CITY UNIVERSITY OF HONG KONG 香港城市大學

Mechanistic Studies of Enzymatic Reactions Involved in Fatty Acid Oxidation 參與脂肪酸代謝的酶的反應機理研究

Submitted to Department of Biology and Chemistry 生物及化學系 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy 哲學博士學位

by

Zeng Jia 曾嘉

March 2006 二零零六年**三**月

Abstract

Numerous diseases have been reported in relation to fatty acids, such as cardiovascular disease, cancer, diabetes, rheumatoid arthritis, fibrosarcoma-induced hyperlipidemia, etc. The regulation of fatty acid oxidation has been reported as a potential method treating non-insulin dependent diabetes mellitus (NIDDM) and inhibitors of enzymes involved in the metabolism of fatty acids have been synthesized and studied as potential medicines. Medium-chain acyl-CoA dehydrogenase (MCAD), acyl-CoA oxidase (ACO) and 3-ketoacyl-CoA thiolase (KT) are three key enzymes involved in the present study, we found that both MCAD and ACO have intrinsic isomerase activities, and carried out extensive studies of MCAD, ACO, and KT through site-directed mutagenesis and incubation with various substrate analogs followed with analysis.

We cloned the genes of rat acyl-CoA oxidase, 3-ketoacyl-CoA thiolase and medium-chain acyl-CoA dehydrogenase into a bacterial expression vector pLM1 with six continuous histidine codons attached to the C or N-terminal of the genes respectively. The three cloned genes were overexpressed in *Escherichia coli* and the soluble proteins were purified with a Hitrap chelating metal affinity column in over 90% yield to apparent homogeneity. MCAD and ACO were found to have intrinsic enoyl-CoA isomerase activity, which were confirmed using incubation followed with HPLC analysis. E376 mutants of MCAD were constructed, and it was shown that E376 is the catalytic residue for both dehydrogenase and isomerase activities of the enzyme. E421 mutants of ACO were also constructed, and it was shown that E421 is the catalytic residue for both oxidase and isomerase activities of the enzyme. MCAD and ACO may function as isomerase in vivo when authentic isomerase is deficient. As we know, this is the first report that MCAD and ACO have intrinsic enoyl-CoA isomerase activity.

Four MCAD mutants Y375A, Y375E, Y375R and Y375K were constructed, and it was found that the mutant Y375K showed intrinsic acyl-CoA oxidase activity, which can transfer electrons to molecular oxygen. 2-Octy-4-enoyl-CoA was found to be a mechanism-based irreversible inhibitor of MCAD, and the mechanism of inactivation different from those previous reported for known MCAD inhibitors. was 2-Octe-4-ynoyl-CoA and 2-pente-4-ynoyl-CoA were both found to be mechanism-based inhibitors of ACO. ACO mutants Y232 and Y401 were constructed for studying the importance of the two residues, and it was found that Y232 and Y401 were important in cofactor FAD binding through kinetic and spectrum studies. Four KT mutants H352A, H352E, H352K and H352Y were constructed, and it was found that all mutants have significantly decreased activity, which confirmed H352 is an essential catalytic residue. KT mutant S251 was also constructed, and it was shown that residue S251 plays an important role in substrate binding. 2-Octynoyl-CoA and 2-octy-4-enoyl-CoA were both found to be mechanism-based inhibitors of KT.

Table of Contents

	Page
Abstract	ii
Acknowledgements	iv
Table of Contents	V
List of Figures	xi
List of Tables	XX
Abbreviations	xxii
Chapter 1. General Introduction	1
1.1 Introduction of Fatty Acid	1
1.1.1 Fatty Acid Uptake and Activation in Mitochondria	1
1.1.2 Fatty Acid Uptake and Activation in Peroxisomes	3
1.2 Fatty Acid Oxidation	4
1.2.1 β -oxidation in mitochondria	5
1.2.2 β -oxidation in peroxisomes	6
1.2.3 Diseases caused by fatty acid oxidation disorder	9
1.3 Medium-Chain Acyl-CoA Dehydrogenase (MCAD)	10
1.3.1 Introduction	10
1.3.2 Amino Acid Sequences and Crystal Structure of MCAD	11
1.3.2.1 Amino Acid Sequences	11
1.3.2.2 The Three-Dimensional Structure of MCAD	14
1.3.2.3 The Active Site Cavity of MCAD	16
1.3.3 Catalytic Reaction Mechanism	17
1.3.3.1 Overall Reaction Mechanism	17

1.3.3.2 Mechanism of α , β -Dehydrogenation Reaction catalyzed by MCAD	18
1.3.3.3 Stereochemistry of α,β -Dehydrogenation Reaction	19
1.3.4 Inhibitors of MCAD	20
1.3.4.1 Inactivators Targeting Apoprotein	20
1.3.4.2 Inactivators Targeting Flavin Cofactor	22
1.4 Acyl-CoA Oxidase (ACO)	24
1.4.1 Introduction	24
1.4.2 The Reaction Catalyzed by ACO	25
1.4.3 The Crystal Structure of Acyl-CoA Oxidase (ACO)	26
1.4.4 The Active Site Structure of ACO	30
1.4.5 Inhibitors of ACO	31
1.5 3-Ketoacyl-CoA Thiolase (KT)	33
1.5.1 Introduction	33
1.5.2 Three-Dimensional Structure of 3-Ketoacyl-CoA Thiolase	34
1.5.2.1 Sequence and Secondary Structure of Thiolase from Yeast	34
1.5.2.2 Active Site Pocket of 3-Ketoacyl-CoA Thiolase	36
1.5.3 Catalytic Reaction Mechanism of 3-Ketoacyl-CoA Thiolase	38
1.5.4 Inhibitors of 3-Ketoacyl-CoA Thiolase	39
1.6 Objectives of the Research	41
Chapter 2. General Methods	42
2.1 Materials	42
2.2 Construction of the Expression Plasmids	42
2.3 Expression of the Recombinant Proteins of Wild Type and Mutants	43
2.4 Purification of the Recombinant Proteins of Wild Type and Mutants	43
2.5 Enzyme Assays	44
2.5.1 Acyl-CoA Oxidase (ACO)	44
2.5.2 Medium Chain Acyl-CoA Dehydrogenase (MCAD)	45

2.5.3 3-Ketoacyl-CoA Thiolase (KT)	45
2.5.4 Activity Assay for Isomerase Activity of MCAD and ACO	45
2.6 Site-Directed Mutagenesis	46
2.7 HPLC Analysis of Enzymatic Incubation Mixture	47
2.8 Preparation of Apoprotein of MCAD and ACO	47
2.9 Methods for Inhibitor Studies	48
2.9.1 Determination of Partition Ratio	48
2.9.2 Test for the Reversibility of the Inactivation	48
2.9.3 Kinetic Analysis of Inactivation	48
Chapter 3. Studies of Medium-Chain	
Acyl-CoA Dehydrogenase (MCAD)	50
3.1 Expression and Purification of His-tagged Rat Medium-Chain	
Acyl-CoA Dehydrogenase (MCAD)	50
3.1.1 Subcloning for the Recombinant pLM1::MCAD Plasmid	50
3.1.2 Expression and Purification of Medium-Chain Acyl-CoA Dehydrogenase	52
3.1.3 Kinetic Studies of Medium-Chain Acyl-CoA Dehydrogenase	
with Different Substrate Analogs	54
3.2 Isomerase Activity of Rat Liver Medium-Chain Acyl-CoA Dehydrogenase	55
3.2.1 Construction of Mutant Plasmids, Expression and Purification of Mutant	
Proteins in E. coli.	56
3.2.2 Kinetic Studies of Dehydrogenase Activity for Rat Mitochondrial	
MCAD Wild-Type and Mutant Proteins	58
3.2.3 Kinetic Studies and Substrate Specificity of Isomerase Activity	
for Rat Mitochondrial MCAD Wild-Type and Mutant E376D	59
3.2.4 HPLC Analysis of Enzymatic Incubation Mixture	61
3.2.5 Inhibition Study for Rat Mitochondrial MCAD	63
3.2.6 pH Dependence of Dehydrogenase and Isomerase Activities for Rat	

Mitochondrial MCAD	64
3.2.7 Sequence Comparison between MCAD and Δ^3 - Δ^2 -Enoyl-CoA Isomerase	65
3.2.8. Proposed Mechanism for the Isomerase Activity of MCAD	65
3.3 Oxidase Activity of MCAD Y375K Mutant	69
3.3.1 Construction of MCAD Y375 Mutants, and Expression and Purification	
of Mutant Proteins.	69
3.3.2 Kinetics of Dehydrogenase Activity of MCAD Y375 Mutant Proteins	71
3.3.3 Oxidase Activity of MCAD Y375K Mutant Protein	72
3.3.3.1 HPLC Analysis of Oxidase Activity of MCAD Y375K Mutant	72
3.3.3.2 Kinetic Studies of Oxidase Activity of MCAD Y375K Mutant Protein	74
3.4 Studies of MCAD R256 Mutants	77
3.4.1 Construction of MCAD R256 Mutants, and Expression and Purification	
of Mutant Proteins	77
3.4.2 Kinetic Studies of MCAD R256 Mutant Proteins	79
3.5 Inactivation of MCAD by 2-Octy-4-enoyl-CoA	80
3.5.1. Studies of Activity of 2-Octy-4-enoyl-CoA on Rat Mitochondrial MCAD	81
3.5.2 Kinetic Studies of Inactivation of MCAD by 2-Octy-4-enoyl-CoA	83
3.5.3 pH Dependence of Inactivation	84
3.5.4 Mechanism for Inactivation of MCAD by 2-Octy-4-enoyl-CoA	85
Chapter 4. Studies of Acyl-CoA Oxidase (ACO)	88
4.1 Subcloning for Recombinant pLM1::ACO Plasmid and Expression in E. coli.	88
4.1.1 Subcloning for Recombinant pLM1::ACO Plasmid	88
4.1.2 Expression and Purification of Rat Liver Acyl-CoA Oxidase	90
4.1.3 Kinetic Studies of Acyl-CoA Oxidase with Different Substrate Analogs.	92
4.2 Intrinsic Isomerase Activity of Acyl-CoA Oxidase	92
4.2.1 Construction of Mutant E421 Plasmids	93
4.2.2 Enzyme Purification and Kinetic Studies of Oxidase Activity	97

4.2.3 Kinetic Studies and Substrate Specificity of Isomerase Activity for	
Wild-Type and Mutant Enzyme	99
4.2.4 HPLC Analysis of Enzymatic Incubation Mixture	101
4.2.5 Inhibition Study for Rat Peroxisomal ACO	103
4.2.6 pH Dependence of Oxidase and Isomerase Activities for Rat	
Peroxisomal ACO	104
4.2.7 Sequence Comparison between Rat Peroxisomal ACO	
and Δ^3 - Δ^2 -Enoyl-CoA Isomerase	104
4.2.8 Proposed Mechanism for the Isomerase Activity of ACO	105
4.3 Inactivation of ACO by 2-Octe-4-ynoyl-CoA and 2-Pente-4-ynoyl-CoA	108
4.3.1 Studies of Activity of 2-Octe-4-ynoyl-CoA on Rat Peroxisomal ACO	108
4.3.2 Kinetic Studies of Inactivation of ACO by 2-Octe-4-ynoyl-CoA	111
4.3.3 pH Dependence of Inactivation	112
4.3.4 Studies of Activity of 2-Pente-4-ynoyl-CoA on Rat Peroxisomal ACO	112
4.3.5 Mechanism for Inactivation of ACO by 2-Octe-4-ynoyl-CoA	114
4.4 Studies of Acyl-CoA Oxidase Y232 and Y401 Mutants	115
4.4.1 Construction of ACO Y232 and Y401 Mutants, and Expression	
and Purification of Mutant Proteins	115
4.4.2 Kinetic Studies of Y232 and Y401 Mutant Proteins	117
4.4.3 Wavelength Scanning of Acyl-CoA Oxidase Y232 and Y401	
Mutant Proteins	118
4.5 Studies of Acyl-CoA Oxidase K90G, Q291G and K295G Mutants	120
4.5.1 Construction of ACO K90G, Q291G and K295G Mutants	
and Expression and Purification of Mutant Proteins	120
4.5.2 Kinetic Studies of ACO K90G, Q291G and K295G Mutant Proteins	121
Chapter 5. Studies of 3-Ketoacyl-CoA Thiolase (KT)	123
5.1 Cloning for the Recombinant pLM1::KT Plasmid and Expression in E. coli.	123

5.1.1 Subcloning for the Recombinant pLM1::KT Plasmid	123
5.1.2 Expression and Purification of Rat Liver 3-Ketoacyl-CoA Thiolase	125
5.1.3 Kinetic Studies of 3-Ketoacyl-CoA Thiolase Wild Type Protein	126
5.2 Studies of KT H352 Mutants	127
5.2.1 Construction of the Mutant H352 Expression Plasmids	127
5.2.2 Expression and Purification of Rat Liver 3-Ketoacyl-CoA Thiolase	128
5.2.3 Kinetic Studies of 3-Ketoacyl-CoA Thiolase H352 Mutant Proteins	129
5.3 Studies of KT S251 Mutants	130
5.3.1 Construction of the Mutant S251 Expression Plasmids	130
5.3.2 Expression and Purification of Rat Liver KT S251 Mutant Proteins	131
5.3.3 Kinetic Studies of 3-Ketoacyl-CoA Thiolase S251 Mutant Proteins	132
5.4 Inhibition Studies of 3-Ketoacyl-CoA Thiolase	133
5.4.1 Mechanism-Based Inhibitor 2-Octynoyl-CoA	133
5.4.1.1 Studies of Activity of 2-Octynoyl-CoA on Rat Mitochondrial KT	133
5.4.1.2 Kinetic Studies of Inactivation of KT by 2-Octynoyl-CoA	136
5.4.1.3 pH Dependence of Inactivation	137
5.4.2 Mechanism-Based Inhibitor 2-Octy-4-enoyl-CoA	139
5.4.2.1 Studies of Activity of 2-Octy-4-enoyl-CoA on Rat Mitochondrial KT	139
5.4.2.2 Kinetic Studies of Inactivation of KT by 2-Octy-4-noyl-CoA	141
5.4.2.3 pH Dependence of Inactivation	142
5.4.3 Proposed Mechanism for Inactivation of KT by 2-Octynoyl-CoA	
and 2-octy-4-enoyl-CoA	143
Chapter 6. Summary	147
References	150
List of Publications	174

List of Figures

Fig.1.1 Transport of fatty acids from the cytoplasm to the inner mitochondrial space for oxidation

Fig. 1.2	-Oxidation of fatty acid in mitochondria	6
Fig. 1.3	-Oxidation of fatty acid in peroxisome	9

Fig. 1.3 -Oxidation of fatty acid in peroxisome

Fig. 1.4 Fig.1.4 Alignment of four rat and two human acyl-CoA dehydrogenases and rat peroxisomal acyl-CoA oxidase. Short chain, medium chain, and long chain acyl-CoA dehydrogenases, isovaleryl-CoA dehydrogenase and acyl-CoA oxidase are abbreviated as SCAD, MCAD, LCAD, IVD and ACOX respectively. R and H indicate rat and human. Residues shared by all six acyl-CoA dehydrogenases are colored with orange. Residues shared by three of four rat acyl-CoA dehydrogenases are colored with green. Invariant and near invariant residues shared by acyl-CoA oxidase are marked with a red dot at the top. All cysteine residues are in red colored.

Fig. 1.5. A. Ribbon diagram of the structure of MCAD and C8-CoA complex. The cofactor FAD and the substrate octanoyl-CoA are shown with solid balls in yellow and purple color, respectively. α -Helices are labeled alphabetically and, β -strands are numbered consecutively, from the N-terminus in both instances. There are three domains in the monomer, the N-terminal α -helical domain is in red color, the middle β -sheet domain is in evan color and the C-terminal α -domain is colored in green (Kim et al., 1993). B. The structure of FAD cofactor. The numbers in the structure indicate the corresponding atom positions (Nakajima *et al.*, 2002).

Fig. 1.6. The active site cavity of MCAD. The surface of the cavity is shown with a green color. The bound substrate, dodecanoyl-CoA, is shown with ball-and-sticks, the last four carbon atoms (shown with smaller balls) of the substrate are modeled in two different conformations. Residues lining the cavity are shown with stick models. Atoms in the residues are colored as follows: carbon, black; nitrogen, blue; oxygen, red; sulfur, green; and phosphorus, purple (Kim et al., 1993; Kim & Miura, 2004).

15

17

13

Page

2

xi

Fig.1.7. The proposed catalytic mechanism of MCAD	19
Fig.1.8. The proposed mechanism for inactivation of MCAD by 3-alkynoyl-CoA.	20
Fig.1.9 The proposed mechanism for inactivation of MCAD by 2-alkynoyl-CoA.	21
Fig. 1.10 Inhibitors of MCAD targeting apoprotein. A. 5,6-Dichloro-4-thia-5-hexenoyl-CoA;B. 5,6-Dichloro-7,7,7-trifluoro-4 -thia-5-heptenoyl-CoA; C. 2-halo-acyl-CoA.	22
Fig. 1.11 Mechanism-based inhibitors of MCAD targeting FAD cofactor. A. methylenecyclopropylacetyl-CoA; B. spiropentanoyl-CoA; C. 3-methylene-octanoyl-CoA; D. 3-methyl-2-octenoyl-CoA; E. 3,4-alkadienoyl-CoA	24
Fig 1.12. Reaction catalyzed by acyl-CoA oxidase	26
Fig.1.13 C_{α} ribbon tracings of ACO (left) and MCAD (right) in the native forms viewed perpendicularly to the molecular 2-fold axis.	27
Fig.1.14 The structure of acyl-CoA oxidase with secondary structure assignments. α -Helices are marked with a, b, A, C-F in the <i>N</i> -terminal α -domain, shown in green color, and G-U are in the <i>C</i> -terminal α -domain, G-L is shown in red color, and orange for M-T. β -Strands are denoted as 1-7b in the β -domain, shown in cyan color. The cofactor FAD is drawn as a ball-and-stick model (Nakajima <i>et al.</i> , 2002).	28
Fig. 1.15. Comparison of the structures between ACO and MCAD with C_{α} -atoms fitting. The structure of MCAD is shown in black line, the <i>C</i> -terminal α -domain of ACO is shown in red line, and the <i>N</i> -terminal α -domain and β -domain of ACO are shown in blue line (Nakajima <i>et al.</i> , 2002).	29
Fig. 1.16. (a) The active site of ACO. (b) Schematic diagrams showing hydrogen-bonding interactions in ACO.	31
Fig. 1.17. Inhibitors for acyl-CoA oxidase. A. 3-octynoyl-CoA; B. 3,4-alkadienoyl-CoA; C. (methylenecyclopropy1)acetyl-CoA	32

Fig. 1.18. The reaction catalyzed by 3-ketoacyl-CoA thiolase	33
Fig. 1.19 The sequence and secondary structure of 3-ketoacyl-CoA thiolase from Yeast. The highly conserved residues are colored in green; the residues conserved only in the dimeric thiolases are colored in yellow. The corresponding α -helices and β -sheets in the secondary structure are shown with arrows and columns (Mathieu <i>et al.</i> , 1994; Mathieu <i>et al.</i> , 1997).	35
Figure 1.20. The active site pocket of 3-ketoacyl-CoA thiolase. The three catalytic residues of Cys125, His 375 and Cys403 are labeled in the figure. (Mathieu <i>et al.</i> , 1994; Mathieu <i>et al.</i> , 1997).	37
Fig. 1.21. The modeled structure showing the relative position of acetoacetyl group and the catalytic residues (Mathieu <i>et al.</i> , 1997).	38
Fig. 1.22. The proposed catalytic reaction mechanism for 3-ketoacyl-CoA thiolase. There are four steps: 1. formation of the covalent intermediate; 2. replacement of acetyl-CoA by CoA; 3. activation of CoA; 4. formation of the product.	39
Fig. 3.1 PCR product of medium-chain acyl-CoA dehydrogenase	50
Fig. 3.2 Single and double digestion of recombinant pLM1::MCAD plasmid.	51
Fig. 3.3 SDS-PAGE of purified medium-chain acyl-CoA dehydrogenase	51
Fig. 3.4 Acyl-CoA dehydrogenase catalyzed reactions	56
Fig. 3.5 Coomassie blue-stained SDS-PAGE of the purified rat mitochondrial MCAD . Lane 1, molecular mass standards; lane 2, purified rat mitochondrial MCAD wild-type enzyme; lane 3, purified rat mitochondrial MCAD mutant E376A; lane 4, purified rat mitochondrial MCAD mutant E376D; lane 5, purified rat mitochondrial MCAD mutant E376Q	58

Fig. 3.6 Analysis of incubation mixture using HPLC. A. *trans*-3-octenoyl-CoA; B. incubation of *trans*-3-octenoyl-CoA with MCAD; C. incubation of *trans*-3-octenoyl-CoA with MCAD, and the

xiii

resulting mixture was co-injected with *trans*-2-octenoyl-CoA; D. incubation of *trans*-3-octenoyl-CoA with MCAD apoprotein (FAD was removed); E. incubation of *trans*-3-octenoyl-CoA with MCAD mutant E376D; F. incubation of *trans*-3-octenoyl-CoA with MCAD mutant E376A; G. incubation of *trans*-3-octenoyl-CoA with MCAD mutant E376Q; H. incubation of *trans*-3-octenoyl-CoA with MCAD apoprotein (FAD was removed), followed with addition of FAD cofactor (incubation experiment D followed with addition of FAD cofactor); I. incubation of *trans*-3-octenoyl-CoA hydratase (add enoyl-CoA hydratase to mixture H). Possible identity of substrate or product peaks: a. *trans*-3-octenoyl-CoA; b. *trans*-2-octenoyl-CoA; c. 3-hydroxyoctanoyl-CoA

Fig. 3.7 Titration of MCAD with 2-octynoyl-CoA. The indicated levels of 2-octynoyl-CoA were added to 30 μ M of enzyme in 50 mM phosphate buffer, pH 7.5, 25 °C. The dehydrogenase (\blacktriangle) and isomerase (\bullet) activities were recorded 10 minutes after each addition

Fig. 3.8 Effect of pH on dehydrogenase (\blacktriangle) and isomerase () activities of MCAD

Fig. 3.9 The proposed mechanism for the conversion of *trans*-3-enoyl-CoA to *trans*-2-enoyl-CoA

Fig. 3.10 SDS-PAGE of purified MCAD Y375 mutant proteins. Lane 1, molecular mass standards; lane 2, purified rat mitochondrial MCAD mutant Y375A; lane 3, purified rat mitochondrial MCAD mutant Y375E; lane 4, purified rat mitochondrial MCAD mutant Y375F; lane 4, purified rat mitochondrial MCAD mutant Y375K

Fig. 3.11 Analysis of incubation mixture using HPLC. A. octanoyl-CoA; B. incubation of octanoyl-CoA with MCAD wild type; C. incubation of octanoyl-CoA with MCAD Y375K; D. the resulting mixture C was co-injected with *trans*-2-octenoyl-CoA; E. incubation of octanoyl-CoA with MCAD Y375K and enoyl-CoA hydratase (add enoyl-CoA hydratase to mixture C). Possible identity of substrate or product peaks: a. octanoyl-CoA; b. *trans*-2-octenoyl-CoA; c. 3-hydroxyoctanoyl-CoA

Fig. 3.12 Effect of chain length on the dehydrogenase and oxidase activity of MCAD Y375K

62

63

64

71

73

75

Fig. 3.13 Effect of oxygen on the oxidase activity of MCAD Y375K. Line 1. Activity assay of oxidase activity of MCAD Y375K at anaerobic condition; Line2. Activity assay of oxidase activity of MCAD Y375K at aerobic condition.

Fig. 3.14 SDS-PAGE of MCAD R256 mutant proteins. Lane 1, molecular mass standards; lane 2, purified rat mitochondrial MCAD mutant R256A; lane 3, purified rat mitochondrial MCAD mutant R256E; lane 4, purified rat mitochondrial MCAD mutant R256K; lane 5, purified rat mitochondrial MCAD mutant R256Q.

Fig. 3.15 Incubation of 5 μM MCAD with 10 equivalents of
2-octy-4-enoyl-CoA (▲), 50 equivalents of trans-2,
trans-4-octadienoyl-CoA (○), and 50 equivalents of
2-octe-4-ynoyl-CoA (●) respectively81

Fig. 3.16 Titration of 15 μM MCAD with indicated levels of 2-octy-4-enoyl-CoA.

Fig. 3.17 Protection by 2-octenoyl-CoA of MCAD from inactivation by 2-octy-4-enoyl-CoA.

Fig. 3.18 Time- and concentration-dependent inactivation of MCADby 2-octy-4-enoyl-CoA.84

Fig. 3.19 pH dependence of apparent rate for inactivation of MCAD by 2-octy-4-enoyl-CoA.

Fig. 3.20 Two proposed mechanisms for inactivation of acyl-CoAdehydrogenase by 2-alkynoyl-CoA86

Fig. 3.21 Mechanism for inactivation of acyl-CoA dehydrogenase by3-alkynoyl-CoA87

Fig. 4.1. PCR product of acyl-CoA oxidase

Fig. 4.2. Single and double digestion of recombinant ACO::pLM1 plasmid. 89

Fig. 4.3 SDS-PAGE of purified acyl-CoA oxidase. 91

xv

75

78

82

83

85

89

Fig. 4.4 Acyl-CoA oxidase catalyzed reactions.

Fig. 4.5. The sequences of peroxisomal ACOs and mitochondrial ACDs from various sources. ACO1_Rn: ACO I of *Rattus norvegicus;* ACO2_Rn: ACO II of *Rattus norvegicus;* ACO1_Mm: ACO I of *Mus musculus;* ACO1_Hs: ACO I of *Homo sapiens;* ACO1_Cp: ACO I of *Cavia porcellus* (domestic guinea pig); ACO_XI: ACO I of *Xenopus laevis;* MCAD_Rn: medium-chain acyl-CoA dehydrogenase of *Rattus norvegicus;* MCAD_Ss: medium-chain acyl-CoA dehydrogenase of *Sus scrofa* (pig); SCAD_Rn: short-chain acyl-CoA dehydrogenase of *Rattus norvegicus.* Residues conserved in all sequences are marked with *. Residues not conserved in all sequences but conserved in some sequences are marked with : or. based on the degree of conservation.

Fig. 4.6. Coomassie blue-stained SDS-PAGE of the purified rat peroxisomal ACO wild-type and mutant proteins. Lane 1, molecular mass standards; lane 2, purified rat peroxisomal ACO wild-type enzyme; lane 3, purified rat peroxisomal ACO I mutant E421A; lane 4, purified rat peroxisomal ACO mutant E421D; lane 5, purified rat peroxisomal ACO I mutant E421Q.

Fig. 4.7. Analysis of incubation mixture using HPLC. A. trans-3-octenoyl-CoA; B. incubation of trans-3-octenoyl-CoA with rat peroxisomal ACO; C. incubation of trans-3-octenoyl-CoA with rat peroxisomal ACO, and the resulting mixture was co-injected with trans-2-octenoyl-CoA; D. incubation of trans-3-octenoyl-CoA with rat peroxisomal ACO mutant E421D; E. incubation of trans-3-octenovl-CoA with rat peroxisomal ACO mutant E421A; F. incubation of trans-3-octenoyl-CoA with rat peroxisomal ACO mutant E421Q; G. incubation of trans-3-octenoyl-CoA with rat peroxisomal ACO apoprotein (FAD was removed); H. incubation of trans-3-octenoyl-CoA with rat peroxisomal ACO apoprotein (FAD was removed), followed with addition of FAD cofactor (incubation experiment G followed with addition of FAD cofactor); I. incubation of trans-3-octenoyl-CoA with rat peroxisomal ACO and enoyl-CoA hydratase (add enoyl-CoA hydratase to mixture H). Possible identity of substrate or product peaks: a. trans-3-octenoyl-CoA; b. trans-2-octenoyl-CoA; c. 3-hydroxyoctanoyl-CoA

Fig. 4.8 Titration of rat peroxisomal ACO with 2-octynoyl-CoA. The indicated levels of 2-octynoyl-CoA were added to 30 µM of enzyme in 50

96

97

102

mM phosphate buffer, pH 7.5, 25 °C. The oxidase (\blacktriangle) and isomerase (\bullet) activities were recorded 20 minutes after each addition	103
Fig. 4.9. Effect of pH on oxidase (▲) and isomerase () activities of rat peroxisomal ACO	104
Fig. 4.10 The proposed mechanism for the conversion of <i>trans</i> -3-enoyl-CoA to <i>trans</i> -2-enoyl-CoA.	107
Fig. 4.11 Inhibition of ACO by 2-octe-4-ynoyl-CoA. ACO (5 μ M) was incubated with 2-octe-4-ynoyl-CoA (25 μ M) at 25°C at different time.	108
Fig. 4.12 Incubation of 5 µM ACO with 5 equivalents of 2-octe-4-ynoyl-CoA, 50 equivalents of <i>trans-2</i> , <i>trans-4</i> -octadienoyl-CoA, and 50 equivalents of 2-octy-4-enoyl-CoA respectively.	109
Fig. 4.13 Titration of 5 μM ACO with indicated levels of 2-octe-4-ynoyl-CoA.	110
Fig. 4.14 Protection by 2-octenoyl-CoA of ACO from inactivation by 2-octe-4-ynoyl-CoA. The ACO (5 μ M) was inactivated with 5 equivalent of 2-octe-4-ynoyl-CoA in the presence of 0, 100 μ M 2-octenoyl-CoA.	110
Fig. 4.15 Time- and concentration-dependent inactivation of KT by 2-octe-4-enoyl-CoA (\Box , 5 μ M 2-octe-4-ynoyl-CoA; \circ , 10 μ M; \bullet , 25 μ M; Δ , 60 μ M; \mathbf{V} , 120 μ M; \mathbf{n} , 240 μ M)	111
Fig. 4.16 pH dependence of apparent rate for inactivation of ACO by 2-octe-4-ynoyl-CoA.	112
Fig. 4.17 Protection by 2-octenoyl-CoA of ACO from inactivation by 2-pente-4-ynoyl-CoA. The ACO (5 μ M) was inactivated with 1 equivalent of 2-pente-4-ynoyl-CoA in the presence of 0 (•), 100 μ M (•) and 200 μ M ($\mathbf{\nabla}$) 2-octenoyl-CoA.	113
Fig. 4.18 Proposed mechanisms for inactivation of acyl-CoA oxidase by 2-octe-4-ynoyl-CoA or 2-pente-4-ynoyl-CoA.	114

Fig. 4.19 Schematic diagrams of the active site in ACO. Putative interactions are shown by dotted lines if the acceptor and donor less than

Fig. 4.20 SDS-PAGE of purified ACO Y232 and Y401 mutant proteins. Lane 1, molecular mass standards; lane 2, purified ACO wild type; lane 3, purified ACO::Y232F mutant protein; lane 4, purified ACO::Y232G mutant protein; lane 5, purified ACO::Y232S mutant protein; lane 6, purified ACO::Y401F mutant protein; lane 7, purified ACO::Y401G mutant protein; lane 8, purified ACO::Y401S mutant protein

117

. ..

Fig.4.21 Wavelength scanning of acyl-CoA oxidase wild type and its	
mutant proteins. 1. Acyl-CoA oxidase wild type; 2. ACO::Y232G mutant	
protein; 3. ACO::Y401S mutant protein; 4. ACO::Y401G mutant protein	119
Fig. 4.22 SDS-PAGE of purified ACO K90G, Q291G and K295G	
mutant proteins. Lane 1, molecular mass standards; lane 2, purified	

10.

• •

ACO::K90G mutant protein; lane 3, purified ACO::Q291G mutant protein; lane 4, purified ACO::K295G mutant protein.	121
Fig. 4.23 Chain length optimum of ACO wild type and K90G, Q291G and K295G mutant proteins.	122

Fig. 5.1 PCR product of 3-ketoacyl-CoA thiolase.124

Fig. 5.2 Single and double digestion of recombinant pLM1::KT plasmid. 124

Fig. 5.3 SDS-PAGE of purified 3-ketoacyl-CoA thiolase. 126

Fig. 5.4 SDS-PAGE of purified mutant proteins of 3-ketoacyl-CoAthiolase. 1. molecular mass marker; 2. purified KT H352A; 3. purified KTH 352E; 4. purified KT H352K; 5. purified KT H352Y128

Fig. 5.5 SDS-PAGE of purified mutant proteins of 3-ketoacyl-CoAthiolase. 1. molecular mass marker; 2. purified KT S251A; 3. purified KTS251C; 4. purified KT S251D; 5. purified KT S251T.132

Fig. 5.6 Inhibition of KT by 2-octynoyl-CoA. KT (5µM) was incubated with 2-octynoyl-CoA (25µM) at 25°C at different time. 134

Fig. 5.7 Incubation of 5 μM KT with 5 equivalents of 2-octynoyl-CoA, 50 equivalents of <i>trans-2</i> , <i>trans-4</i> -octadienoyl-CoA, and 50 equivalents of 2-octe-4-ynoyl-CoA respectively.		
Fig. 5.8 Titration of 5 µM KT with indicated levels of 2-octynoyl-CoA	135	
Fig. 5.9 Protection by acetoacetyl-CoA of KT from inactivation by 2-octynoyl-CoA. The KT (5 μ M) was inactivated with 5 equivalent of 2-octynoyl-CoA in the presence of 0, 200 μ M and 400 μ M acetoacetyl-CoA.	136	
Fig. 5.10 Time and concentration-dependent inactivation of MCAD by 2-octynoyl-CoA.	137	
Fig. 5.11 pH dependence of apparent rate for inactivation of KT by 2-octynoyl-CoA.	138	
Fig. 5.12 Inhibition of KT by 2-octy-4-enoyl-CoA. KT (5μM) was incubated with 2-octy-4-enoyl-CoA (50μM) at 25°C at different time	139	
Fig. 5.13 Titration of 5 μM KT with indicated levels of 2-octy-4-enoyl-CoA.	140	
Fig. 5.14 Protection by acetoacetyl-CoA of KT from inactivation by 2-octy-4-enoyl-CoA. The KT (5 μ M) was inactivated with 5 equivalent of 2-octy-4-enoyl-CoA in the presence of 0, 100 μ M and 400 μ M acetoacetyl-CoA.	141	
Fig. 5.15 Time- and concentration-dependent inactivation of KT by 2-octy-4-enoyl-CoA.	142	
Fig. 5.16 pH dependence of apparent rate for inactivation of KT by 2-octy-4-enoyl-CoA.	143	
Fig. 5.17 Two proposed mechanisms for inactivation of KT by 2-octynoyl-CoA or/and 2-octy-4-enoyl-CoA	144	
Fig. 5.18 Mechanism for inactivation of KT by 3-alkynoyl-CoA	145	

List of Tables

Table 3.1 Primers designed for PCR	50
Table 3.2 Purification of rat medium-chain acyl-CoA dehydrogenase	52
Table 3.3 Kinetic constants for MCAD with different substrate analogs.	55
Table 3.4 Comparison of kinetic parameters for dehydrogenaseactivity of rat mitochondrial MCAD wild-type and mutant proteins	59
Table 3.5 Comparison of substrate specificity for isomerase activity ofrat mitochondrial MCAD wild-type enzyme and mutant E376D.	60
Table 3.6 Kinetic properties of enoyl-CoA isomerase activity ofenzymes from various sources	66
Table 3.7 Kinetic studies of dehydrogenase activity of MCAD Y375mutant proteins.	72
Table 3.8 Kinetic Studies of oxidase activity of MCAD Y375K mutant	74
Table 3.9 Kinetic studies of MCAD R256 mutant proteins	79
Table 4.1 Primers designed for PCR	88
Table 4.2 Purification of rat acyl-CoA oxidase	90
Table 4.3 Kinetic constants for ACO with different substrate analogs	92
Table 4.4. Comparison of absorption extinction coefficients of ratperoxisomal ACO wild-type and E421 mutant proteins at 446 nm	98
Table 4.5 Comparison of kinetic parameters of rat peroxisomal ACO wild-type and mutant protein	99
Table 4.6 Comparison of substrate specificity for isomerase activity of rat peroxisomal ACO wild-type enzyme and mutant E421D	100

Table 4.7. Kinetic properties of enoyl-CoA isomerase activity ofenzymes from various sources	106
Table 4.8 Kinetic studies of ACO Y232 and Y401 mutant proteins	118
Table 4.9 Kinetic studies of ACO K90G, Q291G and K295G mutants	122
Table 5.1 Primers designed for PCR	123
Table 5.2 Purification of rat 3-ketoacyl-CoA thiolase	125
Table5.3Primersusedforintroducingmutationsonrat3-ketoacyl-CoA thiolase	127
Table 5.4 Kinetic constants of recombinant wild-type and mutant rat3-ketoacyl-CoA thiolase.	129
Table5.5Primersusedforintroducingmutationsonrat3-ketoacyl-CoA thiolase	131
Table 5.6 Kinetic constants of rat 3-ketoacyl-CoA thiolase mutantS251 proteins	133

Abbreviations

Amino acids:

A	Ala, alanine
С	Cys, cysteine
D	Asp, aspartic acid
E	Glu, glutamic acid
G	Gly, glycine
Н	His, histidine
K	Lys, lysine
R	Arg, arginine
Q	Gln, glutamine
Т	Thr, threonine
Y	Tyr, tyrosine
Å	ångström
ABC	ATP-binding cassette
ACBP	acyl-CoA-binding protein
ACO	acyl-CoA oxidase
ADP	adenosine diphosphate
ATP	adenosine triphosphate
B-factor	temperature factor
CD	circular dichroism
cDNA	complementary deoxyribonucleic acid
СоА	coenzyme A
СРТ	carnitine palmitoyltransferase
C-terminus	carboxyl terminus

DCPIP	2,6-dichlorophenolindophenol
DNA	deoxyribonucleic acid
E. coli	Escherichia coli
ECH	enoyl-CoA hydratase
ECI	enoyl-CoA isomerase
EDTA	ethylenediaminetetraacetate
ETF	electron transferring flavoprotein
FAD	flavin adenine dinucleotide (oxidized form)
GBP	gastrin-binding protein
GFP	green fluorescent protein
HPLC	high-performance liquid chromatography
IPTG	isopropyl-β-D-thiogalactopyranoside
KDa	kilodalton
KT	3-keto-acyl-CoA thiolase
MCAD	medium chain acyl-CoA dehydrogenase
MCPF-CoA	methylenecyclopropylformyl-CoA
MFE-1, -2	multifunctional enzyme type 1, type 2
MES	2-(N-morpholino)ethanesulfonic acid
МТР	mitochondrial trifunctional protein
NAD^+	nicotinamide adenine dinucleotide (oxidized form)
NCS	noncrystallographic symmetry
NIDDM	non-insulin dependent diabetes mellitus
N-terminus	amino terminus
PCR	polymerase chain reaction
PMS	phenazine methosulfate
PTS	peroxisomal targeting signal
RNA	ribonucleic acid

SCP	sterol carrier protein
SDS-PAGE	sodium dodecyl sulphate polyacrylamide gel electrophoresis
SPA-CoA	spiropentylacetyl-CoA
TEA	triethanol amine
UV/Vis	ultraviolet-visible spectroscopy