MECHANISTIC STUDIES OF ENZYMATIC REACTIONS INVOLVED IN STRAIGHT AND BRANCHED CHAIN FATTY ACIDS OXIDATION

LIU XIAOJUN

DOCTOR OF PHILOSOPHY

CITY UNIVERSITY OF HONG KONG

APRIL 2007

CITY UNIVERSITY OF HONG KONG 香港城市大學

Mechanistic Studies of Enzymatic Reactions Involved in Straight and Branched Chain Fatty Acids Oxidation 参与直链和支链脂肪酸代谢的 酶的机理研究

Submitted to Department of Biology and Chemistry

生物及化學系

in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

哲學博士學位

by

Liu Xiaojun 刘晓军

April 2007

二零零七年四月

i

Abstract

Fatty acids (FAs) belong to a physiologically important class of molecules involved in energy storage, membrane structure, and various signaling pathways. The oxidation of fatty acids is a central metabolic process providing electrons to the respiratory chain and thus energy for a multitude of needs in aerobic organisms. It is a complex process involves more than a dozen enzymes and must be carefully regulated. The consequences of dysfunctions in these enzymes can be many-fold and severe with regard to human health, and thus an understanding of their basic mechanisms is of great relevance. L-3-Hydroxyacyl-CoA dehydrogenase (HAD) and mitochondrial trifunctional protein (MTP) are enzymes that take part in the β oxidation in mitochondria. This is the major process of fatty acids oxidation, and these enzymes catalyze the oxidation of straight chain fatty acids. Short/branched chain acyl-CoA dehydrogenase (SBCAD) and isovaleryl-CoA dehydrogenase (IVD) catalyze the oxidation of branched chain fatty acids from the catabolism of amino acids. Their properties and catalytic mechanisms have been studied by several research groups.

L-3-Hydroxyacyl-CoA dehydrogenase (HAD) is the penultimate enzyme in the β oxidation spiral, catalyzing the oxidation of the hydroxyl group of L-3hydroxyacyl-CoA to a keto group, concomitant with the reduction of NAD⁺ to NADH. Ser137 and Asp208 are highly conserved residues in HAD from various sources. In the present study, site-directed mutagenesis was carried out, which identified that they were important residues involved in the catalysis and supported the speculation based on its crystallographic structure. Ser137 and Asp208 should form hydrogen bond with the substrate, respectively, to stabilize the orientation of substrate in the active site. A series of substrate analogs were designed to probe the catalytic mechanism of HAD. A new mechanism involving the formation of enolate intermediate was proposed. In addition, two salt bridges between Glu117 and Arg209, which are located in two monomers respectively, were proposed to stabilize the dimer based on the information from the three-dimensional structure. The mutagenesis study of Glu117 showed the disruption of the salt bridges do not affect the formation and stability of the dimer. The mutation of Arg209 affected the correct folding of HAD to yield inclusion bodies. This indicated that the conserved Arg209 was crucial in maintaining protein structure.

Short/branched chain acyl-CoA dehydrogenase (SBCAD) and isovaleryl-CoA dehydrogenase (IVD) are enzymes involved in oxidation of branched chain fatty acids, which are from catabolism of isoleucine and leucine. The comparative studies of two enzymes on substrate specificity with various substrate analogs were carried out. IVD displayed broader substrate spectrum including the branched chain and straight chain substrates. 2-Octynoyl-CoA and 2-octy-4-enoyl-CoA were found to be mechanism-based inhibitors of SBCAD, but not inhibitors of IVD. The inactivation mechanism was proposed to involve a nucleophilic attack through Michael addition. Moreover, SBCAD was found to have intrinsic enoyl-CoA isomerase activity, which was confirmed by HPLC analysis. Gly260 was confirmed to be critical for the isomerase activity of the enzyme too. This residue might maintain the correct orientation of substrate via a hydrogen bond, which is consistent with the conclusion from the study of enoyl-CoA isomerase. IVD did not show isomerase activity, but displayed intrinsic enoyl-CoA hydratase activity, which was confirmed by HPLC analysis. The mutagenesis studies supported Glu254 was the catalytic residue for both dehydrogenase and hydratase activities.

Mutations at Glu381 and/or Gly260 introduced the hydratase activity in SBCAD, which is absent in wild-type SBCAD.

Mitochondrial trifunctional protein (MTP) catalyzes the last three steps of the β oxidation of long-chain fatty acids. This enzyme complex is composed of four α and four β subunits. The 3-hydroxyacyl-CoA dehydrogenase and enoyl-CoA hydratase activities reside on the α -subunit, whereas the 3-ketoacyl-CoA thiolase activity is located on the β -subunits. This enzyme complex is bound to the mitochondrial inner membrane. A lot of efforts were made to gain the active recombinant protein in order to study its property and mechanism. The α -subunit and β -subunit were expressed separately in bacterial expression system and yeast expression system. In the yeast expression system, the soluble α -subunit and β subunit could be detected by Western blotting using anti-His-tag antibody. However, no enough amount of protein could be obtained. In the bacterial expression system, pLM1, pET-32a(+), and pMIS3.0E vector were tested. pMIS3.0E vector has a nucleotide sequence of Mistic, which was found to increase the solubility of expressed proteins. Soluble β -subunit fusion protein was obtained, and the V_{max} value of 1.7 μ mol/mg/min and K_M value of 30.5 μ M were determined with 3-ketooctanoyl-CoA. Unfortunately, the α -subunit was still not soluble using pMIS3.0E vector.

Table of Contents

Declaration	ii
Abstract	iii
Thesis acceptance form	vi
Acknowledgements	vii
Table of Contents	ix
List of Abbreviations	xiv
List of Figures	xvii
List of Tables	xxii
Publications	xxiv

Chapter 1 Introduction	1
1.1 Fatty acid metabolism	1
1.1.1 Fatty acid uptake and activation	2
1.1.2 The pathways for the degradation of fatty acid by β -oxidation	4
1.2 Amino acid metabolism	9
1.2.1 Pathway of amino acid degradation	10
1.2.2 The oxidation of α -keto acids from the degradation of branched-	14
chain amino acid	
1.3 L-3-Hydroxyacyl-coenzyme A dehydrogenase	16
1.3.1 Structure of L-3-hydroxyacyl-CoA dehydrogenase	18
1.3.2 Catalytic mechanism of L-3-hydroxyacyl-CoA dehydrogenase	25
1.3.3 L-3-Hydroxyacyl-CoA ehydrogenase deficiency	28
1.4 Mitochondrial trifunctional protein	29
1.4.1 Structure of mitochondrial trifunctional protein	30
1.4.2 Catalytic mechanism of mitochondrial trifunctional protein	38
1.4.3 Mitochondrial trifunctional protein deficiency	43
1.5 Branched chain acyl-CoA dehydrogenase	45
1.5.1 Structure of branched chain acyl-CoA dehydrogenase	49
1.5.2 Catalytic mechanism of branched chain acyl-CoA	60
dehydrogenase	

1.5.3 Inhibitors of acyl-CoA ehydrogenase family	64
1.5.4 Branched chain acyl-CoA ehydrogenase deficiency	69
1.6 Research foundation and objectives	71
Chapter 2 Materials and methods	73
2.1 Materials	73
2.2 Cloning of rat liver L-3-hydroxyacyl-CoA ehydrogenase (HAD),	73
mitochondrial trifunctional protein (MTP), short/branched chain acyl-	
CoA ehydrogenase (SBCAD), and isovaleryl-CoA ehydrogenase	
(IVD)	
2.3 Cloning of rat liver MTP with Gateway system	74
2.4 Site-directed mutagenesis	75
2.5 Expression of the recombinant wild-type enzymes and their mutants	76
2.6 Purification of the recombinant wild-type enzymes and their mutants	76
2.7 The expression of MTP in yeast expression system	77
2.8 Preparation of CoA thioesters	78
2.9 Enzyme assays	78
2.9.1 Assay of L-3-hydroxyacyl-CoA ehydrogenase activity	78
2.9.2 Assays of short/branched chain acyl-CoA ehydrogenase and	80
isovaleryl-CoA ehydrogenase activities	
2.9.3 Assay of SBCAD isomerase activity	80
2.9.4 Assay of IVD hydratase activity	81
2.9.5 Assay of thiolase activity of β -subunit of MTP	81
2.10 HPLC analysis of enzymatic incubation mixture	82
2.11 Circular Dichroism (CD) spectroscopy	82
2.12 Preparation of apoprotein of SBCAD and IVD	83
2.13 Western blotting	83
2.14 Inactivation studies of SBCAD and IVD	84
Chapter 3 Studies of L-3-hydroxyacyl-CoA dehydrogenase	85
3.1 Studies on the catalytic mechanism of rat liver L-3-hydroxyacyl-CoA	86
ehydrogenase (HAD)	

3.1.1 Expression and purification of His-tagged rat liver HAD wild-	86
type and variant proteins	
3.1.1.1 Cloning of functional rat liver mitochondrial HAD wild-	86
type enzyme	
3.1.1.2 Construction of the expression plasmids containing HAD	88
mutations	
3.1.1.3 Expression and purification of rat liver mitochondrial HAD	89
wild-type and variant proteins	
3.1.2 The characterization of rat liver mitochondrial HAD	91
3.1.3 The role of Ser137 in HAD catalysis	94
3.1.4 The role of Asn208 in HAD catalysis	101
3.1.5 The model for catalysis by rat liver mitochondrial HAD	105
3.2 Studies on construction of rat liver mitochondrial L-3-hydroxyacyl-	113
CoA dehydrogenase	
3.2.1 The role of Phe205	113
3.2.2 Studies on the factors related to dimerization of rat liver	117
mitochondrial HAD	
3.2.2.1 Influence of His-tag position in HAD on catalytic activity	117
3.2.2.2 The role of salt bridge on formation of ehydr for HAD	119
Chapter 4 Comparative studies of short/branched chain acyl-CoA	123
ehydrogenase and isovaleryl-CoA ehydrogenase — two	
enzymes participating in oxidation of branched chain fatty acids	
4.1 Comparative study on substrate specificity of rat liver mitochondrial	125
SBCAD and IVD	
4.1.1 Expression and purification of rat liver mitochondrial SBCAD	125
and IVD wild-type enzymes	
4.1.1.1 Construction of functional rat liver mitochondrial SBCAD	125
and IVD wild-type expression plasmids	
4.1.1.2 Expression and purification of rat liver mitochondrial	129
SBCAD and IVD wild-type enzymes	
4.1.2 Expression and purification of rat liver mitochondrial SBCAD	130
and IVD mutants	

4.1.2.1 Construction of rat liver mitochondrial SBCAD and IVD	130
mutants	
4.1.2.2 Expression and purification of rat liver mitochondrial	135
SBCAD and IVD mutants	
4.1.3 Comparative study on substrate specificity of rat liver	136
mitochondrial SBCAD and IVD	
4.1.3.1 The pH-activity profiles of rat SBCAD and IVD	136
4.1.3.2 The branched chain substrate specificity of rat SBCAD and	137
IVD	
4.1.3.3 The straight chain substrate specificity of rat SBCAD and	141
IVD	
4.2 Comparative study on inhibitors of rat liver mitochondrial SBCAD and	142
IVD	
4.2.1 Interaction of 2-octynoyl-CoA with rat SBCAD and IVD	143
4.2.1.1 The effect of 2-octynoyl-CoA on rat SBCAD and IVD	143
4.2.1.2 Kinetics of inactivation of rat SBCAD by 2-octynoyl-CoA	144
4.2.2 Interaction of 2-octyn-4-enoyl-CoA with rat SBCAD and IVD	146
4.2.2.1 The effect of 2-octyn-4-enoyl-CoA on rat SBCAD and	146
IVD	
4.2.2.2 Kinetics of inactivation of rat SBCAD by 2-octyn-4-	147
enoyl-CoA	
4.2.3 Proposed mechanism for inactivation of rat SBCAD by 2-	149
octynoyl-CoA and 2-octyn-4-enoyl-CoA	
4.3 Comparative study on intrinsic isomerase or hydratase activity of rat	152
liver mitochondrial SBCAD and IVD	
4.3.1 The intrinsic isomerase activity of rat SBCAD	153
4.3.1.1 The kinetic characterization of isomerase activity of rat	153
SBCAD	
4.3.1.2 HPLC analysis of incubation mixture of rat SBCAD	156
wild-type and mutants with enoyl-CoA substrates	
4.3.1.3 The study on the role of Gly260 in isomerase activity of	159
rat SBCAD	
4.3.2 The intrinsic hydratase activity of rat IVD and SBCAD	162

xii

- 4.3.2.1 The kinetic studies of hydratase activity for rat IVD and 163 SBCAD
- 4.3.2.2 HPLC analysis of incubation mixture of rat IVD and 165 SBCAD wild-type and mutants with *trans*-2-butenoyl-CoA
- 4.3.2.3 The study on the role of Asp252 in hydratase activity of 169 rat IVD

Chapter 5 A hard road against inclusion body — an attempt to obtain	172
soluble and active mitochondrial trifunctional protein	
5.1 The expression of the α -subunit and β -subunit of MTP in <i>E. coli</i>	173
expression system	
5.1.1 The expression of the α -subunit and β -subunit of MTP using	173
pLM1 vector	
5.1.2 The expression of truncated α -subunit and β -subunit of MTP	177
using pLM1 vector	
5.1.2.1 The expression of truncated α -subunit of MTP	178
5.1.2.2 The expression of truncated β -subunit of MTP	184
5.1.3 The expression of the β -subunit of MTP using pET-32a(+)	186
vector	
5.1.4 The expression of the α -subunit and β -subunit of MTP using	189
pMIS3.0E vector	
5.2 The expression of the α -subunit and β -subunit of MTP in yeast	192
expression system	
Chapter 6 Summary	195

References

200

List of Abbreviations

Å	ångström
AACoA	acetoacetyl-CoA
AcAcCoA	acetoacetyl-CoA
ABC	ATP-binding cassette
ACADSB	gene of short/branched chain acyl-CoA dehydrogenase
ACBP	acyl-CoA-binding protein
ACD	acyl-CoA dehydrogenase
ACAD	acyl-CoA dehydrogenase
ACS	acyl-CoA synthetase
AD	Alzheimer's disease
ADP	adenosine diphosphate
AMP	Adenosine monophosphate
AOX	alcohol oxidase
ATP	adenosine triphosphate
B-factor	temperature factor
bp	base pair(s)
BSA	bovine serum albumin
4-CBA	4-chlorobenzoyl coenzyme A
CD	circular dichroism
cDNA	complementary deoxyribonucleic acid
Cn	carnitine
CoA	coenzyme A
CPT	carnitine palmitoyltransferase
C-terminus	carboxyl terminus
DCIP	2,6-dichlorophenol indophenol
DNA	deoxyribonucleic acid
DTT	dithiothreitol
ECH	2-enoyl-CoA hydratase
ECI	Δ^3 - Δ^2 -enoyl-CoA isomerase
E. coli	Escherichia coli

EDTA	ethylenediaminetetraacetate
ER	endoplasmic reticulum
ETF	oxidized electron transfer flavoprotein
ETFH	reduced electron transfer flavoprotein
FA	fatty acids
FABP	fatty acid binding protein
FAD	flavin adenine dinucleotide (oxidized form)
FPLC	fast protein liquid chromatography
GBP	gastrin-binding protein
GCAD	glutaryl-CoA dehydrogenase
GC-MS	gas chromatography/mass spectrometry
GFP	green fluorescent protein
HADHA	the gene of the α -subunit of MTP
HADHB	the gene of the β -subunit of MTP
HADHSC	the gene of L-3-hydroxyacyl-CoA dehydrogenase
4-HBA	4-hydroxybenzoyl coenzyme A
HAD	L-3-hydroxyacyl-CoA dehydrogenase
HPLC	high-performance liquid chromatography
IBD	isobutyryl-CoA
IPTG	isopropyl β -D-1-thiogalactopyranoside
IVA	isovaleric acidemia
IVD	isovaleryl-CoA dehydrogenase
kb	kilobase(s)
KT / KAT	3-ketoacyl-CoA thiolase
kDa	kilodalton
LCAD	long-chain acyl-CoA dehydrogenase
LCHAD	long-chain 3-hydroxyacyl-CoA dehydrogenase
2MBCD	2-methylbutyryl-CoA dehydrogenase
MCAD	medium chain acyl-CoA dehydrogenase
MCPA-CoA	methylenecyclopropylacetyl-CoA
MFE-1, -2	multifunctional enzyme type 1, type 2
MIM	mitochondrial inner membrane
mmBCFAs	monomethyl branched-chain fatty acids

MS/MS	tandem mass spectrometry
MTP / TFP	mitochondrial trifunctional protein
NAD^+	nicotinamide adenine dinucleotide (oxidized form)
NADH	nicotinamide adenine dinucleotide (reduced form)
NCS	noncrystallographic symmetry
NSAID	nonsteroidal anti-inflammatory drug
nt	nucleotide(s)
N-terminus	amino terminus
ORE	oleate response element
ORF	open reading frame
PCR	polymerase chain reaction
PD	Parkinson's disease
PDB	protein data bank
pFOX	partial fatty acid oxidation
PHHI	persistent hyperinsulinemic hypoglycemia of infancy
PMS	phenazine methosulfate
PPi	pyrophosphate
RC	respiratory chain
RNA	ribonucleic acid
SBCAD	short/branched chain acyl-CoA dehydrogenase
SBCADD	short/branched chain acyl-CoA dehydrogenase deficiency
SCAD	short chain acyl-CoA dehydrogenase
SCEH	short chain enoyl-CoA hydratase
SCHAD	short chain 3-hydroxyacyl-CoA dehydrogenase
SDR	short-chain alcohol dehydrogenase/reductase
SDS-PAGE	sodium dodecyl sulfate polyacrylamide gel electrophoresis
SPA-CoA	spiropentylacetyl-CoA
TEA	triethanol amine
UTR	untranslated region
UV	ultraviolet
VLCAD	very long-chain acyl-CoA dehydrogenase

List of Figures

Figure 1.1	Most common pathways for the degradation of fatty acyl-	6
	CoA esters by β -oxidation enzymes in the different	
	organisms.	
Figure 1.2	Overview of the catabolism of amino acids.	11
Figure 1.3	Outline of oxidative metabolism in mammalian tissue cells.	12
Figure 1.4	A summary of the points of entry of the standard amino	13
	acids into the citric acid cycle.	
Figure 1.5	Metabolic pathway of the branched-chain amino acids,	15
	valine, isoleucine and leucine.	
Figure 1.6	A. The crystal structure of the human heart L-3-	21
	hydroxyacyl-CoA dehydrogenase dimer complexed with	
	NAD ⁺ (PDB ID: 2HDH). B. The ribbon diagram of L-3-	
	hydroxyacyl-CoA dehydrogenase complexed with the	
	substrate, 3-hydroxyacyl-CoA.	
Figure 1.7	Stereo diagram of the active site of human heart HAD.	24
Figure 1.8	The crystal structure of pig heart HAD trimer in asymmetric	25
	unit complexed with NAD ⁺ (PDB ID: 3hdh).	
Figure 1.9	Secondary structure of the conserved PGF linker region	26
	(residues 202-206).	
Figure 1.10	The reaction mechanism of short chain L-3-hydroxyacyl-	27
	CoA dehydrogenase.	
Figure 1.11	Diagram showing the activities and subunits of	30
	mitochondrial trifunctional protein.	
Figure 1.12	Annotated sequences of (top panel) α - and (bottom panel) β -	33
	subunit of the mitochondrial trifunctional protein.	
Figure 1.13	Crystal structure of <i>Pf</i> FOM complex.	36
Figure 1.14	Homology model of the human MTP complex.	37
Figure 1.15	Schematic diagram of a dehydrogenase of E. coli	39
	multienzyme complex-NADH-3-ketoacyl-CoA ternary	
	complex.	
Figure 1.16	Schematic diagram of a model of the active site of E. coli L-	40

3-hydroxyacyl-CoA dehydrogenase.

Figure 1.17	Channelling mode.	42
Figure 1.18	Enzymes involved in the α,β -dehydrogenation of acyl-	47
	thioesters.	
Figure 1.19	A simplified summary of the major steps in catalysis of	49
	acyl-CoA dehydrogenase family.	
Figure 1.20	A ribbon diagram of a monomer of IVD and a superposition	53
	of monomers from IVD and MCAD.	
Figure 1.21	Solvent-accessible surface area at the "base" of the active	54
	site cavity of IVD.	
Figure 1.22	Comparison of the location of the active site base in IVD	55
	and MCAD.	
Figure 1.23	Predicted molecular structure of human SBCAD and its	58
	substrate binding pocket.	
Figure 1.24	Molecular models of the residues studies for substrate	59
	specificity in human SBCAD models.	
Figure 1.25	The key residues in the alignment of human SBCAD	60
	(model), rat SCAD, human MCAD, and human IVD.	
Figure 1.26	Chemical mechanism of α,β -dehydrogenation catalyzed by	62
	MCAD.	
Figure 1.27	Mechanism-based inhibitors of acyl-CoA dehydrogenase	65
	targeting apoprotein.	
Figure 1.28	Mechanism-based inhibitors of acyl-CoA dehydrogenases	68
	attacking FAD cofactor.	
Figure 3.1	The agarose gel analysis of pLM1::HAD plasmid.	88
Figure 3.2	Coomassie blue-stained SDS-PAGE of the purified rat liver	90
	mitochondrial L-3-hydroxyacyl-CoA dehydrogenase and its	
	variant protein.	
Figure 3.3	pH-activity profiles of rat liver mitochondrial HAD.	92
Figure 3.4	Kinetic characterization of rat liver mitochondrial HAD.	93
Figure 3.5	The sequences of L-3-hydroxyacyl-CoA dehydrogenases	95
	from various sources.	
Figure 3.6	CD spectroscopy of recombinant rat liver mitochondrial L-	100

3-hydroxyacyl-CoA dehydrogenase wild-type and its Ser137 mutants.

Figure 3.7 Interactions at the active site of human heart HAD wild-type 103 (PDB ID: 1F0Y) and N208S mutant (PDB ID: 1M75). Figure 3.8 CD spectroscopy of recombinant rat liver mitochondrial L-105 3-hydroxyacyl-CoA dehydrogenase wild-type and its Asn208 mutants. Figure 3.9 3-Hydroxyacyl-CoA substrates and analogs. 106 Figure 3.10 The HPLC profiles of analogs with fluorine at C2. 108 Figure 3.11 Proposed catalytic mechanism of rat liver mitochondrial 110 HAD. Figure 3.12 The proposed intermediate of substrate with double bond 111 between C4 and C5. Figure 3.13 The enantiomers and diastereomers of analog with one 113 fluorine at C2. Figure 3.14 Coomassie blue-stained SDS-PAGE of the purified rat liver 115 HAD F205 mutants. Figure 3.15 Coomassie blue-stained Native-PAGE of the HAD wild-122 type and mutants. Figure 4.1 The designed primers for IVD and SBCAD cloning. 127 Figure 4.2 The agarose gel analyses of pET28a::SBCAD 128 and pET28a::IVD plasmid. SDS-PAGE of rat liver mitochondrial SBCAD and IVD. Figure 4.3 129 Figure 4.4 The sequence alignment of acyl-CoA dehydrogenases 131 (ACD) from human and rat sources. Figure 4.5 SDS-PAGE of rat liver mitochondrial SBCAD and IVD 135 mutants. Figure 4.6 pH dependent profiles of rat SBCAD and IVD activity. 136 Figure 4.7 Inactivation of rat SBCAD by 2-octynoyl-CoA. 144 Figure 4.8 Kinetics of inactivation of rat SBCAD by 2-octynoyl-CoA. 145 Figure 4.9 Inactivation of rat SBCAD by 2-octyn-4-enoyl-CoA. 147 Figure 4.10 Kinetics of inactivation of rat SBCAD by 2-octyn-4-enoyl-148

CoA.

- Figure 4.11 HPLC analysis of trypsin digested rat SBCAD inactivated 150 by 2-alkynoyl-CoA.
- Figure 4.12 Proposed mechanism for inactivation of rat SBCAD by 2- 152 alkynoyl-CoA.
- Figure 4.13 HPLC analysis of incubation mixture of *trans*-3-butenoyl- 157 CoA and rat SBCAD wild-type or mutants.
- Figure 4.14 HPLC analysis of the ECH II catalyzed conversion of the 158 product formed from the mixture of rat SBCAD treated *trans*-3-butenoyl-CoA.
- Figure 4.15 SDS-PAGE of the purified rat SBCAD E259Q and G260A 161 mutants.
- Figure 4.16 HPLC analysis of incubation mixture of *trans*-2-butenoyl- 166 CoA and rat IVD wild-type or mutants.
- Figure 4.17 HPLC analysis of the incubation mixture of rat IVD 167 E252G/G375E double mutant and *trans*-2-butenoyl-CoA.
- Figure 4.18 HPLC analysis of incubation mixture for *trans*-2-butenoyl- 168 CoA and rat SBCAD wild-type or mutants.
- Figure 4.19 SDS-PAGE of the purified rat IVD D252E and D252N 170 mutants.
- Figure 5.1 The agarose gel analysis of pLM1::α and pLM1::β plasmids. 174
- Figure 5.2 SDS-PAGE of the purified rat liver α-subunit and β-subunit 175 proteins of MTP under denature condition with urea of 8 M using Hi-Trap column.
- Figure 5.3 SDS-PAGE of co-expression of α -subunit and β -subunit 176 proteins of MTP with molecular chaperone.
- Figure 5.4 Sequence alignment of α-subunit of MTP and rat 2-enoyl- 178 CoA hydratase (ECH).
- Figure 5.5 SDS-PAGE of truncated α-subunit of MTP containing 180 enoyl-CoA hydratase domain.
- Figure 5.6 Sequence alignment of α-subunit of MTP and rat L-3- 181 hydroxyacyl-CoA dehydrogenase (HAD).
- Figure 5.7 SDS-PAGE of truncated α-subunit of MTP containing L-3- 184 hydroxyacyl-CoA dehydrogenase domain

Figure 5.8	Sequence	alignment	of	β-subunit	of	MTP	and	rat	3-	185
	ketoacyl-C	OA thiolase	(K.	AT).						

- Figure 5.9 SDS-PAGE of truncated β -subunit proteins of MTP. 186
- Figure 5.10 The agarose gel analysis of pET-32a(+):: β plasmids. 188
- Figure 5.11 SDS-PAGE of rat liver β-subunit proteins of MTP expressed 188 using pET-32a(+) vector.
- Figure 5.12 SDS-PAGE of mistic fusion proteins of α -subunit and β 191 subunit of MTP expressed using pMIS3.0E vector.
- Figure 5.13 Western analysis of α -subunit and β -subunit expressions in 194 yeast expression system.

List of Tables

Table 1.1	Mitochondrial fatty acid oxidation enzyme system	4
Table 3.1	Primers designed for getting HAD cDNA by PCR	87
Table 3.2	Mismatched primers designed for intriducing mutation in	89
	HAD Ser137 and Asn208 residues	
Table 3.3	The kinetic characterization of rat liver mitochondrial HAD	94
	in the forward reaction and the reverse reaction	
Table 3.4	Comparison of kinetic parameters of rat liver mitochondrial	98
	HAD wild-type and Ser137 variant proteins	
Table 3.5	Comparison of kinetic parameters of rat liver mitochondrial	102
	HAD wild-type and Asn208 variant proteins	
Table 3.6	The kinetic parameters of rat liver mitochondrial HAD	107
	toward substrate and its analogs	
Table 3.7	Kinetic parameters of HAD S137A and N208A mutants	109
	toward 3-hydroxyacyl-CoA analogs	
Table 3.8	Mismatched primers designed for introducing mutation in	114
	HAD Phe205 residue	
Table 3.9	Kinetic parameters for the reduction of acetoacetyl-CoA by	116
	HAD wild-type and HAD F205 mutants	
Table 3.10	Primers designed for getting N-terminal His-tag HAD cDNA	118
	by PCR	
Table 3.11	Comparison of kinetic parameters of rat liver C-terminal and	119
	N-terminal His-tagged HAD	
Table 3.12	Mismatched primers designed for introducing mutation in	120
	HAD Glu117 and Arg209 residues	
Table 3.13	Comparison of kinetic parameters of HAD wild-type and	121
	E117 mutant	
Table 4.1	Mismatched primers designed for introducing mutation in	134
	SBCAD and IVD cDNA	
Table 4.2	Kinetic characterization of purified SBCAD and IVD wild-	138
	type and mutants toward (S)-2-methylbutyryl CoA	
	determined with DCIP dye reduction assay	

- Table 4.3Kinetic characterization of purified SBCAD and IVD wild-139type and mutants toward isovaleryl CoA determined withDCIP dye reduction assay
- Table 4.4Comparative study on straight chain substrate specificity of142rat SBCAD and IVD
- Table 4.5Kinetic parameters of rat SBCAD wild-type and mutants153toward branched chain enoyl-CoA
- Table 4.6Kinetic parameters of rat SBCAD wild-type and mutants155toward straight chain enoyl-CoA
- Table 4.7Mismatched primers designed for introducing mutation of160Glu259 and Gly260 in SBCAD cDNA
- Table 4.8Kinetic parameters of rat IVD wild-type and mutants toward163*trans*-2-butenoyl-CoA
- Table 4.9Kinetic parameters of rat SBCAD wild-type and mutants164toward *trans*-2-butenoyl-CoA
- Table 4.10Mismatched primers designed for introducing mutation of170Asp252 in IVD cDNA
- Table 5.1Primers designed for obtaining α-subunit and β-subunit174cDNA by PCR
- Table 5.2Primers designed for obtaining hydratase domain cDNA in α-180subunit of MTP by PCR-based mutagenesis
- Table 5.3 Primers designed for obtaining truncated α -subunit and β 183 subunit cDNA by PCR
- Table 5.4Primers designed for obtaining the β-subunit cDNA by PCR187for expression using pET-32a(+) vector
- Table 5.5 Primers designed for obtaining the α -subunit and β -subunit 190 cDNA by PCR for pENTR/D-TOPO vector
- Table 5.6Kinetic parameters of rat liver β-subunit of MTP toward192short-, medium- and long-chain substrates
- Table 5.7Primers designed for obtaining the α-subunit and β-subunit193cDNA by PCR for pPICZA vector