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Abstract 

 

Numerous diseases have been reported in relation to fatty acids, such as 

cardiovascular disease, cancer, diabetes, rheumatoid arthritis, fibrosarcoma-induced 

hyperlipidemia, etc. The regulation of fatty acid oxidation has been reported as a potential 

method treating non-insulin dependent diabetes mellitus (NIDDM) and inhibitors of 

enzymes involved in the metabolism of fatty acids have been synthesized and studied as 

potential medicines. Medium-chain acyl-CoA dehydrogenase (MCAD), acyl-CoA 

oxidase (ACO) and 3-ketoacyl-CoA thiolase (KT) are three key enzymes involved in the 

β-oxidation of fatty acid. In the present study, we found that both MCAD and ACO have 

intrinsic isomerase activities, and carried out extensive studies of MCAD, ACO, and KT 

through site-directed mutagenesis and incubation with various substrate analogs followed 

with analysis.  

We cloned the genes of rat acyl-CoA oxidase, 3-ketoacyl-CoA thiolase and 

medium-chain acyl-CoA dehydrogenase into a bacterial expression vector pLM1 with six 

continuous histidine codons attached to the C or N-terminal of the genes respectively. 

The three cloned genes were overexpressed in Escherichia coli and the soluble proteins 

were purified with a Hitrap chelating metal affinity column in over 90% yield to apparent 

homogeneity. MCAD and ACO were found to have intrinsic enoyl-CoA isomerase 

activity, which were confirmed using incubation followed with HPLC analysis. E376 

mutants of MCAD were constructed, and it was shown that E376 is the catalytic residue 
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for both dehydrogenase and isomerase activities of the enzyme. E421 mutants of ACO 

were also constructed, and it was shown that E421 is the catalytic residue for both 

oxidase and isomerase activities of the enzyme. MCAD and ACO may function as 

isomerase in vivo when authentic isomerase is deficient. As we know, this is the first 

report that MCAD and ACO have intrinsic enoyl-CoA isomerase activity.  

Four MCAD mutants Y375A, Y375E, Y375R and Y375K were constructed, and it 

was found that the mutant Y375K showed intrinsic acyl-CoA oxidase activity, which can 

transfer electrons to molecular oxygen. 2-Octy-4-enoyl-CoA was found to be a 

mechanism-based irreversible inhibitor of MCAD, and the mechanism of inactivation 

was different from those previous reported for known MCAD inhibitors. 

2-Octe-4-ynoyl-CoA and 2-pente-4-ynoyl-CoA were both found to be mechanism-based 

inhibitors of ACO. ACO mutants Y232 and Y401 were constructed for studying the 

importance of the two residues, and it was found that Y232 and Y401 were important in 

cofactor FAD binding through kinetic and spectrum studies. Four KT mutants H352A, 

H352E, H352K and H352Y were constructed, and it was found that all mutants have 

significantly decreased activity, which confirmed H352 is an essential catalytic residue. 

KT mutant S251 was also constructed, and it was shown that residue S251 plays an 

important role in substrate binding. 2-Octynoyl-CoA and 2-octy-4-enoyl-CoA were both 

found to be mechanism-based inhibitors of KT.  
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Fig. 4.9. Effect of pH on oxidase (▲) and isomerase (�) activities of 
rat peroxisomal ACO                                           
 
Fig. 4.10 The proposed mechanism for the conversion of 
trans-3-enoyl-CoA to trans-2-enoyl-CoA.                           
 
Fig. 4.11 Inhibition of ACO by 2-octe-4-ynoyl-CoA. ACO (5µM) was 
incubated with 2-octe-4-ynoyl-CoA (25µM) at 25oC at different time. 
 
Fig. 4.12 Incubation of 5 µM ACO with 5 equivalents of 
2-octe-4-ynoyl-CoA, 50 equivalents of trans-2, 
trans-4-octadienoyl-CoA, and 50 equivalents of 2-octy-4-enoyl-CoA 
respectively.                                         
 
Fig. 4.13 Titration of 5 µM ACO with indicated levels of 
2-octe-4-ynoyl-CoA.     
 
Fig. 4.14 Protection by 2-octenoyl-CoA of ACO from inactivation by 
2-octe-4-ynoyl-CoA. The ACO (5 µM) was inactivated with 5 equivalent 
of 2-octe-4-ynoyl-CoA in the presence of 0, 100 µM 2-octenoyl-CoA. 
 
Fig. 4.15 Time- and concentration-dependent inactivation of KT by 
2-octe-4-enoyl-CoA (□, 5 µM 2-octe-4-ynoyl-CoA; ○, 10 µM; ●, 25 µM; 
∆, 60 µM; ▼, 120 µM; ■, 240 µM)                                
 
Fig. 4.16 pH dependence of apparent rate for inactivation of ACO by 
2-octe-4-ynoyl-CoA.                                            
 
Fig. 4.17 Protection by 2-octenoyl-CoA of ACO from inactivation by 
2-pente-4-ynoyl-CoA. The ACO (5 µM) was inactivated with 1 
equivalent of 2-pente-4-ynoyl-CoA in the presence of 0 (●), 100 µM (○) 
and 200µM (▼) 2-octenoyl-CoA.                                  
 
Fig. 4.18 Proposed mechanisms for inactivation of acyl-CoA oxidase 
by 2-octe-4-ynoyl-CoA or 2-pente-4-ynoyl-CoA.                     
 
Fig. 4.19 Schematic diagrams of the active site in ACO. Putative 
interactions are shown by dotted lines if the acceptor and donor less than 
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3.5 Å apart.              
 
Fig. 4.20 SDS-PAGE of purified ACO Y232 and Y401 mutant 
proteins. Lane 1, molecular mass standards; lane 2, purified ACO wild 
type; lane 3, purified ACO::Y232F mutant protein; lane 4, purified 
ACO::Y232G mutant protein; lane 5, purified ACO::Y232S mutant 
protein; lane 6, purified ACO::Y401F mutant protein; lane 7, purified 
ACO::Y401G mutant protein; lane 8, purified ACO::Y401S mutant 
protein                                            
 
Fig.4.21 Wavelength scanning of acyl-CoA oxidase wild type and its 
mutant proteins. 1. Acyl-CoA oxidase wild type; 2. ACO::Y232G mutant 
protein; 3. ACO::Y401S mutant protein; 4. ACO::Y401G mutant protein 
 
Fig. 4.22 SDS-PAGE of purified ACO K90G, Q291G and K295G 
mutant proteins. Lane 1, molecular mass standards; lane 2, purified 
ACO::K90G mutant protein; lane 3, purified ACO::Q291G mutant 
protein; lane 4, purified ACO::K295G mutant protein.  
 
Fig. 4.23 Chain length optimum of ACO wild type and K90G, Q291G 
and K295G mutant proteins.                                     

 
Fig. 5.1 PCR product of 3-ketoacyl-CoA thiolase.                   

 
Fig. 5.2 Single and double digestion of recombinant pLM1::KT 
plasmid.        

 
Fig. 5.3 SDS-PAGE of purified 3-ketoacyl-CoA thiolase.              
 
Fig. 5.4 SDS-PAGE of purified mutant proteins of 3-ketoacyl-CoA 
thiolase. 1. molecular mass marker; 2. purified KT H352A; 3. purified KT 
H 352E; 4. purified KT H352K; 5. purified KT H352Y                
 

 
Fig. 5.5 SDS-PAGE of purified mutant proteins of 3-ketoacyl-CoA 
thiolase. 1. molecular mass marker; 2. purified KT S251A; 3. purified KT 
S251C; 4. purified KT S251D; 5. purified KT S251T.                  
 
Fig. 5.6 Inhibition of KT by 2-octynoyl-CoA. KT (5µM) was 
incubated with 2-octynoyl-CoA (25µM) at 25oC at different time. 
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Fig. 5.7 Incubation of 5 µM KT with 5 equivalents of 2-octynoyl-CoA, 
50 equivalents of trans-2, trans-4-octadienoyl-CoA, and 50 equivalents 
of 2-octe-4-ynoyl-CoA respectively.                               
 
Fig. 5.8 Titration of 5 µM KT with indicated levels of 2-octynoyl-CoA 
 
Fig. 5.9 Protection by acetoacetyl-CoA of KT from inactivation by 
2-octynoyl-CoA. The KT (5 µM) was inactivated with 5 equivalent of 
2-octynoyl-CoA in the presence of 0, 200 µM and 400 µM 
acetoacetyl-CoA.                                     
 
Fig. 5.10 Time and concentration-dependent inactivation of MCAD 
by 2-octynoyl-CoA.                                            
 
Fig. 5.11 pH dependence of apparent rate for inactivation of KT by  
2-octynoyl-CoA.                                               
 
Fig. 5.12 Inhibition of KT by 2-octy-4-enoyl-CoA. KT (5µM) was 
incubated with 2-octy-4-enoyl-CoA (50µM) at 25oC at different time 
 
Fig. 5.13 Titration of 5 µM KT with indicated levels of 
2-octy-4-enoyl-CoA.      
 
Fig. 5.14 Protection by acetoacetyl-CoA of KT from inactivation by 
2-octy-4-enoyl-CoA. The KT (5 µM) was inactivated with 5 equivalent of 
2-octy-4-enoyl-CoA in the presence of 0, 100 µM and 400 µM 
acetoacetyl-CoA.     
 
Fig. 5.15 Time- and concentration-dependent inactivation of KT by 
2-octy-4-enoyl-CoA.                                           
 
Fig. 5.16 pH dependence of apparent rate for inactivation of KT by 
2-octy-4-enoyl-CoA.                                            
 
 
Fig. 5.17 Two proposed mechanisms for inactivation of KT by 
2-octynoyl-CoA or/and 2-octy-4-enoyl-CoA                        

 
Fig. 5.18 Mechanism for inactivation of KT by 3-alkynoyl-CoA 
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Abbreviations 
 

Amino acids: 

A                       Ala, alanine 

C Cys, cysteine 

D              Asp, aspartic acid 

E              Glu, glutamic acid 

G              Gly, glycine 

H                       His, histidine 

K              Lys, lysine 

R           Arg, arginine 

Q                      Gln, glutamine 

T           Thr, threonine 

Y                       Tyr, tyrosine 

 

Å            ångström 

ABC        ATP-binding cassette 

ACBP        acyl-CoA-binding protein 

ACO                    acyl-CoA oxidase 

ADP        adenosine diphosphate 

ATP        adenosine triphosphate 

B-factor             temperature factor 

CD              circular dichroism 

cDNA        complementary deoxyribonucleic acid 

CoA        coenzyme A 

CPT        carnitine palmitoyltransferase 

C-terminus       carboxyl terminus 
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DCPIP                  2,6-dichlorophenolindophenol 

DNA       deoxyribonucleic acid 

E. coli       Escherichia coli 

ECH                   enoyl-CoA hydratase 

ECI                    enoyl-CoA isomerase 

EDTA       ethylenediaminetetraacetate 

ETF                    electron transferring flavoprotein 

FAD       flavin adenine dinucleotide (oxidized form) 

GBP       gastrin-binding protein 

GFP       green fluorescent protein 

HPLC       high-performance liquid chromatography 

IPTG       isopropyl-β-D-thiogalactopyranoside 

KDa       kilodalton 

KT                     3-keto-acyl-CoA thiolase 

MCAD       medium chain acyl-CoA dehydrogenase 

MCPF-CoA             methylenecyclopropylformyl-CoA 

MFE-1, -2      multifunctional enzyme type 1, type 2 

MES       2-(N-morpholino)ethanesulfonic acid 

MTP       mitochondrial trifunctional protein 

NAD+       nicotinamide adenine dinucleotide (oxidized form)                          

NCS       noncrystallographic symmetry 

NIDDM                 non-insulin dependent diabetes mellitus 

N-terminus      amino terminus 

PCR       polymerase chain reaction 

PMS                    phenazine methosulfate 

PTS           peroxisomal targeting signal 

RNA        ribonucleic acid 
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SCP        sterol carrier protein 

SDS-PAGE         sodium dodecyl sulphate polyacrylamide gel electrophoresis 

SPA-CoA                spiropentylacetyl-CoA 

TEA        triethanol amine 

UV/Vis                  ultraviolet-visible spectroscopy 
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