CITY UNIVERSITY OF HONG KONG 香港城市大學

Studies of Key Enzymes Involved in the Assembly of the Tetrapyrroles

參與生成四吡咯化合物的酶的研究

Submitted to Department of Biology and Chemistry 生物及化學系 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy 哲學博士學位

by

Li Nan 李楠

October 2007 二零零七年十月

Studies of Key Enzymes Involved in the Assembly of the Tetrapyrroles

Abstract

The structurally related tetrapyrrolic pigments are a group of natural products that include the haems, the chlorophylls, and the corrinoids. These compounds participate in many of the fundamental biosynthetic and catabolic processes of living organisms. They are all intensely colored and almost every living organism has an absolute requirement for one or more of them. It is for this reason that they are called the "pigments of life." All the natural tetrapyrroles have their four pyrrolic rings and are derived from a single common tetrapyrrolic macrocycle, uroporphyrinogen III, abbreviated to Urogen III. Urogen III is biosynthesized from eight molecules of 5-aminolaevulinic acid (ALA) in only three enzymatic reactions, which are catalyzed by porphobilinogen (PBG) synthase, hydroxymethylbilane (HMB) synthase, and Urogen III synthase.

PBG synthase catalyzes the dimerization of two molecules of ALA to give the monopyrrole intermediate, PBG. The gene of rat PBG synthase was cloned into the bacterial expression vector pLM1 and pET28a+ with six continuous histidine codons attached to the 5' of the gene. The two recombinant plasmids were overexpressed in *E. coli*, and the enzymes were purified with a nickel metal affinity column to apparent homogeneity. A series of substrate analogues of PBG synthase were synthesized and characterized. Their interactions with the enzyme were studied and some inhibitors were found. Analogues with removal of amino group were found to be good inhibitors. But if the amino group remained and carboxyl group was replaced by different other functional groups, the analogues became

weak or moderate inhibitors. This result strongly suggested that the carboxyl group played an important role for the substrate binding. If the amino groups of these compounds were replaced by bromine, all of them became the irreversible inhibitors. Interestingly, the compound that had both the carboxyl group and the bromine was found to be the weakest irreversible inhibitor, indicating that the tight binding to the fixed position in the active site is unfavorable to the alkylation of the protein. Two analogues were designed to have a long carbon chain connecting two carboxyl groups, which could bind to both P-site and A-site of the enzyme. One of them was found to be a competitive inhibitor, and the other one with an α , β -unsaturated double bond was found to be an irreversible inhibitor.

HMB synthase catalyzes the polymerization of four molecules of PBG to furnish a highly unstable HMB intermediate. The gene of rat HMB synthase was cloned and overexpressed, and the purified protein was found to be a mixture of enzyme complexes by FPLC system. The enzymatic reaction rate of the holoenzyme was found to be lower than those of the enzyme complexes. Several mutant expression plasmids were constructed by site-directed mutagenesis, and the variant proteins were purified to apparent homogeneity. The mutation of the residue D44 stopped the stepwise enzymatic reaction in an enzyme-substrate intermediate step, indicating that this residue played an important role in the enzymatic reaction. Four substrate analogues of HMB synthase were synthesized and characterized. If the carboxyl group in the acetic acid chain on the pyrrole ring of the PBG was removed or replaced, the analogues were found to be very weak substrates. The result indicated that the acetic acid chain was important for substrate binding. Urogen III synthase catalyzes the conversion of linear tetrapyrrole HMB to the macro cyclic Urogen III. We cloned, purified, and characterized His-tagged rat Urogen III synthase. The mechanism of enzymatic reaction was studied through site-directed mutagenesis of eight highly conserved residues around the active site. The activity assays of these mutant proteins confirmed that Tyr168 was an essential residue for enzymatic reaction catalyzed by rat Urogen III synthase.

TABLE OF CONTENTS

Declaration	ii
Abstract	iii
Acknowledgement	vii
Table of contents	viii
List of abbreviations	xiv
List of figures, schemes and tables	xvi
List of publications derived from this study	xxiii
Chapter 1 Introduction	1
1.1. Overview of tetrapyrroles biosynthesis	1
1.1.1. Tetrapyrroles: the pigments of life	1
1.1.2. Biosynthesis of Urogen III	3
1.2. PBG synthase	6
1.2.1. General	6
1.2.2. The characterization of the metallozyme	7
1.2.3. Protein structures	12
1.2.4. Interaction with substrate analogues	16
1.2.5. Kinetic mechanism	22
1.2.5.1. P-side Schiff base formation happens first	22
1.2.5.2. A-side ALA binding happens next	23
1.2.5.3. Mechanisms involving two Schiff base linkages	24
1.2.5.4. The C-C bond is formed first?	24
1.2.6. PBG synthase deficiency related diseases	25
1.3. HMB synthase	27
1.3.1. General	27

viii

1.3.2. The dipyrromethane cofactor	29
1.3.3. Protein structure and residue roles	32
1.3.4. Kinetic mechanism	36
1.3.5. Interaction with substrate analogues	39
1.3.6. HMB synthase deficiency related disease	42
1.4. Urogen III synthase	44
1.4.1. General	44
1.4.2. Protein structure and residue roles	45
1.4.3. Kinetic mechanism	47
1.4.4. Interaction with substrate / intermediate analogues	49
1.4.4.1. Interaction with spiro intermediate analogues	49
1.4.4.2. Interaction with spiro intermediate analogues	50
1.4.5. Urogen III synthase deficiency related disease	52
1.5. Research foundations and objectives	54
Chapter 2 Materials and methods	56
2.1. Materials	56
2.2. Molecular cloning	57
2.2.1. Construction of the expression plasmids	57
2.2.2. Site-directed mutagenesis	58
2.2.3. Expression of the recombinant wild-type enzymes and their mutants	59
2.2.4. Purification of the recombinant wild-type enzymes and their mutants	59
2.3. Enzymatic studies	60
2.3.1. Enzyme assays	60
2.3.1.1. Rat PBG synthase	60
2.3.1.2. Rat HMB synthase	61

2.3.2. Separation of the enzyme complexes of HMB synthase by FPLC system	63
2.3.3. Polyacrylamide gel electrophoresis	64
2.3.4. Test for the reversibility of the inactivation	64
2.3.5. Analysis of time-dependent inactivation	65
2.3.6. Determination of kinetic constant (K_i) of competitive inhibitors of rat PBG Synthase	65
2.3.7. Determination of IC_{50} for inhibitors of rat PBG synthase	65
2.3.8. Software analysis of the 3D structures of the proteins	66
2.4. Organic synthesis	66
2.4.1. General procedures	66
2.4.2. Synthetic procedures and structural data	70
Chapter 3 Studies of porphobilinogen synthase	90
3.1. Characterization of rat PBG synthases	90
3.1.1. Cloning, expression and purification of rat PBG synthase	90
3.1.1.1. Cloning of His-tagged rat PBG synthase by using pLM1 vector	90
3.1.1.2. Cloning of His-tagged rat PBG synthase by using pET28a+ vector	92
3.1.1.3. Expression and purification of two rat PBG synthases	95
3.1.1.4. Preparation of the rat PBG synthase without the His-tag	96
3.1.2. Characterization of rat PBG synthases	97
3.2.1.1. Effect of pH on rat PBG synthase	97
3.2.1.2. Effect of metal ion on rat PBG synthases	98
3.2.1.3. Kinetic analyses of rat PBG synthases	100
3.2.1.4. Quaternary structure isoform of rat PBG synthases	101
3.2. Synthesis of substrate analogs	103
3.2.1. Keto-alkanoic acids (1, 2)	104

3.2.2. 5-Bromolevulinic acid (3)	104
3.2.3. 6-Amino-5-oxohexanoic acid hydrochloride (6)	105
3.2.4. 4-Methoxy-2-butanone derivatives (7, 9)	106
3.2.5. 4-Oxopentanenitrile derivatives (10, 11, 12, 14)	107
3.2.6. 4-Hydroxy-2-butanone derivatives (15, 18)	107
3.2.7. 1-Amino-5-hydroxy-2-pentanone hydrochloride (22)	108
3.2.8. 2-Butanone and 2-pentanone bromides (23, 24, 25)	109
3.2.9. 4-Oxo-5-decenedioic acid (29)	110
3.2.10. 4-Oxo-sebacic acid (31)	112
3.3. Interaction study of PBG synthase with analogues	112
3.3.1. Reversible inhibition of analogues with PBG synthase	112
3.3.2. Irreversible inactivation of PBG synthase with substrate analogues	118
Chapter 4 Studies of hydroxymethylbilane synthase	125
4.1. Characterization of wild type rat HMB synthases and its mutants	125
4.1.1. Cloning, expression and purification of His-tagged rat short housekeeping HMB synthase wild type and variant proteins	125
4.1.1.1. Cloning of His-tagged rat short housekeeping HMB synthase	125
 4.1.1.1. Cloning of His-tagged rat short housekeeping HMB synthase 4.1.1.2. Construction of the expression plasmids containing HMB synthase mutations 	125 128
 4.1.1.1. Cloning of His-tagged rat short housekeeping HMB synthase 4.1.1.2. Construction of the expression plasmids containing HMB synthase mutations 4.1.1.3. Expression and purification of rat HMB synthase wild-type and variant proteins 	125 128 132
 4.1.1.1. Cloning of His-tagged rat short housekeeping HMB synthase 4.1.1.2. Construction of the expression plasmids containing HMB synthase mutations 4.1.1.3. Expression and purification of rat HMB synthase wild-type and variant proteins 4.1.2. Characterization of wild type rat HMB synthase and its mutants 	125 128 132 133
 4.1.1.1. Cloning of His-tagged rat short housekeeping HMB synthase 4.1.1.2. Construction of the expression plasmids containing HMB synthase mutations 4.1.1.3. Expression and purification of rat HMB synthase wild-type and variant proteins 4.1.2. Characterization of wild type rat HMB synthase and its mutants 4.1.2.1. Effect of pH on rat wild type HMB synthase 	125 128 132 133 133
 4.1.1.1. Cloning of His-tagged rat short housekeeping HMB synthase 4.1.1.2. Construction of the expression plasmids containing HMB synthase mutations 4.1.1.3. Expression and purification of rat HMB synthase wild-type and variant proteins 4.1.2. Characterization of wild type rat HMB synthase and its mutants 4.1.2.1. Effect of pH on rat wild type HMB synthase 4.1.2.2. Kinetic analyses of wild type rat HMB synthase and its mutants 	125 128 132 133 133 134
 4.1.1.1. Cloning of His-tagged rat short housekeeping HMB synthase 4.1.1.2. Construction of the expression plasmids containing HMB synthase mutations 4.1.1.3. Expression and purification of rat HMB synthase wild-type and variant proteins 4.1.2. Characterization of wild type rat HMB synthase and its mutants 4.1.2.1. Effect of pH on rat wild type HMB synthase 4.1.2.2. Kinetic analyses of wild type rat HMB synthase and its mutants 4.1.2.3. Thermal stability of rat HMB synthase wild type and variant proteins 	125 128 132 133 133 134 137
 4.1.1.1. Cloning of His-tagged rat short housekeeping HMB synthase 4.1.1.2. Construction of the expression plasmids containing HMB synthase mutations 4.1.1.3. Expression and purification of rat HMB synthase wild-type and variant proteins 4.1.2. Characterization of wild type rat HMB synthase and its mutants 4.1.2.1. Effect of pH on rat wild type HMB synthase 4.1.2.2. Kinetic analyses of wild type rat HMB synthase and its mutants 4.1.2.3. Thermal stability of rat HMB synthase wild type and variant proteins 4.1.3. Studies of enzyme-intermediate complexes of rat HMB synthase wild type enzyme 	125 128 132 133 133 134 137 138

4.1.3.2. Analysis of the enzyme-intermediate complexes of wild type rat HMB synthase by native-PAGE	140
4.1.3.3. Kinetic detection of enzyme-intermediate complexes of wild type rat HMB synthase by native-PAGE	142
4.1.4. Studies of rat HMB synthase mutants and their enzyme- intermediate complexes	151
4.1.4.1. FPLC separation of the enzyme-intermediate complexes of rat HMB synthase mutants	151
4.1.4.2. Native-PAGE analysis of rat HMB synthase mutant D44A	153
4.1.4.3. Thermal stability of the complexes of the wild type rat HMB synthase and D44A mutant	156
4.1.5. The roles of the residues for mutagenesis	160
4.1.5.1. The role of D44 residue	160
4.1.5.2. The roles of E63 and H78 residues	164
4.1.5.3. The role of Q200 residue	165
4.2. Synthesis of substrate analogues and incubation with rat HMB synthase	167
4.2.1. Synthesis of substrate analogues	167
4.2.1.1. 2-Aminomethyl-3-(2-hydroxyethyl)-4-(2-carboxyethyl) pyrrole	168
4.2.1.2. 2-Aminomethyl-3-ethyl-4-(2-carboxyethyl) pyrrole	169
4.2.1.3. 2-Aminomethyl-3-methoxymethyl-4-(2-carboxyethyl)	170
4.2.1.4. 2-Aminomethyl-3-ethyl-4-(1-methyl-2-carboxyethyl) pyrrole	172
4.2.2. Interaction study of rat HMB synthase with analogues	173
Chapter 5 Studies of uroporphyrinogen III synthase	177
5.1. Characterization of wild type rat Urogen III synthases and its mutants	177
5.1.1. Cloning, expression and purification of His-tagged rat Urogen III synthases and its mutants	177
5.1.1.1. Cloning of His-tagged rat Urogen III synthase	177
5.1.1.2. Construction of the expression plasmids containing Urogen III synthase mutations	179

5.1.1.3. Expression and purification of rat Urogen III Synthase wild-type and variant proteins	182
5.1.2. Characterization of wild type rat Urogen III synthase and its mutants	184
5.1.2.1. Effect of ionic concentration on wild type rat urogen III synthase	184
5.1.2.2. Effect of pH on wild type rat Urogen III synthase	184
5.1.2.3. Activity tests of wild type rat Urogen III synthase and its mutants	186
5.2. Molecular modeling study of Urogen III synthase	187
5.2.1. Molecular docking study of human Urogen III synthase	187
5.2.2. The role of Y168	190
Chapter 6 Summary	192
References	194

LIST OF ABBREVIATIONS

AIP	Acute intermittent porphyria
ALA	5-Aminolevulinic acid
BSA	Bovine serum albumin
CEP	Congenital erythropoietic porphyria
СТАОН	Cetyltrimethylammonium hydroxide
DBU	1,8-Diazabicyclo[5.4.0]undec-7-ene
DHP	1,2-Dihydropyran
DMAP	4-Dimethylaminopyridine
DNA	Deoxyribonucleic acid
E. coli	Escherichia coli
FPLC	Fast protein liquid chromatography
HMB	Hydroxymethylbilane
HMBS	Hydroxymethylbilane synthase
IPTG	Isopropyl-beta-D-thiogalactopyranoside
kb	kilobase(s)
kDa	kilodalton
Native-PAGE	Native polyacrylamide gel electrophoresis
N-terminus	Amino terminus
РСС	Pyridinium chlorochromate
PCR	Polymerase chain reaction
PBG	Porphobilinogen
PBGS	Porphobilinogen synthase

PDB	Protein data bank (http://www.rcsb.org/pdb/)
PPTS	Pyridinium <i>p</i> -toluenesulfonate
PTSA	<i>p</i> -Toluenesulfonic acid
RNA	Ribonucleic acid
SDS-PAGE	Sodium dodecyl sulfate polyacrylamide gel electrophoresis
THF	Tetrahydrofuran
THP	Tetrahydropyranoxy group
TLC	Thin layer chromatography
Urogen	Uroporphyrinogen
UrogenIIIS	uroporphyrinogen III synthase

LIST OF FIGURES, SCHEMES AND TABLES

Figure 1.1	Some of the more important tetrapyrroles	2
Figure 1.2	Biosynthesis of Urogen III	4
Figure 1.3	PBGS-catalyzed reaction	6
Figure 1.4	The metal-binding determinants of PBGS sequences for a variety of PBGS proteins	9
Figure 1.5	A homology model of the two different types of Zn ^{II} bound to the active site of human PBG synthase	10
Figure 1.6	Magnified view of the magnesium binding site in the active center of <i>P. aeruginosa</i> PBG synthase.	11
Figure 1.7	(a) A ribbon diagram of the TIM-barrel fold of the yeast PBGS monomer with its pronounced N- terminal arm and two active-site lysines shown in ball-and-stick representation. (b) The assembly of PBGS monomers (coloured differently) to form dimers and (c) the organization of the functional ALAD octamer	13
Figure 1.8	Crystal structure of octameric human wild type PBGS (PDB code: 1E51) and the hexameric F12L variant (PDB code: 1PV8)	15
Figure 1.9	The key steps for the enzymatic transformation of ALA to PBG	19
Figure 1.10	The PBGS inhibitors 4-oxosebacic acid and 4,7- dioxosebacic acid both mimic a putative Jordan I reaction intermediate	20
Figure 1.11	A comparison of Jordan I intermediate with the simplified structure was used to construct families of inhibitors	21
Figure 1.12	Proposed catalytic mechanism of PBGS from <i>P</i> . <i>aeruginosa</i>	25

Figure 1.13	Transformation of PBG to HMB	27
Figure 1.14	The stepwise assembly of HMB attached to the dipyrromethane cofactor of HMB synthase	30
Figure 1.15	Assembly mechanism for the holoenzyme from apoenzyme by reaction with PBG or HMB	32
Figure 1.16	Reduction and oxidation states of the cofactor of the HMB synthase	33
Figure 1.17	A: the enzyme active site with the cofactor in its reduced form (PDB code: 1AH5). B: same as A, but with oxidized cofactor (in black) added (PDB code: 1PDA)	33
Figure 1.18	Ribbon diagram of wild type HMBS with the cofactor in the reduced catalytically active site (PDB code: 1AH5)	35
Figure 1.19	Proposed detailed mechanism of the first cycle of reaction catalyzed by HMB synthase	38
Figure 1.20	Some inhibitors of HMB synthase	41
Figure 1.21	Conversion of HMB to Urogen I and Urogen III	44
Figure 1.22	The human Urogen III synthase structure (PDB code: 1JR2)	46
Figure 1.23	The spirocyclic mechanism for the formation of Urogen III	48
Figure 1.24	Three spiro-analogues have been prepared	50
Figure 3.1	The agarose gel analysis of PCR product (A) and pLM1::PBGS (B)	92
Figure 3.2	The agarose gel analysis of PCR product (A) and pET28a+::PBGS (B)	94
Figure 3.3	SDS-PAGE of the purified PBGSs from different plasmid	96

Figure 3.4	SDS-PAGE of the PBG synthase cleaved by thrombin	97
Figure 3.5	The effect of pH on rat PBG synthases expressed by recombinant plasmids pLM1::PBGS and pET28a+::PBGS (with and without His-tag)	98
Figure 3.6	The effect of concentration of zinc ion on rat PBG synthases expressed by recombinant plasmids pLM1::PBGS and pET28a+::PBGS (with and without His-tag)	99
Figure 3.7	Substrate (ALA) and the reversible inhibitors with rat PBG synthase	113
Figure 3.8	Competitive inhibition of rat PBG synthase by levulinic acid (1)	114
Figure 3.9	The residues forming the substrate-binding sites of PBGS	117
Figure 3.10	Inactivators of rat PBG synthase	119
Figure 3.11	Inactivation of PBG synthase by 5-bromo-levulinic acid (3)	120
Figure 3.12.	Inactivation of PBG synthase by compounds 7, 12, and 15	120
Figure 3.13	Inactivation of PBG synthase by 4-oxo-decenedioic acid (29)	121
Figure 3.14	Inactivation of PBG synthase by compounds 10 , 23 , 24 and 25	121
Figure 3.15	The four nucleophilic cysteines in the active site of wild type human PBG synthase (PDB code: 1E51)	122
Figure 4.1	The agarose gel analysis of PCR product (A) and pLM1::HMBS (B).	128
Figure 4.2	The sequence of HMB synthase from various sources	131
Figure 4.3	SDS-PAGE of purified HMB synthase wild type and	133

mutant proteins

Figure 4.4	The effect of pH on rat HMB synthase	134
Figure 4.5	Thermal inactivation of rat HMB synthase	138
Figure 4.6	FPLC separation of wild type rat HMB synthase	139
Figure 4.7	Native-PAGE of wild type rat HMB synthase, holoenzyme and enzyme-intermediate complexes	141
Figure 4.8	Native-PAGE analysis for incubation of wild type HMB synthase with PBG	144
Figure 4.9	Native-PAGE analysis for incubation of holoenzyme E with PBG	146
Figure 4.10	Native-PAGE analysis for incubation of complex ES with PBG	148
Figure 4.11	Native-PAGE analysis for incubation of complex ES_2 with PBG	148
Figure 4.12	Native-PAGE analysis for incubation of complex ES_3 with PBG	149
Figure 4.13	FPLC analysis of rat HMB synthase D44A mutant	151
Figure 4.14	FPLC analysis of rat HMB synthase E63A mutant	152
Figure 4.15	FPLC analysis of rat HMB synthase H78L mutant	152
Figure 4.16	Native-PAGE for rat HMB synthase D44A, its holoenzyme and enzyme-intermediate complexes	153
Figure 4.17	Native-PAGE for incubation of D44A with PBG	154
Figure 4.18	Native-PAGE for incubation of D44A holoenzyme E with PBG	155
Figure 4.19	Native-PAGE for complexes of wild type HMB synthase incubated at 37 °C	157
Figure 4.20	Native-PAGE for complexes of D44A mutant	158

incubated at 37 $^{\circ}\mathrm{C}$

Figure 4.21	Native-PAGE for complex ES_2 of wild type HMB synthase incubated at 60 °C	159
Figure 4.22	Native-PAGE for complex ES_2 of D44A mutant incubated at 60 °C	160
Figure 4.23	The D46 residues in <i>E. coli</i> HMB synthase (PDB code: 1PDA, 1AH5)	162
Figure 4.24	The E65 and H80 residues in <i>E. coli</i> HMB synthase (PDB code: 1PDA)	165
Figure 4.25	The Q198 residue in <i>E. coli</i> HMB synthase (PDB code: 1PDA)	167
Figure 5.1	The agarose gel analysis of PCR product (A) and pLM1::U3S (B)	179
Figure 5.2	The sequence of Urogen III synthase from various sources	182
Figure 5.3	SDS-PAGE of purified Urogen III synthase wild type and variant proteins	183
Figure 5.4	Effect of ionic concentration on the activity of rat Urogen III synthase	185
Figure 5.5	The effect of pH on rat Urogen III synthase	185
Figure 5.6	Coupled assay results for determination of the activity of rat Urogen III synthase variant proteins relative to wild-type enzyme	187
Figure 5.7	The superposition of the structure of human Urogen III synthase (PDB code: 1JR2) and the Swiss-model of rat Urogen III synthase	188
Figure 5.8	Model of spiro-intermediate bound to human Urogen III synthase (Supplied by Dr. Dik-Lung Ma)	189
Figure 5.9	Computer modeling showing the relative positions for Tyr168 of human urogen III synthase and bound spiro intermediate	191

Scheme 3.1	Synthesis of keto-alkanoic acids	104
Scheme 2.2	Synthesis of 5-bromolevulinic acid	105
Scheme 3.3	Synthesis of 6-amino-5-oxohexanoic acid hydrochloride	105
Scheme 3.4	Synthesis of 4-methoxy-2-butanone derivatives	106
Scheme 3.5.	Synthesis of 4-oxopentanenitrile derivatives	107
Scheme 3.6.	Synthesis of 4-hydroxy-2-butanone derivatives	108
Scheme 3.7.	Synthesis of 1-amino-5-hydroxy-2-pentanone hydrochloride	109
Scheme 3.8.	Synthesis of 2-butanone and 2-pentanone bromides	110
Scheme 3.9.	Synthesis of 4-oxo-5-decenedioic acid	111
Scheme 3.10	Synthesis of 4-oxo-sebacic acid	112
Scheme 4.1	Proposed mechanism of rat kidney HMB synthase	142
Scheme 4.2	Proposed mechanism of wild type rat HMB synthase	150
Scheme 4.3	Proposed mechanism of the release reaction	163
Scheme 4.4	Synthesis of isocyanoacetonitrile	167
Scheme 4.5	Synthesis of 2-aminomethyl-3-(2-hydroxyethyl)-4- (2-carboxyethyl) pyrrole	168
Scheme 4.6	Synthesis of 2-aminomethyl-3-ethyl-4-(2- carboxyethyl) pyrrole	170
Scheme 4.7	Synthesis of 2-aminomethyl-3-methoxymethyl-4- (2-carboxyethyl) pyrrole	171
Scheme 4.8	Synthesis of 2-aminomethyl-3-ethyl-4- (1-methyl-2-carboxyethyl) pyrrole	172
Table 1.1	Sorting the PBG synthases by metal-ion utilization	12

Table 1.2.	Some important substrate analogues of HMB synthase	40
Table 1.3	HMB analogues as substrates and inhibitors of Urogen III synthase	51
Table 3.1	Primers designed for getting rat PBG Synthase cDNA	91
Table 3.2	Primers designed for PCR	93
Table 3.3	Kinetic constants of rat PBG synthases	100
Table 3.4	N-terminal sequences of rat PBG synthases	101
Table 3.5	Kinetic constants of human wild type and mutant PBG synthase	102
Table 3.6	Inhibition constants of the reversible inhibitors	115
Table 4.1	Primers designed for getting HMB Synthase cDNA by PCR	127
Table 4.2	Primers used for introducing mutations on rat HMBS	129
Table 4.3	Kinetic constants of wild-type and mutants of rat HMB synthase	135
Table 4.4	Tetramerization of pyrroles with or without HMB synthase	175
Table 5.1	Primers designed for getting Urogen III synthase cDNA by PCR	178
Table 5.2	Primers used for introducing mutations on rat UrogenIIIS	180