MTP β subunit by trimetazidine
 .. 155

4.5. Studies for inactivation of the MTP β subunit by oct-2-yn-4-enoyl-CoA 166

4.5.1. Studies for activity of oct-2-yn-4-enoyl-CoA on the MTP β subunit 166

4.5.2. Kinetic studies for inactivation of the MTP β subunit by oct-2-yn-4-enoyl-CoA
 .. 167

4.5.3. Mechanistic studies for inactivation of the MTP β subunit by oct-2-yn-4-enoyl-CoA
 .. 169

4.6. Studies for inactivation of the MTP α subunit by enantiomerically pure (R)- and
 (S)-(methylenecyclopropyl)formyl-CoA (MCPF-CoA) 174

4.6.1. Studies for activity of MCPF-CoA on the MTP α subunit 174

4.6.2. Kinetic studies for inactivation of the MTP α subunit by MCPF-CoA 176

4.6.3. Mechanistic studies for inactivation of the MTP α subunit by MCPF-CoA
Chapter 5 Comparative studies of glutaryl-CoA dehydrogenase and isobutyryl-CoA dehydrogenase

5.1. Subcloning of the recombinant pET28a::GCD and pET28a::IBD plasmid

5.2. Expression and purification of rat mitochondrial GCD and IBD wild-type enzymes and mutants

5.3. Comparative study on substrate specificity of rat mitochondrial GCD and IBD

5.3.1. The effect of pH on the dehydrogenase activities of rat GCD and IBD

5.3.2. Kinetic studies of rat GCD and IBD

5.3.3. The straight chain substrate specificity of rat GCD and IBD

5.4. Comparative study on inhibitors of rat mitochondrial GCD and IBD

5.4.1. Interaction of oct-2-ynoyl-CoA with rat GCD and IBD

5.4.2. Interaction of oct-2-yn-4-enoyl-CoA with rat GCD and IBD

5.5. Comparative study on intrinsic isomerase activity of rat mitochondrial GCD and IBD

5.5.1. The kinetic characterization of isomerase activity of rat GCD

5.5.2. HPLC analysis of incubation mixture of rat GCD wild-type and mutants with enoyl-CoA substrates

5.6. Further study for inactivation of the rat mitochondrial GCD by its inhibitors

Chapter 6 Studies of rat peroxisomal 2-enoyl-CoA hydratase

6.1. Subcloning of the recombinant pLM1::ECH plasmid

6.2. Expression and purification of rat peroxisomal ECH wild-type protein

6.3. Kinetic studies of rat peroxisomal ECH

6.4. Studies for inactivation of the ECH 2 by enantiomerically pure (R) and (S)-methylene cyclopropyl formyl-CoA (MCPF-CoA)

6.4.1. Studies for activity of MCPF-CoA on the ECH 2
6.4.2. Kinetic studies for inactivation of the ECH 2 by MCPF-CoA 228
6.4.3. Mechanistic studies for inactivation of the ECH 2 by MCPF-CoA 231
6.5. Studies for inactivation of the ECH 2 by oct-3-ynoyl-CoA 237
 6.5.1. Studies for activity of oct-3-ynoyl-CoA on the ECH 2 237
 6.5.2. Kinetic studies of inactivation of the ECH2 by oct-3-ynoyl-CoA 238
 6.5.3. Mechanistic studies for inactivation of the ECH 2 by oct-3-ynoyl-CoA . 240
6.6. Studies for inactivation of the ECH 2 by oct-2-yn-4-enoyl-CoA 246
 6.6.1. Studies for activity of oct-2-yn-4-enoyl-CoA on the ECH 2 246
 6.6.2. Kinetic studies for inactivation of the ECH2 by oct-2-yn-4-enoyl-CoA . 247
 6.6.3. Mechanistic studies for inactivation of the ECH 2 by
 oct-2-yn-4-enoyl-CoA .. 249
6.7. Oct-2-yn-4-enoyl-CoA as a multifunctional enzyme inhibitor in fatty acid
 Oxidation ... 253
 6.7.1. Studies for inactivation of the medium-chain acyl-CoA dehydrogenase by
 oct-2-yn-4-enoyl-CoA .. 254
 6.7.2. Oct-2-yn-4-enoyl-CoA as a multifunctional enzyme inhibitor in fatty acid
 oxidation ... 259

Chapter 7 Summary and perspectives ... 261

References ... 267
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Å</td>
<td>Angstrom</td>
</tr>
<tr>
<td>AAcCoA</td>
<td>acetoacetyl-CoA</td>
</tr>
<tr>
<td>AcAcCoA</td>
<td>acetoacetyl-CoA</td>
</tr>
<tr>
<td>ABC</td>
<td>ATP-binding cassette</td>
</tr>
<tr>
<td>ACADSB</td>
<td>gene of short/branched chain acyl-CoA dehydrogenase</td>
</tr>
<tr>
<td>ACBP</td>
<td>acyl-CoA-binding protein</td>
</tr>
<tr>
<td>ACD/ACAD</td>
<td>acyl-CoA dehydrogenase</td>
</tr>
<tr>
<td>ACS</td>
<td>acyl-CoA synthetase</td>
</tr>
<tr>
<td>AD</td>
<td>Alzheimer’s disease</td>
</tr>
<tr>
<td>ADP</td>
<td>adenosine diphosphate</td>
</tr>
<tr>
<td>AMP</td>
<td>Adenosine monophosphate</td>
</tr>
<tr>
<td>AOX</td>
<td>alcohol oxidase</td>
</tr>
<tr>
<td>ATP</td>
<td>adenosine triphosphate</td>
</tr>
<tr>
<td>B-factor</td>
<td>temperature factor</td>
</tr>
<tr>
<td>bp</td>
<td>base pair(s)</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumin</td>
</tr>
<tr>
<td>4-CBA</td>
<td>4-chlorobenzoyl coenzyme A</td>
</tr>
<tr>
<td>CD</td>
<td>circular dichroism</td>
</tr>
<tr>
<td>cDNA</td>
<td>complementary deoxyribonucleic acid</td>
</tr>
<tr>
<td>Cn</td>
<td>carnitine</td>
</tr>
<tr>
<td>CoA</td>
<td>coenzyme A</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>CPT</td>
<td>carnitine palmitoyltransferase</td>
</tr>
<tr>
<td>C-terminus</td>
<td>carboxyl terminus</td>
</tr>
<tr>
<td>DCIP</td>
<td>2,6-dichlorophenol indophenol</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>DTT</td>
<td>dithiothreitol</td>
</tr>
<tr>
<td>ECH 2</td>
<td>2-enoyl-CoA hydratase 2</td>
</tr>
<tr>
<td>ECI</td>
<td>Δ3-Δ2-enoyl-CoA isomerase</td>
</tr>
<tr>
<td>E. coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediaminetetraacetate</td>
</tr>
<tr>
<td>ER</td>
<td>endoplasmic reticulum</td>
</tr>
<tr>
<td>ETF</td>
<td>oxidized electron transfer flavoprotein</td>
</tr>
<tr>
<td>ETFH</td>
<td>reduced electron transfer flavoprotein</td>
</tr>
<tr>
<td>FA</td>
<td>fatty acids</td>
</tr>
<tr>
<td>FABP</td>
<td>fatty acid binding protein</td>
</tr>
<tr>
<td>FAD</td>
<td>flavin adenine dinucleotide (oxidized form)</td>
</tr>
<tr>
<td>FPLC</td>
<td>fast protein liquid chromatography</td>
</tr>
<tr>
<td>GBP</td>
<td>gastrin-binding protein</td>
</tr>
<tr>
<td>GCAD/GCD</td>
<td>glutaryl-CoA dehydrogenase</td>
</tr>
<tr>
<td>GC-MS</td>
<td>gas chromatography/mass spectrometry</td>
</tr>
<tr>
<td>GFP</td>
<td>green fluorescent protein</td>
</tr>
<tr>
<td>HADHA</td>
<td>the gene of the α-subunit of MTP</td>
</tr>
<tr>
<td>HADHB</td>
<td>the gene of the β-subunit of MTP</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>HADHSC</td>
<td>the gene of L-3-hydroxyacyl-CoA dehydrogenase</td>
</tr>
<tr>
<td>4-HBA</td>
<td>4-hydroxybenzoyl coenzyme A</td>
</tr>
<tr>
<td>HAD</td>
<td>L-3-hydroxyacyl-CoA dehydrogenase</td>
</tr>
<tr>
<td>HPLC</td>
<td>high-performance liquid chromatography</td>
</tr>
<tr>
<td>IBD</td>
<td>isobutyryl-CoA dehydrogenase</td>
</tr>
<tr>
<td>IPTG</td>
<td>isopropyl β-D-1-thiogalactopyranoside</td>
</tr>
<tr>
<td>IVA</td>
<td>isovaleric academia</td>
</tr>
<tr>
<td>IVD</td>
<td>isovaleryl-CoA dehydrogenase</td>
</tr>
<tr>
<td>kb</td>
<td>kilobase(s)</td>
</tr>
<tr>
<td>KT / KAT</td>
<td>3-ketoacyl-CoA thiolase</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilodalton</td>
</tr>
<tr>
<td>LCAD</td>
<td>long-chain acyl-CoA dehydrogenase</td>
</tr>
<tr>
<td>LCHAD</td>
<td>long-chain 3-hydroxyacyl-CoA dehydrogenase</td>
</tr>
<tr>
<td>2MBCD</td>
<td>2-methylbutyryl-CoA dehydrogenase</td>
</tr>
<tr>
<td>MCAD</td>
<td>medium chain acyl-CoA dehydrogenase</td>
</tr>
<tr>
<td>MCPA-CoA</td>
<td>methylenecyclopropylacetyl-CoA</td>
</tr>
<tr>
<td>MFE-1, -2</td>
<td>multifunctional enzyme type 1, type 2</td>
</tr>
<tr>
<td>MIM</td>
<td>mitochondrial inner membrane</td>
</tr>
<tr>
<td>MISTIC</td>
<td>membrane-integrating sequence for translation of integral membrane protein constructs</td>
</tr>
<tr>
<td>mmBCFAs</td>
<td>monomethyl branched-chain fatty acids</td>
</tr>
<tr>
<td>MS/MS</td>
<td>tandem mass spectrometry</td>
</tr>
<tr>
<td>Acronym</td>
<td>Full Form</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>MTP / TFP</td>
<td>mitochondrial trifunctional protein</td>
</tr>
<tr>
<td>NAD⁺</td>
<td>nicotinamide adenine dinucleotide (oxidized form)</td>
</tr>
<tr>
<td>NADH</td>
<td>nicotinamide adenine dinucleotide (reduced form)</td>
</tr>
<tr>
<td>NCS</td>
<td>noncrystallographic symmetry</td>
</tr>
<tr>
<td>NSAID</td>
<td>nonsteroidal anti-inflammatory drug</td>
</tr>
<tr>
<td>nt</td>
<td>nucleotide(s)</td>
</tr>
<tr>
<td>N-terminus</td>
<td>amino terminus</td>
</tr>
<tr>
<td>ORE</td>
<td>oleate response element</td>
</tr>
<tr>
<td>ORF</td>
<td>open reading frame</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>PD</td>
<td>Parkinson’s disease</td>
</tr>
<tr>
<td>PDB</td>
<td>protein data bank</td>
</tr>
<tr>
<td>pFOX</td>
<td>partial fatty acid oxidation</td>
</tr>
<tr>
<td>PHHI</td>
<td>persistent hyperinsulinemic hypoglycemia of infancy</td>
</tr>
<tr>
<td>PMS</td>
<td>phenazine methosulfate</td>
</tr>
<tr>
<td>PPi</td>
<td>pyrophosphate</td>
</tr>
<tr>
<td>PUFA</td>
<td>poly unsaturated fatty acid</td>
</tr>
<tr>
<td>RC</td>
<td>respiratory chain</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>SBCAD</td>
<td>short/branched chain acyl-CoA dehydrogenase</td>
</tr>
<tr>
<td>SCAD</td>
<td>short chain acyl-CoA dehydrogenase</td>
</tr>
<tr>
<td>SCEH</td>
<td>short chain enoyl-CoA hydratase</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>SCHAD</td>
<td>short chain 3-hydroxyacyl-CoA dehydrogenase</td>
</tr>
<tr>
<td>SDR</td>
<td>short-chain alcohol dehydrogenase/reductase</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>sodium dodecyl sulfate polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>UTR</td>
<td>untranslated region</td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolet</td>
</tr>
<tr>
<td>VLCAD</td>
<td>very long-chain acyl-CoA dehydrogenase</td>
</tr>
</tbody>
</table>
List of Figures

Figure 1.1	Structures of the fatty acid.	2
Figure 1.2	Schematic structures of the fatty acid molecules stearic acid (C18:0), oleic acid (C18:1 ω-9), linoleic acid (C18:2 ω-6), alpha-linolenic acid (C18:3 ω-3)	3
Figure 1.3	Hydrolysis of triacylglycerol by lipases	4
Figure 1.4	Fatty acids are activated by reaction with coenzyme A and ATP to yield fatty acyl-CoA	7
Figure 1.5	Omega-oxidation pathways	9
Figure 1.6	Transport of long-chain fatty acids from the cytoplasm to the inner mitochondrial space for oxidation	12
Figure 1.7	Model of the functional and physical organization of β-oxidation enzymes in mitochondria	14
Figure 1.8	Enzymology of mitochondrial inner-membrane–bound long-chain fatty acid β-oxidation system	16
Figure 1.9	The routes for the degradation of double bonds in unsaturated fatty acids	20
Figure 1.10	Overview of the catabolism of amino acids	24
Figure 1.11	Outline of oxidative metabolism in mammalian tissue cells	25
Figure 1.12	A summary of the points of entry of the standard amino acids into the citric acid cycle	26
Figure 1.13	Metabolic pathway of the branched-chain amino acids, valine, isoleucine and leucine	28
Figure 1.14	The reactions catalyzed by thiolases	30
Figure 1.15	The sequence and secondary structure of 3-ketoacyl-CoA thiolase from Yeast	32
Figure 1.16	The active site of 3-ketoacyl-CoA thiolase	34
Figure 1.17	The modeled structure showing the relative position of acetoacetyl	
group and the catalytic residues .. 35

Figure 1.18 The proposed reaction mechanism for the degradative reaction of
thiolase .. 36

Figure 1.19 The two reactions catalysed in the active site of thiolase. 38

Figure 1.20 “Ping-pong” mechanisms for thiolase reaction 39

Figure 1.21 β-Oxidation of long-chain fatty acyl-CoA by mitochondrial
trifunctional protein ... 44

Figure 1.22 Annotated sequences of (top panel) α- and (bottom panel) β-subunit of
the mitochondrial trifunctional protein ... 47

Figure 1.23 Crystal Structure of P/FOM complex .. 50

Figure 1.24 Homology model of the human MTP complex 51

Figure 1.25 Schematic diagram of a dehydrogenase of E. coli multienzyme
complex – NADH – 3-ketoacyl-CoA ternary complex 53

Figure 1.26 Schematic diagram of a model of the active site of E. coli
L-3-hydroxyacyl-CoA dehydrogenase .. 54

Figure 1.27 Channelling mode ... 56

Figure 1.28 Overall polypeptide fold of GCD ... 61

Figure 1.29 Subunit interactions involving the extreme carboxyl-terminal residues
located in helix K of GCD .. 62

Figure 1.30 Structure-based sequence alignment of six acyl-CoA dehydrogenases
.. 63

Figure 1.31 Covalent bond-breaking and bond-forming reactions that occur within
the active site of glutaryl-CoA dehydrogenase during the conversion of
glutaryl-CoA to crotonyl-CoA ... 65

Figure 1.32 Peptide fold of the IBD monomer .. 69

Figure 1.33 Structure-based sequence alignments of the ACDs with known
structure .. 71

Figure 1.34 Binding cavities of ACDs .. 74
Figure 1.35 Overlay of IBD subunit A (uncomplexed structure, green) and subunit C (product-bound structure, colored by atom colors) ... 76

Figure 1.36 Alternative pathways for trans-2-enoyl-CoA to 3-ketoacyl-CoA in β-oxidation ... 78

Figure 1.37 Schematic domain distributions of the multifunctional enzymes of peroxisomal β-oxidation .. 79

Figure 1.38 The crystal structure of 2-enoyl-CoA hydratase 2 part of C. tropicalis multifunctional enzyme type 2 ... 81

Figure 1.39 Alignment of the amino acid sequence of 2-enoyl-CoA hydratase 2 part of C. tropicalis Mfe2p (Ct_H2) with the corresponding parts of Saccharomyces cerevisiae (Sc_H2), human (Hs_H2), and rat (Rn_H2) multifunctional enzyme type 2s, as well as with monofunctional PhaJ2 from P. aeruginosa (Pa_H2) and A. caviae (R)-hydratase (Ac_H2) .. 82

Figure 1.40 The proposed reaction mechanism of hydratase 2 ... 84

Figure 1.41 Architectures of the catalytic sites of hydratase 1 and 2 85

Figure 3.1 Coomassie blue-stained SDS-PAGE of the purified rat liver thiolase wild-type and variant enzymes ... 116

Figure 3.2 Analysis of incubation mixture using HPLC .. 121

Figure 3.3 Effect of pH on thiolase (◆) and isomerase (▲) activities of rat liver thiolase .. 122

Figure 3.4 The sequences of thiolases from various sources 126

Figure 3.5 HPLC profile of tryptic digests of rat liver thiolase (a) and inactivated thiolase (b) .. 128

Figure 3.6 Rat liver thiolase amino acid sequence .. 129

Figure 3.7 Mass spectrum of the peak eluted at 39 min from HPLC 130
Figure 3.8 Structure and degradation pattern of oct-2-ynoyl-CoA 130
Figure 3.9 MS/MS spectrum analysis of a 2309 Da peptide showing covalent modification of rat liver thiolase peptide (91 LCGSGFQSVSFGC QEICSK 109) by oct-2-ynoyl-CoA... 132
Figure 3.10 HPLC profile of tryptic digests of rat liver thiolase C382A variant enzyme (a) and the incubation mixture of rat liver thiolase C382A variant enzyme with oct-2-ynoyl-CoA (b) ... 134
Figure 3.11 The proposed mechanism for the conversion of trans-3-enoyl-CoA to trans-2-enoyl-CoA by KT. ... 135
Figure 3.12 The proposed mechanism for the inactivation of thiolase by 3-alkynoyl-CoA... 135
Figure 3.13 Proposed mechanism for the inactivation of the thiolase by 2-alkynoyl-CoA... 136
Figure 3.14 The proposed alternative mechanism for the inactivation of the thiolase by 2-alkynoyl-CoA through Michael addition......................... 137
Figure 4.1 Agarose gel analysis for selection of positive clone including the α and the β subunit plasmids. ... 141
Figure 4.2 Coomassie blue-stained SDS-PAGE of the purified rat MTP. 142
Figure 4.3 Coomassie blue-stained SDS-PAGE of the purified rat MTP β–subunit variant proteins. ... 144
Figure 4.4 FPLC working curve for calculating protein molecular weight. 145
Figure 4.5 Identification and separation of the MTP protein complex using FPLC... 146
Figure 4.6 Relative activities of rat MTP protein complex with and without NAD⁺ cofactor, the α-subunit, and the β–subunit. 151
Figure 4.7 Inhibition of rat MTP β–subunit by trimetazidine. 153
Figure 4.8 Kinetic studies for the inactivation of the MTP β-subunit by trimetazidine. ... 155
Figure 4.9 HPLC profile for pepsin digestion of rat MTP β–subunit labeled by trimetazidine monitored with UV detector at 220 nm (A) and 250 nm
Figure 4.10 Control experiment of HPLC profile for pepsin digestion of rat MTP β–subunit monitored with UV detector at 220 nm (A) and 250 nm (B). ... 156

Figure 4.11 Rat MTP β–subunit amino acid sequence .. 158

Figure 4.12 Mass spectrum of the peak eluted at 46.9 minutes from HPLC. 159

Figure 4.13 Structure of 1-(2,3,4-Trimethoxybenzyl) piperazine dihydrochloride (trimetazidine). ... 160

Figure 4.14 MS/MS spectrum analysis of a 2,902 Da peptide showing covalent modification of the β–subunit peptide \(^{93} \text{SDKTPAHTVTMACIS SNQAMTTAVGL} ^{118} \) by trimetazidine. .. 160

Figure 4.15 The sequences of the MTP β–subunit and monofunctional 3-ketoacyl-CoA thiolase from various sources. 163

Figure 4.16 3D structure of rat MTP β–subunit obtained through homology modeling with SWISS-MODEL program highlighting three catalytic residues (C105, H395, and C425) in the center of the protein. 165

Figure 4.17 Possible pathways for inactivation of the MTP β subunit by trimetazidine. .. 166

Figure 4.18 Inhibition of rat MTP β-subunit by oct-2-yn-4-enoyl-CoA. 167

Figure 4.19 Kinetic studies for the inactivation of the MTP β-subunit by oct-2-yn-4-enoyl-CoA. ... 168

Figure 4.20 HPLC profile for pepsin digestion of rat MTP β–subunit labeled by oct-2-yn-4-enoyl-CoA monitored with UV detector at 220 nm. 170

Figure 4.21 HPLC profile for pepsin digestion of rat MTP β–subunit labeled by oct-2-yn-4-enoyl-CoA monitored with UV detector at 260 nm. 170

Figure 4.22 Control experiment of HPLC profile for pepsin digestion of rat MTP β–subunit monitored with UV detector at 220 nm. 171

Figure 4.23 Mass spectrum of the peak eluted at 49 minutes from HPLC. 172

Figure 4.24 Structure and degradation pattern of oct-2-yn-4-enoyl-CoA. 172

Figure 4.25 MS/MS spectrum analysis of a 1,865 Da peptide showing covalent
modification of rat MTP β-subunit peptide (422 VA\textsubscript{AA}CAAGGQGHA MIVE 436) by oct-2-yn-4-enoyl-CoA

Figure 4.26 Proposed mechanism for inactivation of the MTP β subunit by oct-2-yn-4-enoyl-CoA ... 173

Figure 4.27 Inhibition of rat MTP α–subunit by (R)- and (S)-MCPF-CoA. 175

Figure 4.28 Kinetic studies for time- and concentration-dependent inactivation of the MTP α subunit by (R)-MCPF-CoA .. 177

Figure 4.29 Kinetic studies for time- and concentration-dependent inactivation of the MTP α subunit by (S)-MCPF-CoA .. 178

Figure 4.30 HPLC profile for trypsin digestion of rat MTP α–subunit labeled by MCPF-CoA monitored with UV detector at 220 nm. 180

Figure 4.31 HPLC profile for trypsin digestion of rat MTP α–subunit labeled by MCPF-CoA monitored with UV detector at 260 nm. 180

Figure 4.32 Control experiment of HPLC profile for trypsin digestion of rat MTP α–subunit monitored with UV detector at 220 nm. 181

Figure 4.33 Control experiment of HPLC profile for trypsin digestion of rat MTP α–subunit monitored with UV detector at 260 nm. 181

Figure 4.34 Mass spectrum of the peak eluted at 50.2 minutes from HPLC. 182

Figure 4.35 Structure and degradation pattern of MCPF-CoA. 182

Figure 4.36 Rat MTP α–subunit amino acid sequence 182

Figure 4.37 MS/MS spectrum analysis of a 2,689 Da peptide showing covalent modification of the α–subunit peptide (136PVVA\textsubscript{AA}ISGSC\textsubscript{LL}G G\textsubscript{LE}LA\textsubscript{AI}AC\textsubscript{QYR} 159) by MCPF-CoA .. 184

Figure 4.38 Proposed pathways for the inactivation of the MTP α-subunit by MCPF-CoA .. 185

Figure 5.1 (A) PCR product of glutaryl-CoA dehydrogenase; (B) Agarose gel analysis of the rat mitochondrial GCD .. 187

Figure 5.2 (A) PCR product of isobutyryl-CoA dehydrogenase; (B) Agarose gel analysis of the rat mitochondrial IBD 188

Figure 5.3 Coomassie blue-stained SDS-PAGE of the purified rat mitochondrial
glutaryl-CoA dehydrogenase wild-type and variant enzymes........ 191

Figure 5.4 Coomassie blue-stained SDS-PAGE of the purified rat mitochondrial
isobutyryl-CoA dehydrogenase wild-type and variant enzymes....... 192

Figure 5.5 pH dependent curves of catalytic activity of rat GCD (A) and IBD (B)
wild-type for glutaryl-CoA and isobutyryl-CoA, respectively........ 193

Figure 5.6 Inactivation of rat GCD by oct-2-ynoyl-CoA......................... 197

Figure 5.7 Kinetic studies for time- and concentration-dependent inactivation of
the GCD by oct-2-ynoyl-CoA. .. 198

Figure 5.8 Inactivation of rat GCD by oct-2-yn-4-enoyl-CoA.................. 199

Figure 5.9 Kinetic studies for the inactivation of the MTP β-subunit by
trimetazididine. .. 201

Figure 5.10 Analysis of incubation mixture using HPLC. 206

Figure 5.11 Inactivation of rat GCD by oct-2-en-4-ynoyl-CoA.................... 207

Figure 5.12 Competitive inhibition of rat GCD by oct-2-en-4-ynoyl-CoA. 208

Figure 5.13 Inhibition of rat GCD by oct-2-en-4-ynoyl-CoA. 209

Figure 5.14 Inactivation of rat GCD by oct-3-ynoyl-CoA......................... 210

Figure 5.15 Competitive inhibition of rat GCD by oct-3-ynoyl-CoA.............. 211

Figure 5.16 Inhibition of rat GCD by oct-3-ynoyl-CoA. 212

Figure 5.17 HPLC profile for trypsin digestion of rat GCD labeled by
oct-2-yn-4-enoyl-CoA monitored with UV detector at 220 nm........ 213

Figure 5.18 HPLC profile for trypsin digestion of rat GCD labeled by
oct-2-ynoyl-CoA monitored with UV detector at 220 nm. 214

Figure 5.19 HPLC profile for trypsin digestion of rat GCD labeled by
oct-2-yn-4-enoyl-CoA monitored with UV detector at 260 nm....... 214

Figure 5.20 HPLC profile for trypsin digestion of rat GCD labeled by
oct-2-ynoyl-CoA monitored with UV detector at 260 nm. 214

Figure 5.21 Control experiment of HPLC profile for trypsin digestion of rat GCD
monitored with UV detector at 220 nm. .. 215

Figure 5.22 Mass spectrum of the peak eluted at 57.6 minutes from HPLC. 216

Figure 5.23 Structure and degradation pattern of oct-2-yn-4-enoyl-CoA........ 216
Figure 5.24 MS/MS spectrum analysis of a 2,942 Da peptide showing covalent modification of rat GCD peptide (408HAMNLEAVTYEGTHDIH ALILGR 431) by oct-2-yn-4-enoyl-CoA ... 217
Figure 5.25 Rat GCD amino acid sequence. ... 218
Figure 5.26 Mass spectrum of the peak eluted at 58.1 minutes from HPLC. 219
Figure 5.27 Structure and degradation pattern of oct-2-ynoyl-CoA. 219
Figure 5.28 MS/MS spectrum analysis of a 2,944 Da peptide showing covalent modification of rat GCD peptide (408 HAMNLEAVTYEGTHDIH IHALILGR 431) by oct-2-ynoyl-CoA. ... 220
Figure 5.29 Proposed mechanism for inactivation of the GCD by oct-2-yn-4-enoyl-CoA. ... 221
Figure 5.30 Proposed isomerization mechanism for inactivation of the GCD by oct-2-ynoyl-CoA.. 222
Figure 5.31 Proposed Michael addition mechanism for inactivation of the GCD by oct-2-ynoyl-CoA... 222
Figure 6.1 (A) PCR product of 2-enoyl-CoA hydratase 2; (B) Agarose gel analysis of the rat peroxisomal ECH 2. ... 224
Figure 6.2 Coomassie blue-stained SDS-PAGE of the purified rat ECH 2. 225
Figure 6.3 pH dependent curve of catalytic activity of rat peroxisomal ECH 2 wild-type for 2-trans-octenoyl-CoA.. 226
Figure 6.4 Inhibition of rat ECH 2 by (R)- and (S)-MCPF-CoA................... 227
Figure 6.5 Kinetic studies for time- and concentration-dependent inactivation of the ECH 2 by (R)-MCPF-CoA. ... 229
Figure 6.6 Kinetic studies for time- and concentration-dependent inactivation of the ECH 2 by (S)-MCPF-CoA... 230
Figure 6.7 Effect of (R)- and (S)-MCPF-CoA on the catalytic activity of rat ECH2. .. 231
Figure 6.8 HPLC profile for trypsin digestion of rat ECH 2 labeled by MCPF-CoA monitored with UV detector at 220 nm. 232
Figure 6.9 HPLC profile for trypsin digestion of rat ECH 2 labeled by
MCPF-CoA monitored with UV detector at 260 nm. 233

Figure 6.10 Control experiment of HPLC profile for trypsin digestion of rat ECH 2 monitored with UV detector at 220 nm. ... 233

Figure 6.11 Mass spectrum of the peak eluted at 57.5 minutes from HPLC. ... 234

Figure 6.12 Rat ECH 2 amino acid sequence. ... 235

Figure 6.13 MS/MS spectrum analysis of a 2,719 Da peptide showing covalent modification of the ECH 2 peptide (FVYEGSADFSCLPTFGVIVA QK 65) by MCPF-CoA. ... 236

Figure 6.14 Inhibition of rat ECH 2 by oct-3-ynoyl-CoA..................................... 237

Figure 6.15 Kinetic studies for time- and concentration-dependent inactivation of the ECH 2 by oct-3-ynoyl-CoA... 239

Figure 6.16 Effect of oct-3-ynoyl-CoA on the catalytic activity of rat ECH 2. ... 239

Figure 6.17 HPLC profile for trypsin digestion of rat ECH 2 labeled by oct-3-ynoyl-CoA monitored with UV detector at 220 nm. 241

Figure 6.18 HPLC profile for trypsin digestion of rat ECH 2 labeled by oct-3-ynoyl-CoA monitored with UV detector at 260 nm. 241

Figure 6.19 Control experiment of HPLC profile for trypsin digestion of rat ECH 2 monitored with UV detector at 220 nm. 241

Figure 6.20 Mass spectrum of the peak eluted at 39 minutes from HPLC. 242

Figure 6.21 Structure and degradation pattern of oct-3-ynoyl-CoA. 243

Figure 6.22 MS/MS spectrum analysis of a 2,647 Da peptide showing covalent modification of the ECH 2 peptide (FVYEGSADFSCLPTFGVIVA QK 65) by oct-3-ynoyl-CoA. ... 244

Figure 6.23 Proposed Michael addition mechanism for inactivation of the ECH 2 by oct-3-ynoyl-CoA... 245

Figure 6.24 Inhibition of rat ECH 2 by oct-2-yn-4-enoyl-CoA. 246

Figure 6.25 Kinetic studies for time- and concentration-dependent inactivation of the ECH 2 by oct-2-yn-4-enoyl-CoA. 248
Figure 6.26 Effect of oct-2-yn-4-enoyl-CoA on the catalytic activity of rat ECH 2. ... 248

Figure 6.27 HPLC profile for trypsin digestion of rat ECH 2 labeled by oct-2-yn-4-enoyl-CoA monitored with UV detector at 220 nm. 250

Figure 6.28 HPLC profile for trypsin digestion of rat ECH 2 labeled by oct-2-yn-4-enoyl-CoA monitored with UV detector at 260 nm. 250

Figure 6.29 Control experiment of HPLC profile for trypsin digestion of rat ECH 2 monitored with UV detector at 220 nm. 250

Figure 6.30 Mass spectrum of the peak eluted at 63 minutes from HPLC. 251

Figure 6.31 MS/MS spectrum analysis of a 2,758 Da peptide showing covalent modification of rat ECH 2 peptide (44 FVY\textit{E}GSADFSCLPT FGVIVAQK 65) by oct-2-yn-4-enoyl-CoA. .. 252

Figure 6.32 HPLC profile for trypsin digestion of rat MCAD labeled by oct-2-yn-4-enoyl-CoA monitored with UV detector at 220 nm. 255

Figure 6.33 HPLC profile for trypsin digestion of rat MCAD labeled by oct-2-yn-4-enoyl-CoA monitored with UV detector at 260 nm. 255

Figure 6.34 Control experiment of HPLC profile for trypsin digestion of rat MCAD monitored with UV detector at 220 nm. 256

Figure 6.35 Rat MCAD amino acid sequence.. 256

Figure 6.36 Mass spectrum of the peak eluted at 45.8 minutes from HPLC. 257

Figure 6.37 MS/MS spectrum analysis of a 1,963 Da peptide showing covalent modification of rat MCAD peptide (371 IYQIY\textit{E}GTAQIQR 383) by oct-2-yn-4-enoyl-CoA. .. 258
List of Tables

Table 3.1 Kinetic parameters for the thiolase activity of rat thiolase wild-type and variant proteins using acetoacetyl-CoA as the substrate 118
Table 3.2 Kinetic parameters for isomerase activity of rat thiolase wild-type and variant enzymes using cis-3-hexenoyl-CoA as substrate 119
Table 3.3 Kinetic parameters for isomerase activity of rat thiolase with various substrates. ... 119
Table 3.4 Kinetic properties of enoyl-CoA isomerase activities of enzymes from various sources ... 124
Table 4.1 Purification of rat MTP α, β subunit and MTP protein complex 143
Table 4.2 Kinetic parameters for enoyl-CoA hydratase activities of the α subunit and the MTP complex ... 148
Table 4.3 Kinetic parameters for 3-hydroxyacyl-CoA dehydrogenase activities of the α subunit and the MTP complex .. 148
Table 4.4 Kinetic parameters for 3-ketoacyl-CoA thiolase activities of the β subunit and the MTP complex ... 149
Table 4.5 Kinetic parameters for enoyl-CoA hydratase activities of the MTP complex and mixed α subunit and β subunit in vitro. 150
Table 4.6 Kinetic parameters for 3-hydroxyacyl-CoA dehydrogenase activities of MTP complex and mixed α subunit and β subunit in vitro 150
Table 4.7 Kinetic parameters for 3-ketoacyl-CoA thiolase activities of MTP complex and mixed α subunit and β subunit in vitro 150
Table 4.8 Effect of NAD⁺ on the thiolase activity of the β subunit. 151
Table 4.9 Kinetic parameters for 3-ketoacyl-CoA thiolase activities of the MTP β-subunit wild-type and variant enzymes with 3-keto-hexadecanoyl-CoA as the substrate .. 152
Table 5.1 Kinetic parameters for the dehydrogenase activity of rat GCD and IBD wild-type and variant enzymes using their natural substrates 194
Table 5.2 Comparative study on straight chain substrate specificity of rat GCD and IBD ... 195

Table 5.3 Kinetic parameters for isomerase activity of rat thiolase wild-type and variant enzymes using cis-3-hexenoyl-CoA as substrate 202

Table 5.4 Kinetic parameters for isomerase activity of rat GCD with various substrates .. 203

Table 6.1 Purification of rat 2-enoyl-CoA hydratase 2 .. 226

Table 6.2 Kinetic parameters and labeled residue for inactivation of ECH 2 by its inhibitors .. 253

Table 6.3 Kinetic parameters and labeled residues for inactivation of enzymes by oct-2-yn-4-enoyl-CoA ... 260