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Abstract 

 

Fatty acids (FAs) belong to a physiologically important class of molecules involved 

in energy storage, membrane structure, and various signaling pathways. The 

oxidation of fatty acids is a central metabolic process providing electrons to the 

respiratory chain and thus energy for a multitude of needs in aerobic organisms. It 

is a complex process involves more than a dozen enzymes and must be carefully 

regulated. The consequences of dysfunctions in these enzymes can be many-fold 

and severe with regard to human health, and thus an understanding of their basic 

mechanisms is of great relevance. L-3-Hydroxyacyl-CoA dehydrogenase (HAD) 

and mitochondrial trifunctional protein (MTP) are enzymes that take part in the β-

oxidation in mitochondria. This is the major process of fatty acids oxidation, and 

these enzymes catalyze the oxidation of straight chain fatty acids. Short/branched 

chain acyl-CoA dehydrogenase (SBCAD) and isovaleryl-CoA dehydrogenase (IVD) 

catalyze the oxidation of branched chain fatty acids from the catabolism of amino 

acids. Their properties and catalytic mechanisms have been studied by several 

research groups.  

 

L-3-Hydroxyacyl-CoA dehydrogenase (HAD) is the penultimate enzyme in the β-

oxidation spiral, catalyzing the oxidation of the hydroxyl group of L-3-

hydroxyacyl-CoA to a keto group, concomitant with the reduction of NAD+ to 

NADH. Ser137 and Asp208 are highly conserved residues in HAD from various 

sources. In the present study, site-directed mutagenesis was carried out, which 

identified that they were important residues involved in the catalysis and supported 

the speculation based on its crystallographic structure. Ser137 and Asp208 should 

form hydrogen bond with the substrate, respectively, to stabilize the orientation of 
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substrate in the active site. A series of substrate analogs were designed to probe the 

catalytic mechanism of HAD. A new mechanism involving the formation of 

enolate intermediate was proposed. In addition, two salt bridges between Glu117 

and Arg209, which are located in two monomers respectively, were proposed to 

stabilize the dimer based on the information from the three-dimensional structure. 

The mutagenesis study of Glu117 showed the disruption of the salt bridges do not 

affect the formation and stability of the dimer. The mutation of Arg209 affected the 

correct folding of HAD to yield inclusion bodies. This indicated that the conserved 

Arg209 was crucial in maintaining protein structure.  

 

Short/branched chain acyl-CoA dehydrogenase (SBCAD) and isovaleryl-CoA 

dehydrogenase (IVD) are enzymes involved in oxidation of branched chain fatty 

acids, which are from catabolism of isoleucine and leucine. The comparative 

studies of two enzymes on substrate specificity with various substrate analogs were 

carried out. IVD displayed broader substrate spectrum including the branched chain 

and straight chain substrates. 2-Octynoyl-CoA and 2-octy-4-enoyl-CoA were found 

to be mechanism-based inhibitors of SBCAD, but not inhibitors of IVD. The 

inactivation mechanism was proposed to involve a nucleophilic attack through 

Michael addition. Moreover, SBCAD was found to have intrinsic enoyl-CoA 

isomerase activity, which was confirmed by HPLC analysis. Gly260 was 

confirmed to be critical for the isomerase activity of the enzyme too. This residue 

might maintain the correct orientation of substrate via a hydrogen bond, which is 

consistent with the conclusion from the study of enoyl-CoA isomerase. IVD did not 

show isomerase activity, but displayed intrinsic enoyl-CoA hydratase activity, 

which was confirmed by HPLC analysis. The mutagenesis studies supported 

Glu254 was the catalytic residue for both dehydrogenase and hydratase activities. 
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Mutations at Glu381 and/or Gly260 introduced the hydratase activity in SBCAD, 

which is absent in wild-type SBCAD.  

 

Mitochondrial trifunctional protein (MTP) catalyzes the last three steps of the β-

oxidation of long-chain fatty acids. This enzyme complex is composed of four α 

and four β subunits. The 3-hydroxyacyl-CoA dehydrogenase and enoyl-CoA 

hydratase activities reside on the α-subunit, whereas the 3-ketoacyl-CoA thiolase 

activity is located on the β-subunits. This enzyme complex is bound to the 

mitochondrial inner membrane. A lot of efforts were made to gain the active 

recombinant protein in order to study its property and mechanism. The α-subunit 

and β-subunit were expressed separately in bacterial expression system and yeast 

expression system. In the yeast expression system, the soluble α-subunit and β-

subunit could be detected by Western blotting using anti-His-tag antibody. 

However, no enough amount of protein could be obtained. In the bacterial 

expression system, pLM1, pET-32a(+), and pMIS3.0E vector were tested. 

pMIS3.0E vector has a nucleotide sequence of Mistic, which was found to increase 

the solubility of expressed proteins. Soluble β-subunit fusion protein was obtained, 

and the Vmax value of 1.7 μmol/mg/min and KM value of 30.5 μM were determined 

with 3-ketooctanoyl-CoA. Unfortunately, the α-subunit was still not soluble using 

pMIS3.0E vector.  
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