CITY UNIVERSITY OF HONG KONG 香港城市大學

Reactions and Computational Studies of Andrographolide Analogues with Glutathione and Biological Nucleophiles

穿心蓮內酯同系物與谷胱甘肽等生物親核 劑的反應和計算研究

> Submitted to Department of Biology and Chemistry 生物化學系 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy 哲學博士學位

> > by

Zhang Zhi Qiang 張智強

October 2007 二零零七年十月

ABSTRACT

The aims of this work were to investigate the reactivity of the alpha methylene lactone moiety of andrographolide and its analogues to nucleophiles of biomolecules, and to explore the structural activity relationship of these compounds. The efforts were focused on search for molecular targets that react well with andrographolide.

Andrographolide is a diterpenoid component isolated from *Andrographis paniculata* which is a traditional herbal medicine claimed to be effective against an array of diseases. Here, only the anticancer activity of andrographolide was pursued in this study. It is well documented that the anticancer activity of andrographolide is due to the alpha methylene lactone. Alkylation of biological nucleophiles, especially sulphydryl groups, by the α , β -unsaturated carbonyl structure in a Michael addition, has been regarded as the major reaction which lead to the cytotoxic effect of the alpha methylene lactone structure of andrographolide.

Reactions between andrographolide and L-cysteine were studied at 37°C in different pH values by indirectly monitoring the free sulphydryl group of cysteine. Andrographolide was able to scavenge the thiol group and the reaction rates were enhanced with the pH value at the range from 6.0 to 7.0. This result indicates that andrographolide can interact with the thiol group in biomolecules. In order to reveal the interaction between andrographolide and biomolecules, the bimolecular reaction between andrographolide and glutathione was investigated under a condition mimicking *in vivo* environment. Stoichiometric analysis indicates that the reaction between these two reactants is 1 to 1 at pH 7.0. The reaction rate followed a second-order kinetic. Using a micro-liquid-liquid extraction method followed by HPLC separation, two major products

were isolated and identified, their chemical structures were determined as 14-deoxy-12-(glutathione-amino)-andrographolide and 14-deoxy-12-(glutathione -S-yl)andrographolide.

When computational chemistry was applied to explore the structural reactivity of andrographolide and its analogues to L-cysteine in both gaseous and aqueous phases, it was found that the 16-carbonyl, 12,13-olefin bond and 14-hydroxyl on the alpha methylene lactone of the andrographolide are the key structural moieties which are responsible for the activity of andrographolide. The trend of the computational reactivity of these pharmacophores was in good agreement with the cytotoxicity of their parent compounds reported in experimental literatures. When the reactivity of some natural compounds, such as several sesquiterpenes and diterpenes, was modeled using similar ab *initio* method, it was found that the calculated results were also in good agreement with the bioactivity of these natural compounds reported in literatures. Based on the above studies, potential macromolecules were envisaged to be proteins or peptides which possess a cysteine residue near its active site. Therefore, the CAAX motif of proteins of CENP-E and CENP-F were investigated based on quantum chemistry calculation. Besides the thiol group, andrographolide has been reported to interact with amino group of biomolecules. However, the computational results indicate that the reactivity of andrographolide with amine was lower comparing with thiol group.

Our experimental works confirm that andrographolide did react with nucleophiles via a Michael reaction at the unsaturated lactone moiety of andrographolide. By using HPLC, the reactants were isolated and identified. Thus, the computational studies described in this thesis provide good evidence of structural activity relationship for andrographolide and its analogues to protein molecule.

ii

LIST OF TABLES

	Page	
Table 1.1 Examples of software packages for molecular docking	26	
Table 3.1 Activation energy (ΔG^{\dagger}) , reaction free energy (ΔG) and relative		
reaction free energy ($\Delta\Delta G$) of Michael reaction in aqueous phase, relative		
reactivity constants (k) in aqueous phase and LUMO population of species 1 to		
10.	88	
Table 3.2 in vitro Cytotoxicity of analogues of andrographolide on various		
cell lines	89	
Table 4.1 Partial charge of various species in the Michael addition between		
histidine and α , β -unsaturated lactones.	111	
Table 5.1 Anti-HCV effects and the quantum chemical descriptors of		
compounds (1–5).	135	
Table 5.2 Observed and calculated toxicity of the 24 sesquiterpenoid lactones		
and the quantitative descriptors used in equation (5-12).	141	
Table 5.2 (Continued)		
Table 5.3 Correlation coefficient matrix for significant independent variables		
used in equation (5-12)	147	

LIST OF FIGURES

		Page
Figure 1.1	Morphology of Andrographis Paniculata.	8
Figure 1.2	Molecular 2D structure of andrographolide, neoandrographolide	
and 14-deox	xy-11,12-didehydroandrographolide.	16
Figure 1.3	Molecular mechanism of the reaction between	
neoandrogra	apholide with superoxide anion.	20
Figure 1.4	Addition of a nuclephile to an α , β -unsaturated carbonyl	
compound.		22
Figure 2.1	Calibration curve for detecting the concentration of thiol group	
using indire	ctly spectrometric methods. The Calibration curve can be described	
as : $abs = 0$.	$848 + 0.091[SH] \times 10^5$.	56
Figure 2.2	Rate constants of the reaction between cysteine and	
andrographo	blide at a series pH values. The circle (\circ) represents the reaction at	
pH = 6.0, th	e fitting curve is expressed as: $1/[SH] = 1020 + 1.03t$, R = 0.971;	
the square (•) represents the reaction at $pH = 6.5$, the fitting curve for this pH is	
expressed a	s: $1/[SH] = 1000 + 2.56t$, R = 0.998; the sphere (•) represents the	
reaction at p	DH = 7.0, the fitting result is expressed as $:1/[SH] = 990 + 3.15t$, R	
= 0.994.		57

Figure 2.3 Effect of andrographolide on the intracellular GSH level of

HepG2 cells. Cells were treated with indicated concentrations of drug for 12 h and then the GSH level was determined using monochlorobimane as a fluorescence indicator which binds specifically to GSH. The fluorescence was measured at 380/460 nm; RFU: random fluorescence unit.

Figure 2.4 Plots of the reciprocal of concentration of andrographolide verse reaction time at 37, 50, 60, 70°C. The degradation rate of andrographolide for each temperature can be expressed as 1/c = 1240 + 2.79t, R = 0.979; 1/c =

1580 + 3.42t, R = 0.967; 1/c = 1470 + 6.75t, R = 0.974; 1/c = 1540 + 13.2t, R = 0.991.

Figure 2.5 Arrhenius plots for the heat activation between and rographolide and GSH. The Arrhenius plot is expressed as $LnK = 17 - 5.05 \times 10^{3} \text{ T}^{-1}$, R = -0.951.

Figure 2.6 Chemical structure of compound 1 - 4. Compound (1)
Andrographolide, 14-deoxy-12-(glutathione-amino)-andrographolide (2),
14-deoxy-12-(glutathione-S-yl) -andrographolide (3),
14-deoxy-andrographolide (4).
Figure 2.7 Proposed mechanism of the reaction between glutathione and
andrographolide.
Figure 3.1 Two-dimensional structures of andrographolide and its analogues

reported in experimental literatures. 76

58

60

61

Figure 3.2 Molecular geometries of various species in aqueous phase,

optimized at HF/6-31G* level using Onsagar model. TSn is the transition				
state of the first step of Michael reaction between cys 2- and species n (n =				
1-10). IMn is the adduct intermediate of the first step of Michael reaction				
between L-cysteine ²⁻ and species n (n = 1 -10). The orders of the carbon atoms				
in species 1 to 10 are different to systematic nominating method.	80			
Figure 3.3 Profiles of LUMO of species 1 to 10 and HOMO of L-cysteine ^{$2-$} .	84			
Figure 3.4 Energetic profile (in kcal-mol ^{-1}) of the reaction of species 1 to 10				
with L-Cysteine ^{2–} in water solution. Rn is the reactants of Michael addition				
between species n and L-cysteine ^{2–} , while TSn is the transition states and IMn				
is the adduct intermediates.	86			
Figure 4.1 Optimized geometries of various species in the Michael reaction				
between a series of lactones and histidine or adenine. 103				
Figure 4.2 Proposed mechanism of the Michael addition between histidine				
and species 1, i.e. the pharmacophore of andrographolide.	108			
Figure 4.3 Energetic profiles of the reactions between histidine and a series				
of α , β -unsturated lactones (species 1 to 9).	112			
Figure 4.4 Linear Gibbs energy correlation between histidine and cysteine				
addition to species 1 to 9. X axis denotes the ΔG values of the reaction of				
cysteine with a series lactones, while the Y axis denotes the ΔG values of the				
reactions of histidine. 11				

Figure 4.5 (a) The linear correlation between the reaction Gibbs free

energies and the energy gaps of Histidine's HOMO and various lactones'

LUMO. (b) The linear correlation between the reaction Gibbs free energies and

the energy gaps of Cysteine's HOMO and various lactones' LUMO. (c)

Relationship between the reaction free energies and the gaps of the reactants,

i.e. the LUMO of species 1 and HOMOs of cysteine, histidine and adenine. 118

Figure 5.12D structures of various sesquiterpenoid lactones.131

Figure 5.2 The relationship between anti-HCV activity and Gibbs free energy of the Michael addition of a series of sesquiterpene lactones. (**a**) Plot of pEC_{50} (-logEC₅₀) versus - ΔG_{gas} of compound (1–5). (**b**) Plot of pEC_{50} versus - ΔG_{aq} of compound (1–5).

For (a), the fitting result was pEC_{50} = 0.038 \pm 0.009 \times (- $\Delta G_{gas})$ - 1.38 \pm 0.26;

n=5, R=0.92; for (b), the fitting result was pEC₅₀ = $0.029 \pm 0.012 \times (-\Delta G_{aq})$

 -0.082 ± 0.11 ; n=5, R=0.80.

Figure 5.3 Relationship between the observed $-\log DC_{50}$ and calculated -log DC₅₀, Where the DC₅₀ was the 50% leading death concentration of sesqueterpenes against KB cell with mol/L. (**a**) the Y axis is the observed value, and the X axis is the calculated value according equation (5-14). The linear fitting result is $Y = (1.01 \pm 0.15) \times X - (0.07 \pm 0.8)$; N=24, R=0.82, SD=0.38. (**b**) The Y axis is the observed value, and the X axis is the calculated value according equation (5-13). The linear fitting result is: $Y = (1.01 \pm 0.17) \times X - (0.03 \pm 0.9)$, N=16, R=0.85, SD=0.42

145

137

TABLE OF CONTENTS

	Page
ABSTRACT	ii
ACKNOWLEDGMENTS	iv
LIST OF TABLES	V
LIST OF FIGURES	vi
LIST OF PUBLICATIONS	X
TABLE OF CONTENTS	xi
CHAPTER 1 INTRODUCTION	1
1.1 Biological roles of cysteine residues and	
α,β–unsaturated lactone	1
1.1.1 Special functions of cysteine residues in biomolecules	1
1.1.2 Development of anti-HIV and anti-cancer agents based	
on reactions to the thiol moiety of proteins	2
1.1.3 Cytotoxic effect of α,β-unsaturated lactone	4
1.2 General features of Andrographis paniculata	8
1.3 Therapeutic effect of Andrographis paniculata and	
its components	10
1.3.1 Anti-inflammatory effect	10
1.3.2 Hepato-protective activation	11
1.3.3 Anti-cancer activity or cytotoxiciy	12

1.4 Bioactive components isolated from <i>Andrographis</i>	
paniculata	15
1.4.1 General introduction on the diterpenoid and flavonoid	
components	15
1.4.2 Chemical properties of diterpenoid lactone,	
andrographolide and its three analogues	16
1.4.2.1 Physicochemical properties of andrographolide	16
1.4.2.2 Physiochemical properties of neoandrographolide	17
1.4.2.3 Physiochemical properties of deoxyandrographolide	18
1.4.2.4 Physiochemical properties of	
14-deoxy-11,12-didehydro-andrographolide	18
1.4.3 General reactions of the diterpenoid lactones	19
1.4.3.1 Open ring reaction	19
1.4.3.2 Redox reactions of anti-oxidants and anti-free radicals	19
1.4.3.3 Michael addition with nucleophiles.	21
1.5 Structural activity relationship	23
1.5.1 What is structural activity relationship	23
1.5.2 Molecular mechanical methods applied in structural	
activity relationship studies	23
1.5.2.1 Principle and tools of molecular mechanical methods	23
1.5.2.2 Advantages and disadvantages of molecular mechanical	
methods	27

1.5.3 Quantum mechanical methods applied in structural		
activity relationship studies		
1.5.3.1 Quantum mechanics and the approximation of quantum		
mechanical methods	27	
1.5.3.2 The advantages and disadvantages of ab initio methods	31	
1.6 Objectives of this thesis	32	
Reference List	33	
CHAPTEER 2 KINETIC STUDIES ON THE		
BIMOLECULAR REACTIONS OF		
ANDROGRAPHOLIDE WITH L-CYSTEINE AND		
GLUTATHIONE	49	
2.1 Introduction	49	
2.2 Materials and Methods	51	
2.2.1 Reactants and Chemicals	51	
2.2.2 Redox method used to detect the concentration of thiol		
group	51	
2.2.3 Measurement of the Intracellular level of GSH	52	
2.2.4 MEKC	53	
2.2.5 Reaction Products Separation and Identification.	53	
2.3 Results and discussion	55	
2.3.1 Reactions between L-cysteine and andrographolide	55	
2.3.2 In vitro Interaction between Andrographolide and GSH	57	

2.3.3 Kinetics of the bimolecular reaction between	
andrographolide and GSH.	58
2.3.4 Identification of the reaction products.	61
2.3.5 Reaction mechanism.	63
2.4 Conclusion	67
Reference List	70
CHAPTER 3 ab initio STUDIES ON THE	
MICHAEL REACTION BETWEEN THIOL GROUP	
OF A L-CYSTEINE RESIDUE AND ALPHA	
METHYLENE LACTONES	74
3.1 Introduction	74
3.2 Molecules and Computational Details	77
3.2.1. Pharmacophores of Andrographolide and Its Analogues	77
3.2.2. Computational Methods and Analysis	81
3.3 Results and Discussion	84
3.3.1 Michael Reaction between Species 1 and Cys ^{2–}	85
3.3.2 Relative Reaction Gibbs Free Energies and Relative	
Reactivity	87
3.3.3 Relationship between Reactivity and Cytotoxicity	89
3.4 Conclusion	91
Reference List	92

xiv

CHAPTER 4 ab initio STUDIES ON THE

MICHAEL REACTIONS BETWEEN

PHARMACOPHORE OF ANDROGRAPHOLIDE

AND SOME AMINE GROUP-CONTAINING

BIOMOLECULES	98
4.1 Introduction	98
4.2 Molecules and methods	100
4.2.1 Molecules	100
4.2.2 Computational methods and details	103
4.3 Results and discussion	106
4.3.1 Pathway and electron transfers in the Michael reactions	106
4.3.2 The comparison between histidine and cysteine in their	
Michael reactions with alpha methylene lactones	111
4.3.3 The Michael addition between adenine and the	
pharmacophore of andrographolide	118
4.3.3.1 The Michael addition at the position N1 of adenine	119
4.3.3.2 The Michael additions at the positions N3 and N7 of adenine	120
4.4 Conclusion	121
Reference List	122

CHAPTER 5 DENSITY FUNCTIONAL THEORY	
STUDY ON THE MICHAEL REACTIONS	
BETWEEN CYSTEINE RESIDUE AND	
SESQUITERPENOID LACTONES	126
5.1 Introduction	126
5.2 Molecules and methods	129
5.3 Results and discussion	135
5.3.1 Relationship between anti-HCV activity and the Gibbs	
free energy of Michael reaction between sesquiterpen lactones	
and cysteine	135
5.3.2 Quantitative structural activity relationship (QSAR)	
analysis of the cytotoxicity of sesquiterpenoids	138
5.3.2.1 Parameters used in the QSAR analysis	139
5.3.2.2 Multiple linear regression analysis for QSAR	143
5.4 Conclusion	149
Reference List	150
CHAPTER 6 OVERALL DISCUSSION AND	
SUMMARY	161
6.1 Comparison of reactivity of various lactones to thiol	
group and amine groups	161
6.2 Suggestions for new anticancer drug design based	

on	natural p	oroducts	of terpenoid	lactones	164

6.3 Limitations of computational study in this thesis	166
Reference List	168
CHAPTER 7 SUGGESTIONS FOR FURTHER	
STUDY	172
7.1 Possible molecular target of andrographolide and	
other terpenoid lactones	172
7.1.1 Protein prenylation and the roles of CAAX motif	172
7.1.2 Quantum chemical calculation on the pKa of sulfhydryl	
groups in protein sequence of CKTQ and CKVQ	174
7.2 Further study plan: modeling the reactions between	
analogues of andrographolide and cysteine residues in	
certain proteins with QM/MM methods	178
Reference List	179