THE EFFECT OF LUBRICATING OIL POLLUTION ON GROWTH AND PHYSIOLOGICAL RESPONSE OF MANGROVE

ZHANG CHUNGUANG

DOCTOR OF PHILOSOPHY
CITY UNIVERSITY OF HONG KONG
SEPTEMBER 2006
The Effect of Lubricating Oil Pollution on Growth and Physiological Response of Mangrove

Submitted to
Department of Biology and Chemistry
in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

by
Zhang Chunguang

SEPTEMBER 2006
Declaration

The research described in this PhD thesis was conducted under the supervision of Professor N.F.Y. Tam at the Department of Biology and Chemistry, City University of Hong Kong. It was an independent work of the author unless otherwise stated and has not been included in any other thesis or dissertation submitted to this or other institution for a degree, diploma or any other qualifications. Attention is drawn to the fact that anyone without the author’s prior consent strictly may not copy, reproduce, transform, or publish any data derived form the author’s own work in this project.

Zhang Chenguang

July 2006
Abstract of Thesis Entitled

The Effect of Lubricating Oil Pollution on Growth and
Physiological Response of Mangrove

Submitted by Zhang Chunguang

For the Degree of Doctor of Philosophy at City University of Hong Kong in
July 2006

Abstract

The present study aims to investigate the effects of fresh and spent (used) lubricating oil on germination, early growth and physiological response of four mangrove species commonly found in Hong Kong, namely Kandelia candal, Bruguiera gymnorrhiza, Aegiceras corniculatum and Acanthus ilicifolius in sandy and muddy mangrove sediments. The response of these four mangrove species to different spent lubricating oil dosages, multiple small dosages and single large dosage were investigated. Both fresh and spent oil, at a single initial dosage of 5L m^{-2}, did not have any effect on germination (i.e. initial establishment) of B. gymnorrhiza and K. candal, the viviparous species with long slender propagules (the dropper with an average size of 15cm and 18cm long, respectively). All propagules were successfully developed into new seedlings within 30 days, same as the control (without any oil addition). On the contrary, oil-treated A. corniculatum (another viviparous species with an average dropper’s size of 5cm long)
and *A. ilicifolius* (a non-viviparous species with very small-sized seeds) were unable to germinate. Although germination of *B. gymnorrhiza* and *K. candal* were not affected, early growth, including height, leaf number and biomass of the oil-treated seedlings was significantly reduced; while content of free radicals and malonyldialdehyde (MDA), and activity of superoxide dismutase (an anti-oxidant enzyme) increased with oil treatment in both sandy and muddy mangrove sediments. These results indicate that lubricating oil acted as an oxidation stress, caused lipid membrane damages and growth reduction in young seedlings of *B. gymnorrhiza* and *K. candal*.

Among the four mangrove species studied in present study, the patterns of growth and physiological changes of the young seedlings to the addition of spent lubricating oil were similar, all showed growth reduction when compared to the control. However the sensitivity to oil toxicity varied among species, with *K. candel* being the most sensitive species, and its relative growth rate and biomass decreased more than the other three species. On the contrary, *B. gymnorrhiza* was the only species that could survive under the highest oil dosage treatment (15L m\(^{-2}\)) and was most tolerant to oil pollution. In terms of physiological response, the activities of superoxide dismutase increased significantly in leaves and roots of oil-treated seedling of all four mangrove species. The amount of superoxide radical release and malondialdehyde content of oil-treated seedlings also increased. The superoxide radical release, superoxide dismutase activity and malondialdehyde content of *K. candel* increased more than other species, further supporting that *K. candel* was the most sensitive species. Compare to a single oil dosage of 15L m\(^{-2}\), the multiple small dosages with repeated weekly addition of 1L m\(^{-2}\) for 16 week posed less negative effects on growth of mangrove plants.
The response of *B. gymnorrhiza* and *A. corniculatum* to spent lubricating oil under different environmental conditions were examined through a series of greenhouse experiments. The biomass of oil-treated *B. gymnorrhiza* and *A. corniculatum* under high salinity (35ppt) treatment was less than that of lower salinities (5ppt and 15ppt), indicating that high salinity enhanced the toxicity of spent lubricating oil on mangroves. The biomass reduction of oil-treated mangrove seedlings grown under long tidal regime (24hr/24hr high/low tide) was more severe than those under short tidal regime (12hr/12hr and 6hr/6hr high/low tide). The addition of nutrients at different amounts did not change the oil damaging effects on growth of both species. In terms of physiological response, higher salinity, longer tidal regime and nutrient addition caused more increases in the amounts of superoxide radical release and malondialdehyde, but there was no obvious difference in activity of superoxide dismutase among different treatments of salinity, tidal regime and nutrient additions.

The present study revealed that germination of mangrove propagules was related to the degree of oil coverage on the propagules, the whole submergence or coating by the oil would completely inhibit germination. Although mangrove seedlings could survival under low dosage of lubricating oil treatment, growth of mangrove seedlings was stunned with sub-lethal physiological damages. The results also indicated that the response of mangrove plants to oil toxicity were affected by environmental factors, and oil damages were found to be more severe in mangrove swamps with high salinity and long tidal regime.
Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declaration</td>
<td>i</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>ii</td>
</tr>
<tr>
<td>Abstract</td>
<td>iii</td>
</tr>
<tr>
<td>Table of contents</td>
<td>vi</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xi</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xvii</td>
</tr>
</tbody>
</table>

Chapter 1 Introduction

1.1 General introduction

1.2 Aim and objectives

1.3 Framework of research

Chapter 2 Literature Review

2.1 Oil pollution in marine environments

2.1.1 The sources

2.1.2 Types of petroleum oils and their composition

2.1.3 Fate and behavior of petroleum oil in marine environment

2.1.4 Lubricating oil

2.2 Mangrove ecosystem

2.2.1 General features

2.2.2 Mangrove plants

2.2.2.1 Reproduction and growth of mangrove plants

2.2.2.2 Adaptations to salinity

2.2.2.3 Adaptation to flooding

2.2.2.4 Mangrove zonation

2.3 Toxicity and impact of oil on mangrove plants
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.1 Cases of oil spill accidents near mangrove habitats</td>
<td>26</td>
</tr>
<tr>
<td>2.3.2 Impact of oil pollution on mangrove plants</td>
<td>30</td>
</tr>
<tr>
<td>2.3.3 Factors affecting oil contamination and its effects on mangrove plants</td>
<td>39</td>
</tr>
<tr>
<td>2.3.3.1 Oil types and dosages</td>
<td>39</td>
</tr>
<tr>
<td>2.3.3.2 Plant species</td>
<td>41</td>
</tr>
<tr>
<td>2.3.3.3 Sediment types</td>
<td>43</td>
</tr>
<tr>
<td>2.3.3.4 Other environmental factors</td>
<td>44</td>
</tr>
<tr>
<td>2.3.3.4.1 Salinity</td>
<td>45</td>
</tr>
<tr>
<td>2.3.3.4.2 Tidal cycle</td>
<td>46</td>
</tr>
<tr>
<td>2.3.3.4.3 Nutrient</td>
<td>47</td>
</tr>
<tr>
<td>2.4 Response of plants to oil pollution</td>
<td>49</td>
</tr>
<tr>
<td>2.4.1 Growth response</td>
<td>49</td>
</tr>
<tr>
<td>2.4.2 Physiological response</td>
<td>50</td>
</tr>
<tr>
<td>Chapter 3 Effects of Lubricating Oil on Germination and Initial</td>
<td>53</td>
</tr>
<tr>
<td>Establishment of Mangrove Propagules</td>
<td></td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>53</td>
</tr>
<tr>
<td>3.2 Materials and methods</td>
<td>55</td>
</tr>
<tr>
<td>3.2.1 Collection of plant, sediment and oil materials</td>
<td>55</td>
</tr>
<tr>
<td>3.2.2 Setting up of experimental pots</td>
<td>55</td>
</tr>
<tr>
<td>3.2.3 Analysis of sediment</td>
<td>58</td>
</tr>
<tr>
<td>3.2.3.1 pH</td>
<td>58</td>
</tr>
<tr>
<td>3.2.3.2 Texture</td>
<td>59</td>
</tr>
<tr>
<td>3.2.3.3 Total organic matter</td>
<td>60</td>
</tr>
<tr>
<td>3.2.3.4 Total and inorganic nitrogen</td>
<td>60</td>
</tr>
<tr>
<td>3.2.3.5 Total phosphorus</td>
<td>61</td>
</tr>
<tr>
<td>3.2.3.6 Heavy metals</td>
<td>61</td>
</tr>
<tr>
<td>3.2.3.7 Petroleum hydrocarbons</td>
<td>62</td>
</tr>
<tr>
<td>3.2.4 Analysis of lubricating oil</td>
<td>67</td>
</tr>
<tr>
<td>3.2.4.1 Heavy metals in lubricating oil</td>
<td>67</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>3.2.4.2 Petroleum hydrocarbons in lubricating oil</td>
<td>68</td>
</tr>
<tr>
<td>3.2.5 Measurements of growth and physiological parameters</td>
<td>68</td>
</tr>
<tr>
<td>3.2.5.1 Growth and biomass</td>
<td>68</td>
</tr>
<tr>
<td>3.2.5.2 Enzyme activities in leaves and roots</td>
<td>70</td>
</tr>
<tr>
<td>3.2.5.2.1 Extraction of enzymes</td>
<td>70</td>
</tr>
<tr>
<td>3.2.5.2.2 Determination of protein content</td>
<td>71</td>
</tr>
<tr>
<td>3.2.5.2.3 Measurements of superoxide dismutase (SOD) activities</td>
<td>71</td>
</tr>
<tr>
<td>3.2.5.3 Determination of superoxide radical release</td>
<td>72</td>
</tr>
<tr>
<td>3.2.5.4 Measurement of MDA content</td>
<td>73</td>
</tr>
<tr>
<td>3.2.5.5 Statistical analyses</td>
<td>73</td>
</tr>
<tr>
<td>3.3 Results</td>
<td>74</td>
</tr>
<tr>
<td>3.3.1 General characteristics of sediments and oil</td>
<td>74</td>
</tr>
<tr>
<td>3.3.2 Germination and initial establishment of mangrove propagules</td>
<td>77</td>
</tr>
<tr>
<td>3.3.2.1 Growth and physiological response of B. gymnorrhiza during initial establishment</td>
<td>77</td>
</tr>
<tr>
<td>3.3.2.2 Growth and physiological response of K. candel during initial establishment</td>
<td>86</td>
</tr>
<tr>
<td>3.3.2.3 Comparison between B. gymnorrhiza and K. candel during initial establishment</td>
<td>91</td>
</tr>
<tr>
<td>3.3.3 TPH concentration in oiled sediments planted with B. gymnorrhiza propagules</td>
<td>95</td>
</tr>
<tr>
<td>3.4 Discussion</td>
<td>98</td>
</tr>
<tr>
<td>3.4.1 Response of mangrove propagules to lubricating oil pollution</td>
<td>98</td>
</tr>
<tr>
<td>3.4.2 Effects of sediment types on toxicity of lubricating oil during initial establishment of mangrove propagules</td>
<td>100</td>
</tr>
<tr>
<td>3.4.3 Toxicities of spent and fresh lubricating oil on germination and initial establishment of mangrove propagules</td>
<td>101</td>
</tr>
<tr>
<td>3.5 Conclusions</td>
<td>102</td>
</tr>
</tbody>
</table>
Chapter 4 Effects of Dosages of Spent Lubrication Oil on Mangrove Seedlings

4.1 Introduction 104

4.2 Materials and methods 106
 4.2.1 Collection of plant, sediment and oil materials 106
 4.2.2 Setting up of experimental tide-tank systems 107
 4.2.2.1 Effects of oil dosages on mangrove seedlings 108
 4.2.2.2 Single large dosage vs multiple small additions 108
 4.2.3 Measurements of growth and physiological parameters 109
 4.2.4 Statistical analyses 109

4.3 Results 110
 4.3.1 Characteristics of sediment used in the experiment 110
 4.3.2 Effects of oil dosages on mangrove seedlings 110
 4.3.2.1 Growth response 110
 4.3.2.2 O_2^- release, SOD activity and MDA content 121
 4.3.3 Effects of single large dosage vs multiple small additions on mangrove seedlings 126
 4.3.3.1 Growth response 126
 4.3.3.2 Biomass and physiological response 129
 4.3.4 Comparison of growth and physiological response among four mangrove species to spent lubricating oil 132

4.4 Discussion 139
 4.4.1 Effects of different oil dosages on four mangrove species 139
 4.4.2 Frequency of oil pollution: single large addition vs multiple small additions 140

4.5 Conclusions 141

Chapter 5 Effects of Environmental Factors on Response of Mangrove Plants to Lubricating Oil Pollution

5.1 Introduction 143

5.2 Materials and Methods 146
5.2.1 Preparation of mangrove seedlings 146

5.2.2 Experimental design 146

5.2.3 Statistical analyses 147

5.3 Results 149

1. **5.3.1 Effects of salinity on response of mangrove seedlings to spent lubricating oil** 149
2. **5.3.2 Effects of tidal cycle on the response of mangrove seedlings to spent lubricating oil** 155
3. **5.3.3 Effects of nutrient addition on response of mangrove seedlings to spent lubricating oil** 160
4. **5.3.4 Concentrations of residual TPH in sediments** 165

5.4 Discussion 170

1. **5.4.1 Effect of salinity on response of oil-treated mangrove seedlings** 170
2. **5.4.2 Effect of tidal cycle on response of oil-treated mangrove seedlings** 171
3. **5.4.3 Effect of nutrient on response of oil-treated mangrove seedlings** 172

5.5 Conclusions 174

Chapter 6 General Discussion and Conclusions 175

1. **6.1 Effects of lubricating oil mangrove plants** 175
 1. **6.1.1 Different response of mangrove species to lubricating oil: species specificity** 175
 2. **6.1.2 Differences between growth and physiological response of mangrove seedlings to lubricating oil** 177

2. **6.2 Effects of dosages and forms of lubricating oil on mangrove plants** 178

3. **6.3 Effects of environmental conditions on toxicity of lubricating oil to mangrove plants** 180

4. **6.4 Contributions and significance of the present research** 182
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.5 Limitations of the present research</td>
<td>184</td>
</tr>
<tr>
<td>6.6 Future studies</td>
<td>184</td>
</tr>
<tr>
<td>6.7 Conclusions</td>
<td>186</td>
</tr>
<tr>
<td>References</td>
<td>188</td>
</tr>
<tr>
<td>Appendix</td>
<td>206</td>
</tr>
</tbody>
</table>
List of Figures

Fig. 1.1 Conceptual framework of the study. 5

Fig. 2.1 Classifications of hydrocarbons found in petroleum. 10

Fig. 2.2 Fate of oil spilled at sea showing the main weathering processes (from http://www.itopf.com/fate.html). 13

Fig. 2.3 Distribution and biogeographical provinces of the world's mangrove forests. Forests are designated as heavy lines. The numbers of genera and species within each of the six provinces are noted below the map (Spalding et al., 1997; Duke et al., 1998; Alongi, 2002). 21

Fig. 2.4 Locations affected by oil spill occurred in Zhu Jiang Estuary. 31

Fig. 3.1 Sampling locations of sediment and mangrove plant materials (YSO: Yung Shue O; SK: Sai Keng; KLH: Kei Ling Ha Lo Wai; MP: Mai Po; LK: Luk Keng). 56

Fig. 3.2 Setup of the germination experiment showing the high and low tides, and planting of seeds or droppers of different mangrove species. 57

Fig. 3.3a Chromatography of C_{16}, C_{18}, C_{20}, IS, C_{22}, C_{24}, C_{26}, C_{28} and C_{30} standards for calibration, elution range from 21.663 to 42.733 min. 65

Fig. 3.3b Chromatography of 16 PAHs standards for calibration, naphthalene (Nap), acenaphthylene (A), acenaphthene (Ace), fluorene (F), phenanthrene (Phe), anthracene (Ant), fluoranthene (Flu), pyrene (Pyr), m-terphenyl (IS), benz[a]anthracene (BaA), chrysene (Chr), benzo[b]fluoranthene (BbF), benzo[k]fluoranthene (BkF), benzo[a]pyrene (BaP), indeno[1,2,3-cd]pyrene (IP), dibenz[ah]anthracene (DA), and benzo[ghi]perylene (BP), elution range from 12.266 to 46.716 min. 65

Fig. 3.4 Chromatography of F1 fraction of sediment sample with oil addition. IS = internal standard; UCM = Unresolved Complex Mixture; TRP = Total Resolved Peaks; TPH = Total Petroleum Hydrocarbon. The frame shows the integrated area of the TPH, which was from 1 min before C_{16} to 1 min after C_{30} elution range, i.e. from 20.663 to 43.733 min. 66

Fig. 3.5 Sketch map showing the measurement of stem height and diameter of a mangrove plant. 70
Fig. 3.6 Effects of spent and fresh lubricating oil on germination / initial establishment of *B. gymnorrhiza* seedlings grown in different types of sediments, including the first leaf appearing time, first and second leaf unfurling time (●: control; ▲: spent oil; ■: fresh oil; (A) KLH: Kei Ling Ha Lo Wai sandy sediment, (B) LK: Luk Keng muddy sediment; mean values of three replicates are shown; different letters indicate they are significantly different at $p \leq 0.05$ level according to one-way ANOVA test).

Fig. 3.7 Photo showing the effects of oil on initial establishment of *B. gymnorrhiza*, the upper one was oil-treated seedling and the lower one was the control seedling at the end of 3-months experiment.

Fig. 3.8 Effects of spent and fresh lubricating oil on (A) stem diameter, (B) stem height, (C) maximum leaf length and (D) maximum leaf width, (E) leaf biomass and (F) stem biomass of *B. gymnorrhiza* seedlings grown in different types of sediments at the end of 3-months establishment (KLH: Kei Ling Ha Lo Wai; LK: Luk Keng; mean and standard deviation of three replicates are shown; different letters on top of the bar indicate they are significantly different at $p \leq 0.05$ level according to one-way ANOVA test).

Fig. 3.9 Effects of spent and fresh lubricating oil on the amount of superoxide radical release, SOD activity and MDA content in leaf and root of *B. gymnorrhiza* grown in different types of sediments at the end of 3-months establishment (KLH: Kei Ling Ha Lo Wai; LK: Luk Keng; mean and standard deviation of three replicates are shown; different letters on top of the bar indicate they are significantly different at $p \leq 0.05$ level according to one-way ANOVA test).

Fig. 3.10 Effects of spent and fresh lubricating oil on germination / initial establishment of *K. candel* seedlings grown in different types of sediments, including the first leaf appearing time, first and second leaf unfurling time (●: control; ▲: spent oil; ■: fresh oil; (A) KLH: Kei Ling Ha Lo Wai sandy sediment, (B) LK: Luk Keng muddy sediment; mean values of three replicates are shown; different letters indicate they are significantly different at $p \leq 0.05$ level according to one-way ANOVA test).

Fig. 3.11 Effects of spent and fresh lubricating oil on (A) stem height, (B) leaf and stem biomass, (C) root biomass of *K. candel* seedlings grown in different types of sediments at the end of 3-months establishment (KLH: Kei Ling Ha Lo Wai; LK: Luk Keng; mean and standard deviation of three replicates are shown; different letters on top of the bar indicate they are significantly different at $p \leq 0.05$ level according to one-way ANOVA test).
Fig. 3.12 Effects of spent and fresh lubricating oil on the amount of superoxide radical release, SOD activity and MDA content in leaf and root of K. candel grown in different types of sediments at the end of 3-months establishment (KLH: Kei Ling Ha Lo Wai; LK: Luk Keng; mean and standard deviation of three replicates are shown; different letters on top of the bar indicate they are significantly different at \(p \leq 0.05 \) level according to one-way ANOVA test).

Fig. 3.13 Changes of residual petroleum hydrocarbon (TPH) in aliphatic fraction (F1), aromatic fraction (F2) and total (F3) in sediments receiving either spent or fresh lubricating oil and planted with B. gymnorrhiza seedlings (KLH: Kei Ling Ha Lo Wai; LK: Luk Keng; mean and standard deviation of three replicates are shown; different letters indicate there are significant difference between spent and fresh lubricating oil according to one-way ANOVA at \(p \leq 0.05 \)).

Fig. 4.1 Setup of a tide tank at low tide to examine the effects of spent lubricating oil dosage on mangrove seedlings

Fig. 4.2a Leaves of K. candel seedlings, the control on the left hand side had normal appearance while red and brown spots were found in seedlings received 5L m\(^{-2}\) oil (the photo on the right side).

Fig. 4.2b Leaves of A. corniculatum seedlings, the control one on the left hand side while the seedlings received 7.5L m\(^{-2}\) oil had a large brown patch (the photo on the right side).

Fig. 4.2c Leaves of A. ilicifolius seedlings, the control one on the left hand side while the fringe become yellowish in seedlings received 10L m\(^{-2}\) oil (the photo on the right side).

Fig. 4.2d Leaves of B. gymnorrhiza seedlings, the control was on the left hand side while the leaf of seedlings received 10L m\(^{-2}\) oil was yellowish and full of black spots (the photo on the right side).

Fig. 4.3 Effects of different dosages of spent lubricating oil on the increment of stem height of four mangrove species (mean of three replicates are shown).

Fig. 4.4 Effects of different dosages of spent lubricating oil on the changes of leaf number of four mangrove species (mean of three replicates are shown).

Fig. 4.5 Effects of different dosages of spent lubricating oil on the leaf and root biomass of four mangrove species (Kc: K. candel; Ac: A. corniculatum; Il: A. ilicifolius; Bg: B. gymnorrhiza).
corniculatum; Ai: A. ilicifolius; Bg: B. gymnorrhiza; mean and standard deviation of three replicates are shown; different letters on top of the bar indicate they are significantly different at $p \leq 0.05$ level according to one-way ANOVA test).

Fig. 4.6 Effects of different dosages of spent lubricating oil on the superoxide radical (O_2^-) release of leaf and root of four mangrove species (Kc: K. candel; Ac: A. corniculatum; Ai: A. ilicifolius; Bg: B. gymnorrhiza; mean and standard deviation of three replicates are shown; different letters on top of the bar indicate they are significantly different at $p \leq 0.05$ level according to one-way ANOVA test).

Fig. 4.7 Effects of different dosages of spent lubricating oil on the superoxide dismutase (SOD) activity of leaf and root of four mangrove species (Kc: K. candel; Ac: A. corniculatum; Ai: A. ilicifolius; Bg: B. gymnorrhiza; mean and standard deviation of three replicates are shown; different letters on top of the bar indicate they are significantly different at $p \leq 0.05$ level according to one-way ANOVA test).

Fig. 4.8 Effects of different dosages of spent lubricating oil on the malondialdehyde (MDA) content of leaf and root of four mangrove species (Kc: K. candel; Ac: A. corniculatum; Ai: A. ilicifolius; Bg: B. gymnorrhiza; mean and standard deviation of three replicates are shown; different letters on top of the bar indicate they are significantly different at $p \leq 0.05$ level according to one-way ANOVA test).

Fig. 4.9 Effects of one-time addition of a large dosage (15L m$^{-2}$) and weekly addition of a small amount (1L m$^{-2}$ per week for 16 weeks) of spent lubricating oil on the increment of stem height and changes of leaf number of A. ilicifolius and B. gymnorrhiza seedlings (mean of three replicates are shown).

Fig. 4.10 Effects of one-time addition of a large dosage (10L m$^{-2}$ for A. ilicifolius and 15L m$^{-2}$ for B. gymnorrhiza) and weekly addition of a small amount (1L m$^{-2}$ per week for 16 weeks) of spent lubricating oil on leaf and root biomass of A. ilicifolius and B. gymnorrhiza seedlings (mean and standard deviation of three replicates are shown; different letters on top of the bar indicate they are significantly different at $p \leq 0.05$ level according to one-way ANOVA test).

Fig. 4.11 Effects of one-time addition of a large dosage (10L m$^{-2}$ for A. ilicifolius and 15L m$^{-2}$ for B. gymnorrhiza) and weekly addition of small amount (1L m$^{-2}$ per week for 16 weeks) of spent lubricating oil on superoxide radical (O_2^-) release, dismutase (SOD) activity, malondialdehyde (MDA) content of leaf and root of A. ilicifolius and B. gymnorrhiza seedlings (mean and standard deviation of three
replicates are shown; different letters on top of the bar indicate they are significantly different at $p \leq 0.05$ level according to one-way ANOVA test).

Fig. 4.12 Effects of oil dosage on the percentage increment of stem height and leaf number, and percentage decrease of leaf and root biomass of four mangrove species (mean of three replicates are shown; \% decrease = (control – treatment) * 100 / control; Kc: K. candel; Ac: A. corniculatum; Ai: A. ilicifolius; Bg: B. gymnorrhiza).

Fig. 4.13 Effects of oil dosage on the percentage increase of superoxide radical (O_2^-) release, superoxide dismutase (SOD) activity and malondialdehyde (MDA) content in leaf and root of four mangrove species (mean of three replicates are shown; \% increase = (control – treatment)*100/control; Kc: K. candel; Ac: A. corniculatum; A: Ac. ilicifolius; Bg: B. gymnorrhiza).

Fig. 5.1 Flow chart of the three sets of experiments examining the environmental effects on response of mangrove plants to spent lubricating oil pollution (*: tide tank with Sai Keng sediment and 1-year old seedlings of B. gymnorrhiza or A. corniculatum; **: background level of TKN and TP were 0.2 and 0.035g kg$^{-1}$ air-dried sediment, respectively).

Fig. 5.2 Effects of salinities on the increment of stem height and changes of leaf number of oil-treated B. gymnorrhiza and A. corniculatum seedlings (mean and standard deviation of three replicates are shown).

Fig. 5.3 Effects of salinities on the amounts of O_2^- release, SOD activity and MDA content in (A) leaf and (B) root of oil-treated B. gymnorrhiza and A. corniculatum seedlings (mean and standard deviation of three replicates are shown; different letters on top of the bar indicate they are significantly different at $p \leq 0.05$ level according to one-way ANOVA test).

Fig. 5.4 Effects of tidal cycles on the increment of stem height and changes of leaf number of oil-treated B. gymnorrhiza and A. corniculatum seedlings (mean and standard deviation of three replicates are shown).

Fig. 5.5 Effects of tidal cycles on the amounts of O_2^- release, SOD activity and MDA content in (A) leaf and (B) root of oil-treated B. gymnorrhiza and A. corniculatum seedlings (mean and standard deviation of three replicates are shown; different letters on top of the bar indicate they are significantly different at $p \leq 0.05$ level according to one-way ANOVA test).
Fig. 5.6 Effects of nutrient levels on the increment of stem height and changes of leaf number of spent lubricating oil-treated B. gymnorrhiza and A. corniculatum seedlings (mean and standard deviation of three replicates are shown).

Fig. 5.7 Effects of nutrient levels on O_2^- release, SOD activity and MDA content in (A) leaf and (B) root of oil-treated B. gymnorrhiza and A. corniculatum seedlings (mean and standard deviation of three replicates are shown; different letters on top of the bar indicate they are significantly different at $p \leq 0.05$ level according to one-way ANOVA test).

Fig. 5.8 The residual concentration of petroleum hydrocarbons (TPH) in aliphatic fraction (F1), aromatic fraction (F2) and total (F3) in sediments receiving 7.5L m$^{-2}$ ($= 56.7$mg/g freeze-dried sediment) spent lubricating oil under different salinities (mean and standard deviation of three replicates are shown; different letters on top of the bar indicate they are significantly different among treatments at $p \leq 0.05$ according to one-way ANOVA).

Fig. 5.9 The residual concentration of petroleum hydrocarbons (TPH) in aliphatic fraction (F1), aromatic fraction (F2) and total (F3) in sediments receiving 7.5L m$^{-2}$ ($= 56.7$mg/g freeze-dried sediment) spent lubricating oil under different tidal cycles (mean and standard deviation of three replicates are shown; different letters on top of the bar indicate they are significantly different among treatments at $p \leq 0.05$ according to one-way ANOVA).

Fig. 5.10 The residual concentration of petroleum hydrocarbons (TPH) in aliphatic fraction (F1), aromatic fraction (F2) and total (F3) in sediments receiving 7.5L m$^{-2}$ ($= 56.7$mg/g freeze-dried sediment) spent lubricating oil under different nutrient levels (mean and standard deviation of three replicates are shown; different letters on top of the bar indicate they are significantly different among treatments at $p \leq 0.05$ according to one-way ANOVA).
List of Tables

Table 2.1 Estimates of global inputs of oil pollution into the marine environment (unit: thousands tons petroleum hydrocarbons per year; the value in bracket is the range).

Table 2.2 Characteristics of individual petroleum fuels and lubricating oil (Potter and Simmons, 1998).

Table 2.3 Typical chemical compounds in fuels, lubricating oil and crude oil and the end uses of the corresponding petroleum products (Potter and Simmons, 1998).

Table 2.4 Eight true and five associate mangrove plant species in Hong Kong (Tam and Wong, 2000).

Table 2.5 A summary of the oil spill accidents impacting mangrove habitats worldwide (NR: not reported).

Table 2.6 A summary of the oil spill accidents occurred in Zhu Jiang Estuary in recent 10 years (NR: not reported; http://www.gdmsa.gov.cn/).

Table 2.7 A summary of the previous laboratory and field studies on toxic effects of oil on mangrove plants.

Table 3.1 The wavelength, linear range and detection limits of each metal measured in the experiment (detection limit was three standard deviation value of 10 replicate measurements of the standard metal solution).

Table 3.2 Mean recovery (MR), standard deviation of the recovery (s.d.) and percentage relative standard deviation (%RSD) of the 8 n-alkane and 16 PAHs from the spiked Kei Ling Ha Lo Wai (KLH) sandy and Luk Keng (LK) muddy sediments (n=3).

Table 3.3 General properties of Kei Ling Ha Lo Wai (KLH) and Luk Keng (LK) sediments (mean and standard deviation of three replicates are shown; All data except pH and petroleum hydrocarbon were presented on air-dried weight base; ND: not detected).

Table 3.4 Chemical composition of fresh and spent lubricating oil (a: Castrol (GTX); b: spent lubricating oil from a local gas station; c: spent oil from diesel engine; mean and standard deviation of six replicates are shown, NM: not measured; ND: not detected).
Table 3.5 Decreases in growth and increases in physiological parameters of lubricating oil-treated *B. gymnorrhiza* seedlings in Kei Ling Ha Lo Wai (KLH) and Luk Keng (LK) sediments at the end of the 3-months establishment (mean and standard deviation of triplicates are shown; % change = (differences between oil-treated and control seedlings at the end of the experiment) / (control seedlings) x 100%; *, and ** indicate the F-values are significant at P≤0.05 and 0.01 levels, respectively).

Table 3.6 Correlation coefficient matrix showing relationships between growth and physiological parameters of *B. gymnorrhiza* seedlings at the end of 3-months establishment (*, ** and *** indicate the r values are significant at p≤0.05, 0.01 and 0.001 levels, respectively, n=9).

Table 3.7 Decreases in growth and increases in physiological parameters of lubricating oil treated *K. candel* seedlings in Kei Ling Ha Lo Wai (KLH) and Luk Keng (LK) sediment at the end of the 3-months establishment (mean and S.D. of triplicates are shown, % change = (differences between oil-treated and control seedlings at the end of the experiment) / (control seedlings)*100%; *, ** and *** indicate the F-values were significant at p≤0.05, 0.01 and 0.001 probability levels, respectively).

Table 3.8 Correlation coefficient matrix showing relationships between growth and physiological parameters of *K. candel* seedlings at the end of 3-months establishment (*, ** and *** indicate the r values are significant at p≤0.05, 0.01 and 0.001 levels, respectively, n=9).

Table 3.9 Comparisons of the response of *B. gymnorrhiza* and *K. candel* seedlings to oil pollution in term of decreases in growth and increases in physiological parameters (*, ** and *** indicate the t values are significant at p≤0.05, 0.01 and 0.001 levels, respectively; KLH: Kei Ling Ha Lo Wai; LK: Luk Keng; Bg: *B. gymnorrhiza*; Kc: *K. candel*).

Table 3.10 Statistical results showing oil and sediment effects on concentrations of residual petroleum hydrocarbons in sediments receiving spent or fresh lubricating oil and planted with *B. gymnorrhiza* seedlings during the 3-months experiment (KLH: Kei Ling Ha Lo Wai; LK: Luk Keng; F1: aliphatic fraction, F2: aromatic fraction, F3: total; *, ** and *** indicate the F-values are significant at p≤0.05, 0.01 and 0.001 levels, respectively).

Table 4.1 General properties of Sai Keng sediment (mean and standard deviation of three replicates are shown; ND: not detected).
Table 4.2 Numbers of seedlings died within the 4-months experimental period in sediments contaminated with spent lubricating oil at different dosages (numbers of seedlings died / numbers of seedlings used in the experiment; Kc: K. candel; Ac: A. corniculatum; Ai: A. ilicifolius; Bg: B. gymnorrhiza).

Table 4.3 Results of two-way ANOVA with repeated measures showing effects of different oil dosages and treatment time on the increment of stem height of four mangrove species during 4-months experiment (*: missing data because A. ilicifolius seedlings were all dead at the highest oil dosages at the end of 4-months experiment; oil dosages with the same underline indicate they are not significantly different at $p \leq 0.05$ level according to two-way ANOVA with repeated measures; NS: not significant).

Table 4.4 Results of two-way ANOVA with repeated measures showing effects of different oil dosages and treatment time on the changes of leaf number of four mangrove species during 4-months experiment (*: missing data because A. ilicifolius seedlings were all dead at the highest oil dosages at the end of 4-months experiment; oil dosages with the same underline indicate they are not significantly different at $p \leq 0.05$ level according to two-way ANOVA with repeated measures; NS: not significant).

Table 4.5 Simple correlation coefficients (r) between oil dosage and different response parameters of four mangrove seedlings at the end of 4-months experiment (Kc: K. candel; Ac: A. corniculatum; Ai: A. ilicifolius; Bg: B. gymnorrhiza; *, ** and *** indicate the r values are significant at $p \leq 0.05$, 0.01 and 0.001 levels, respectively; n=9 for K. candel and A. corniculatum, n=12 for A. ilicifolius, n=14 for B. gymnorrhiza).

Table 4.6 Results of two-way ANOVA with repeated measures showing effects of different oiling frequency and treatment time on the increment of stem height and changes of leaf number of A. ilicifolius and B. gymnorrhiza during 4-months experiment.

Table 4.7. Results of two-way ANOVA tests on the increment of stem height and changes of leaf number, and percentage reduction in biomass at the end of the 4-months experiment showing effects of lubricating oil dosage and mangrove plant species (five oil dosages were 2.5, 5, 7.5, 10 and 15L m$^{-2}$; four mangrove species were K. candel (Kc), A. corniculatum (Ac), A. ilicifolius (Ai), and B. gymnorrhiza (Bg); *: missing data because K. candel and A. corniculatum seedlings at 10L m$^{-2}$ and A. ilicifolius seedlings at 15L m$^{-2}$ oil dosages were all
dead at the end of 4-months experiment; oil dosage or mangrove species with the same underline indicates they are not significantly different at $p \leq 0.05$ level according to two-way ANOVA test; NS: not significant).

Table 4.8. Results of two-way ANOVA tests on the percentage increase of O_2^- release in leaf and root of four mangrove seedlings received different lubricating oil dosages at the end of the 4-months experiment (five oil dosages: 2.5, 5, 7.5, 10 and 15L m$^{-2}$; four mangrove species: *K. candel* (Kc), *A. corniculatum* (Ac), *A. ilicifolius* (Ai), and *B. gymnorrhiza* (Bg); *: missing data because *K. candel* and *A. corniculatum* seedlings at 10L m$^{-2}$ and *A. ilicifolius* seedlings at 15L m$^{-2}$ oil dosages were all dead at the end of 4-months experiment; oil dosage or mangrove species with the same underline indicates they are not significantly different at $p \leq 0.05$ level according to two-way ANOVA test).

Table 4.9. Results of two-way ANOVA tests on the percentage increase of SOD activity in leaf and root of four mangrove seedlings received different lubricating oil dosages at the end of the 4-months experiment (five oil dosages: 2.5, 5, 7.5, 10 and 15L m$^{-2}$; four mangrove species: *K. candel* (Kc), *A. corniculatum* (Ac), *A. ilicifolius* (Ai), and *B. gymnorrhiza* (Bg); *: missing data because *K. candel* and *A. corniculatum* seedlings at 10L m$^{-2}$ and *A. ilicifolius* seedlings at 15L m$^{-2}$ oil dosages were all dead at the end of 4-months experiment; oil dosage or mangrove species with the same underline indicates they are not significantly different at $p \leq 0.05$ level according to two-way ANOVA test).

Table 4.10. Results of two-way ANOVA tests on the percentage increase of MDA content in leaf and root of four mangrove seedlings received different lubricating oil dosages at the end of the 4-months experiment (five oil dosages: 2.5, 5, 7.5, 10 and 15L m$^{-2}$; four mangrove species: *K. candel* (Kc), *A. corniculatum* (Ac), *A. ilicifolius* (Ai), and *B. gymnorrhiza* (Bg); *: missing data because *K. candel* and *A. corniculatum* seedlings at 10L m$^{-2}$ and *A. ilicifolius* seedlings at 15L m$^{-2}$ oil dosages were all dead at the end of 4-months experiment; oil dosage or mangrove species with the same underline indicates they are not significantly different at $p \leq 0.05$ level according to two-way ANOVA test).

Table 5.1 Results of two-way ANOVA with repeated measures showing effects of different salinities and time on the increments in stem height and changes in leaf number of oil-treated *B. gymnorrhiza* and *A. corniculatum* seedlings during the 4-months experiment (low: 5ppt salinity, medium: 15ppt salinity, high: 35ppt salinity; salinities
with the same underline indicate they are not significant difference at $p \leq 0.05$ level according to two-way ANOVA with repeated measures; NS: not significant).

Table 5.2 Effects of different salinities on leaf, stem, root, and total biomass (g plant$^{-1}$) of spent lubricating oil-treated *B. gymnorhiza* and *A. corniculatum* seedlings (mean and standard deviation of three replicates, and results of one-way ANOVA test are shown; low: 5ppt salinity, medium: 15ppt salinity, high: 35ppt salinity; salinities with the same underline indicate they are not significant difference at $p \leq 0.05$ level according to two-way ANOVA test; NS: not significant).

Table 5.3 Results of two-way ANOVA with repeated measures showing effects of different tidal cycles and time on the increases in stem height and changes in leaf number of oil-treated *B. gymnorhiza* and *A. corniculatum* seedlings during the 4-months experiment (short: 6hr/6hr tidal cycle, medium: 12hr/12hr tidal cycle, long: 24hr/24hr tidal cycle; tidal cycles with the same underline indicate they are not significant difference at $p \leq 0.05$ level according to two-way ANOVA with repeated measures; NS: not significant).

Table 5.4 Effects of tidal cycles on leaf, stem, root, and total biomass (g plant$^{-1}$) of spent lubricating oil-treated *B. gymnorrhiza* and *A. corniculatum* seedlings (mean and standard deviation of three replicates and results of one-way ANOVA test are shown; short: 6hr/6hr tidal cycle, medium: 12hr/12hr tidal cycle, long: 24hr/24hr tidal cycle; tidal cycles with the same underline indicate they are not significant difference at $p \leq 0.05$ level according to two-way ANOVA test; NS: not significant).

Table 5.5 Results of two-way ANOVA with repeated measures showing effects of different nutrient levels and time on the increases of stem height and changes leaf number of oil-treated *B. gymnorhiza* and *A. corniculatum* seedlings during the 4-months experiment (low: 1 time of background nutrient level, medium: 3 times of background nutrient level, high: 6 times of background nutrient level; nutrient levels with the same underline indicate they are not significant difference at $p \leq 0.05$ level according to two-way ANOVA with repeated measures; NS: not significant).

Table 5.6 Effects of different nutrient levels on leaf, stem, root, and total biomass of spent lubricating oil-treated *B. gymnorrhiza* and *A. corniculatum* seedlings (mean and standard deviation of three replicates, and results of one-way ANOVA test are shown).
Table 5.7 Results of two-way ANOVA test showing effects of different environmental factors (salinity, tidal cycle and nutrient level) and mangrove species (*B. gymnorrhiza* and *A. corniculatum*) on residual petroleum hydrocarbons (TPH-F3) in spent lubricating oil-treated sediments at the end of the 4-months experiment (low: 5ppt salinity, medium: 15ppt salinity, high: 35ppt salinity; salinities with the same underline indicate they are not significant difference at $p \leq 0.05$ level according to two-way ANOVA test; NS: not significant).