SYNTHESIS AND SPECTROSCOPY
OF HIGH AND LOW SYMMETRY
LANTHANIDE COMPLEXES

ZHOU XIANJU

DOCTOR OF PHILOSOPHY
CITY UNIVERSITY OF HONG KONG
September 2006
SYNTHESIS AND SPECTROSCOPY OF HIGH AND LOW SYMMETRY LANTHANIDE COMPLEXES

高對稱與低對稱鐳系複合物的合成與光譜

Submitted to
Department of Biology and Chemistry
生物及化學學系
in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy
哲學博士學位

by

Zhou Xianju
周賢菊

September 2006
二零零六年九月
To Jack and Peter
Abstract

The neat and diluted high symmetry hexachloroelpasolites Cs₂NaLnCl₆ (Ln=Nd, Ho) have been prepared. The high-resolution spectra of these two series of chloroelpasolites together with the fluoroelpasolites (Cs₂NaYF₆; Ln; Ln=Yb, Er) were recorded down to 10 K and analyzed carefully. The derived energy levels from the spectra have been calculated using crystal field theory.

Four series of low symmetry lanthanide complexes were synthesized and the crystal structures of some compounds were determined. The spectroscopic studies of these complexes were done to study the effects of coordination ligands on the vibrations and the energy levels of the central f-electrons. The following describes these complexes briefly.

1. New europium (III) and terbium (III) monodentate complexes with carbonyl group coordination have been prepared and characterized by X-ray and spectroscopic methods. Although the complexes comprise up to six coordinated water molecules they exhibit strong luminescence both in aqueous media and in the solid state. The high resolution, low temperature emission spectra are shown to be consistent with the crystallographic data.

2. The crystallographic and spectroscopic measurements for Ln[Au(CN)₂]₃·3H₂O (Ln=Pr, Sm, Eu, Tb) have been carried out. The emission spectra of Tb[Au(CN)₂]₃·3H₂O are unusual for a lanthanide ion because no new bands appear between 10 K to room temperature, although relative intensities do change. The analysis of extensive, well-resolved vibronic structures in the emission spectra has clearly shown the inadequacy of a theoretical intensity model which only considers IR active vibrational modes since both IR and Raman active vibrations were observed.
3. Seven trivalent praseodymium complexes derived from \textit{para}-substituted benzoic acids have been synthesized. The crystal structures of 5 complexes were determined by X-ray crystallography. The vibrational spectra of the complexes have been recorded and interpreted. The energy levels of central lanthanide ions could be deduced from the electronic spectra, and the electro-inductive effect of the functional groups of the ligands on the f-electrons has been investigated under the guide of the Hammett substituent constants.
Contents

Chapter 1 Introduction
1.1 Background of lanthanide...1
1.2 High symmetry epasolite...4
 1.2.1 Structure...4
 1.2.2 Phase transition...7
 1.2.3 Spectral selection rules..9
 1.2.4 Vibrational spectra...10
 1.2.5 Electronic spectroscopy..13
 1.2.6 Electronic Hamiltonian and states of 4f\(^N\) electrons..........17
1.3 Low symmetry lanthanide complexes..22
 1.3.1 Introduction to low symmetry lanthanide complexes...........22
 1.3.1.1 Lanthanide carboxylates...23
 1.3.1.2 Bimetallic cyanide-bridged lanthanide complexes.......24
1.3.2 Applications of Lanthanide Complexes....................................25
 1.3.2.1 Lighting Applications...26
 1.3.2.2 Lasers...26
 1.3.2.3 TV Screen...28
1.3.3 Luminescent Properties of Lanthanide Complexes.....................28
1.3.4 Luminescent Lifetime and Coordination Number.......................30
1.3.5 Ligand Sensitized Lanthanide Luminescence and Antenna Effects.32

Chapter 2 Experimental
2.1 Sample preparation..35
 2.1.1 High symmetry lanthanide elpasolites.................................35
 2.1.1.1 Hexachloroelpasolites...35
 2.1.1.2 Hexafluoroelpasolites...36
 2.1.2 Low symmetry lanthanide complexes..................................36
 2.1.2.1 Bimetallic cyanide-bridged lanthanide complexes........36
 2.1.2.2 Lanthanide monodentate complexes..........................40
 2.1.2.3 Lanthanide benzoate derivative complexes................40
2.2 Characterization..41
 2.2.1 Crystal structure analysis...41
2.2.2 Elemental analysis ... 41
2.2.3 Thermogravimetric analysis ... 41

2.3 Spectroscopic measurements ... 42
2.3.1 FT-IR spectrum ... 42
2.3.2 Absorption spectrum .. 42
2.3.3 Emission spectrum ... 43
2.3.4 Lifetime measure ... 44

Chapter 3A Spectroscopic properties and configuration interaction assisted crystal field analysis of Nd$^{3+}$ in neat Cs$_2$NaNdCl$_6$

3A.1 Introduction ... 46
3A.2 Results and discussion ... 49
 3A.2.1 Electronic absorption spectra of Cs$_2$NaNdCl$_6$ 49
 3A.2.2 Emission spectra of Cs$_2$NaNdCl$_6$ 61
 3A.2.3 Comparison with the absorption and excitation spectrum of Cs$_2$NaYCl$_6$:Nd$^{3+}$ and the absorption, excitation and emission spectra of Cs$_2$NaGdCl$_6$:Nd$^{3+}$.. 68
 3A.2.4 Crystal field calculations .. 72
 3A.2.5 Discussion ... 80
 3A.2.5.1 Pr$^{3+}$ and Nd$^{3+}$... 80
 3A.2.5.2 Er$^{3+}$ and Tm$^{3+}$... 81
 3A.2.6 Comparison with other studies 82
3A.3 Conclusions .. 89

Chapter 3B Ultraviolet emission and unusual hot bands of Ho$^{3+}$ in hexachloro-elpasolite hosts

3B.1 Introduction ... 91
3B.2 Results and discussion ... 93
 3B.2.1 Excitation and absorption spectra of Ho$^{3+}$ in HoCl$_6^{3-}$ in UV range ... 93
 3B.2.2 Discussion of luminescent states of HoCl$_6^{3-}$ between 25000 and 45000 cm$^{-1}$... 95
 3B.2.3 Luminescence from 5G_4 .. 96
 3B.2.3.1 Transition to the ground state of 5I_8.............................. 97
 3B.2.3.2 Transition to 5I_6 ... 97
3B.2.3.2. Transition to 5I_j...100
3B.2.4 Upconversion and luminescence from $^5D(2)_4$.........................100
3B.3 Conclusions..102

Chapter 3C Electronic spectra and crystal field analysis of Er$^{3+}$ in Cs$_2$NaErF$_6$
3C.1 Introduction...103
3C.2 Results and discussion...104
 3C.2.1 Electronic spectra...104
 3C.2.1.1 Electronic absorption spectra of Cs$_2$NaErF$_6$..................105
 3C.2.1.1.1 Transitions to 4I_j ($J = 13/2, 11/2, 9/2$)...............105
 3C.2.1.1.2 Transitions to 4F_j ($J = 3/2, 5/2, 7/2, 9/2$), $^4S_{3/2}$,
 and $^2H_{11/2}$...107
 3C.2.1.1.3 Transitions to 4G_j ($J = 11/2, 9/2$) and $^2K_{15/2}$........111
 3C.2.1.2 Emission spectra of Cs$_2$NaErF$_6$ and Cs$_2$NaYF$_6$:Er$^{3+}$....112
 3C.2.1.2.1 Emission from $^4S_{3/2}$...112
 3C.2.1.2.2 Emission from $^4F_{9/2}$ aΓ_8................................114
 3C.2.1.2.3 Emission from $^4I_{11/2}$ Γ_6 and aΓ_8................115
 3C.2.2 Crystal field analyses...116
3C.3 Conclusions..121

Chapter 3D Electronic spectra of Cs$_2$NaYbF$_6$ and crystal field analyses
 of YbX_6^{3-} (X = F, Cl, Br)
3D.1 Introduction..123
3D.2 Results and discussion...124
 3D.2.1 Electronic spectra...124
 3D.2.2 Crystal field analysis of 4$^f^{13}$...129
 3D.2.3 Inclusion of configuration interaction in the crystal field analysis...135
3D.3 Conclusions..138

Chapter 4A Crystal structure and luminescence of novel lanthanide monodentate
 complexes [Ln(C$_4$N$_4$H$_6$O)$_2$(H$_2$O)$_6$]Cl$_3$ and
 [Ln(C$_4$N$_4$H$_6$O)$_2$(H$_2$O)$_3$(NO$_3$)$_3$], (Ln = Tb or Eu)
4A.1 Introduction..139
Chapter 4B Synthesis and spectroscopy of bimetallic cyanide-bridged lanthanide complexes

4B.1 Introduction……………………………………………………………………………… 151

4B.2 Results and discussion……………………………………………………………153
 4B.2.1 Analyses for Ln[Au(CN)\(_2\)]_3.3H\(_2\)O...153
 4B.2.2 Crystallography…………………………………………………………………….154
 4B.2.3 Vibrational spectra of Ln[Au(CN)\(_2\)]_3.3H\(_2\)O...157
 4B.2.4 Selection rules for electronic spectra…………………………………………..160
 4B.2.5 Intraconfigurational f - f electronic transitions of Tb\(^{3+}\)..................163
 4B.2.6 Vibronic structure in the emission spectrum of Tb[Au(CN)\(_2\)]_3.3H\(_2\)O...166

4B.3 Conclusions……………………………………………………………………………… 171

Chapter 4C Synthesis, structure and spectroscopy of praseodymium (III) benzoate derivative complexes

4C. 1 Introduction……………………………………………………………………………... 173

4C. 2 Results and discussion……………………………………………………………..174
 4C.2.1 Crystal structure determinations………………………………………………...174
 4C.2.1.1 Crystal structure of 1 (OCH\(_3\)w)...175
 4C.2.1.2 Crystal structure of 2 (Hw)...176
 4C.2.1.3 Crystal structure of 2' (H)...178
 4C.2.1.4 Crystal structure of 3 (Clw)..180
 4C.2.1.5 Crystal structure of 4 (NO\(_2\))..182
 4C.2.1.6 Crystal structure of 5 (OHw)..184
 4C.2.2 Vibrational spectroscopy ...186
 4C.2.3 Electronic spectroscopy………………………………………………………… 191
4C.2.3.1 UV spectra of ligands and complexes...........................191
4C.2.3.2 Emission spectra of complexes 1-7..........................192
4C.2.3.3 Absorption spectra of complexes 1-7.......................195
4C.2.3.4 Comparison of complexes 2 (Hw) and 2' (H).............199
4C.2. 4 Electro-inductive effect of the substituted groups.........201
4C.3 Conclusions...203

Appendix
Derivation of energy matrices of 4f^{13} in octahedral symmetry........204

References..214
List of Tables

1.1 Physical properties of lanthanide elpasolites ... 5
1.2 The reduction in symmetry labels in passing from octahedral to tetragonal symmetry 8
1.3 Labeling of vibrational modes and IR/Raman activity ... 13
1.4 Most up-to-date data available for Cs$_2$NaLnCl$_6$ elpasolites 14
1.5 Available data for Cs$_2$NaLnF$_6$ elpasolites .. 16
1.6 The site symmetries and crystal field parameters associated with lanthanides when doped into certain lattices ... 19

2.1 Materials used for the lanthanide hexachloroelpasolites .. 37
2.2 Materials used for the lanthanide bimetallic cyanide-bridged complexes 38
2.3 Materials used for the lanthanide benzoate derivative complexes 39

3A.1 Vibrational structure (in cm$^{-1}$) in the electronic spectra of Cs$_2$NaNdCl$_6$ and Cs$_2$NaLnCl$_6$:Nd$^{3+}$ at 10-20 K ... 48
3A.2 Derived energy levels (in cm$^{-1}$) of Nd$^{3+}$ in elpasolite hosts 70
3A.3 Experimental and calculated energy levels (in cm$^{-1}$) and differences Δ (in cm$^{-1}$) of Nd$^{3+}$ in Cs$_2$NaNdCl$_6$... 73
3A.4 Empirical hamiltonian parameters of Nd$^{3+}$ in Cs$_2$NaNdCl$_6$ 77
3A.5 Fourth and sixth-order crystal field strength, S^k (in cm$^{-1}$), from various energy level fits for Nd$^{3+}$ in crystals ... 85

3B.1 Assignments of $^5G_4 \rightarrow ^5I_6$ transition in Cs$_2$NaY$_{0.9}$Ho$_{0.1}$Cl$_6$ 99

3C.1 Vibrational structure (in cm$^{-1}$) in the electronic spectra of Cs$_2$NaErF$_6$ at 10-20 K105
3C.2 $^4I_{5/2} \rightarrow ^2H_{11/2}$ absorption spectrum of Cs$_2$NaErF$_6$ at 10 K 109
3C.3 Experimental and calculated energy levels (in cm$^{-1}$) for Er$^{3+}$ in Cs$_2$NaErF$_6$ 117
3C.4 Comparison of parameters obtained from fits of (a) Cs$_2$NaErF$_6$ energy levels; (b) Cs$_2$NaErCl$_6$, experimental data from Tanner et al. (1994a) 119
3C.5 Energy levels of Er$^{3+}$ in Cs$_2$NaErCl$_6$ and Cs$_2$NaErF$_6$.. 120

3D.1 Parameters obtained from the model of Schwartz, 1976 ... 130
3D.2 Energy matrices obtained from the basis of Griffith (1961)131
3D.3 Energy levels (cm$^{-1}$) of Yb$^{3+}$ in elpasolite lattices134
3D.4(a) Energy parameter values for Yb$^{3+}$ fitted in 4f13np5 in elpasolite lattices134
3D.4(b) Energy parameter values for Yb$^{3+}$ fitted in 4f$^{13}/4f^{14}$np5 in elpasolite lattices134

4A.1 Crystal field energy levels of Eu$^{3+}$ in complex 4 ..147

4B.1 Selected geometric parameters (Å, degree) for Tb[Au(CN)$_2$]$_3$ 3H$_2$O157
4B.2 D_{3h} Point group representations of angular momentum quantum numbers161
4B.3 Spectral activity of transitions between D_{3h} crystal field levels162
4B.4 Energy levels of Tb$^{3+}$ in Tb[Au(CN)$_2$]$_3$ 3H$_2$O from emission and absorption spectra172

4C.1 Identification of complexes 1-7 ...174
4C.2 Crystallography data and structure refinement for complexes 1 – 5183
4C.3 Vibrational energy assignments of IR and Raman spectra of
praseodymium (III) para-substituted benzoates at room temperature189
4C.4 Maximum absorption of the ligands and complexes, derived from Fig.4C.10192
4C.5 Energy levels of Pr$^{3+}$ (in cm$^{-1}$) in the complexes of 2 (Hw) and 5 (OHw),
derived from emission spectra ..195
4C.6 Energy levels of 1D_2, 3P_0 and 3P_2 of complexes 1-7, derived from the electronic
absorption spectra in the optical visible range ...199
4C.7 The values of the substituted functional groups and the energies of 3P_0
and stretching of COO$^-$...202
List of Figures

1.1 Radial functions P_{nl} calculated for $4f^2$. The function for $5s$ has been multiplied by -1…………2
1.2 Crystal structure of elpasolites…………………………………………………………………………6
1.3 The rotation of octahedra in the cubic to tetragonal phase transition……………………7
1.4 Phase transition temperatures of elpasolites Cs_2NaLnX_6 (X=Cl and Br)
 (from M'Caw, 1998)…………………………………………………………………………………………8
1.5 Six moiety vibrations of LnX_6^{3-}…………………………………………………………………….11
1.6 Lattice vibrations of $Cs_2NaLnCl_6$……………………………………………………………………..12
1.7 Schematic diagram of a ‘four-level’ Nd$^{3+}$ laser. Reproduced from Cotton, 2006………….27
1.8 Schematic diagram of antenna effect…………………………………………………………………………28

2.1 Schematic diagram of experimental setup for absorption spectrum measurement………...43
2.2 Schematic diagram of experimental setup for emission spectrum measurement…………44
2.3 Schematic diagram of experimental setup for lifetime measurement…………………….45

3A.1 Energy levels of Nd$^{3+}$ in $Cs_2NaNdCl_6$…………………………………………………………..47
3A.2(a) Transition of $^4I_{9/2} \rightarrow ^4I_{11/2}$ in $Cs_2NaNdCl_6$ at 77 and 300K………………………51
3A.2(b) Transition of $^4I_{9/2} \rightarrow ^4I_{13/2}$ in $Cs_2NaNdCl_6$ at 10K……………………………………..52
3A.2(c) Transition of $^4I_{9/2} \rightarrow ^4I_{15/2}$ in $Cs_2NaNdCl_6$ at 10K……………………………………..52
3A.2(d) Transition of $^4I_{9/2} \rightarrow ^4F_{3/2}$ in $Cs_2NaNdCl_6$ at 10K……………………………………..53
3A.2(e) Transition of $^4I_{9/2} \rightarrow ^4F_{5/2}$ in $Cs_2NaNdCl_6$ at 10K……………………………………..53
3A.2(f) Transition of $^4I_{9/2} \rightarrow ^4F_{7/2}$, $^4S_{3/2}$ in $Cs_2NaNdCl_6$ at 10K………………………………..54
3A.2(g) Transition of $^4I_{9/2} \rightarrow ^4F_{9/2}$ in $Cs_2NaNdCl_6$ at 10K……………………………………..54
3A.2(h) Transition of $^4I_{9/2} \rightarrow ^2H(2)_{11/2}$ in $Cs_2NaNdCl_6$ at 10K…………………………………55
3A.2(i) Transition of $^4I_{9/2} \rightarrow ^4G_{12,4,5,2,9,2}$ in $Cs_2NaNdCl_6$ at 10K………………………………56
3A.2(j) Transition of $^4I_{9/2} \rightarrow ^2G_{1(9),2,1}, ^4G_{11/2, 2}, ^2K_{15/2, 2}, ^2D_{3/2}$ in $Cs_2NaNdCl_6$ at 10K………57
3A.2(k) Transition of $^4I_{9/2} \rightarrow ^2P_{3/2}$ in $Cs_2NaNdCl_6$ at 10K………………………………………………58
3A.2(l) Transition of $^4I_{9/2} \rightarrow ^4D_{1(3, 5, 2, 1, 2)}$ in $Cs_2NaNdCl_6$ at 10K………………………………58
3A.2(m) Transition of $^4I_{9/2} \rightarrow ^2I_{11/2}$ in $Cs_2NaNdCl_6$ at 10K…………………………………………59
3A.2(n) Transition of $^4I_{9/2} \rightarrow ^2L_{15/2, 2}, ^4D_{7/2, 2}, ^2L_{17/2, 2}, ^2I_{13/2}$ in $Cs_2NaNdCl_6$ at 10K………….60
3A.2(o) Transition of $^4I_{9/2} \rightarrow ^2H(1)_{9/2, 2}, ^2D(2)_{2(3, 2, 5, 2)}$ in $Cs_2NaNdCl_6$ at 10K……………………61
3A.2 Transition of $^4I_{9/2} \rightarrow ^2F(2)_{J=5/2,7/2}$ in Cs$_2$NaNdCl$_6$ at 10K

3A.3 (a) Transition of $^4F_{3/2} \Gamma_8 \rightarrow ^4I_{9/2}$ at 10 K under the excitation of 514.5 nm

3A.3 (b) Transition of $^4G_{3/2} \Gamma_7 \rightarrow ^4I_{11/2}$ at 10 K by the excitation of 514.5 nm

3A.3 (c) Transition of $^4D_{3/2} \rightarrow ^4I_{9/2}$ at 10 K by the excitation of 355 nm

3A.3 (d) Transition of $^4D_{3/2} \rightarrow ^4I_{11/2}$ at 10 K by the excitation of 355 nm

3A.3 (e) Transition of $^4D_{3/2} \rightarrow ^4I_{13/2}$ at 10 K by the excitation of 355 nm

3A.3 (f) Transition of $^4D_{3/2} \rightarrow ^4I_{15/2}$ at 10 K by the excitation of 355 nm

3A.3 (g) Transition of $^4D_{3/2} \rightarrow ^4F_{3/2}$ at 10 K by the excitation of 355 nm

3A.3 (h) Transition of $^4D_{3/2} \rightarrow ^4F_{5/2}, ^2H(2)_{9/2}$ at 10 K by the excitation of 355 nm

3A.3 (i) Transition of $^4D_{3/2} \rightarrow ^4F_{7/2}, ^4S_{3/2}$ at 10 K by the excitation of 355 nm

3A.4 The ratio of calculated over experimental $^2H(2)_{11/2}$ splittings versus the ration

$S^4/[(S^2)^2+(S^0)^2]^{1/2}$ for 32 compounds

3A.5 Plot of 4f electron crystal field parameters from CIACF parameterizations against lattice parameter for Cs$_2$NaLnCl$_6$ (Ln=Pr, Nd, Er, Tm)

3B.1 Calculated SLJ energy levels of HoCl$_6^{3-}$ between 25000 - 45000 cm$^{-1}$

3B.2 Excitation spectra of Ho$^{3+}$ hexachloroelpasolites at room temperature

3B.3 Survey 10 K absorption spectrum of Cs$_2$NaHoCl$_6$ in the UV range

3B.4 $^5G_4 \rightarrow ^5I_8$ Emission spectra of Cs$_2$NaHoCl$_6$ at room temperature with the excitation of 199.8 nm

3B.5 $^5G_4 \rightarrow ^5I_6$ emission spectra of Cs$_2$NaY$_{0.9}$Ho$_{0.1}$Cl$_6$ at 10 K and 80 K with the excitation of 355 nm. Energy levels of 5I_6 in neat Cs$_2$NaHoCl$_6$ is inset in the figure

3B.6 $^5G_4 \rightarrow ^5I_3$ emission spectra of Cs$_2$NaY$_{0.9}$Ho$_{0.1}$Cl$_6$ at 10 K and 80 K with the excitation of 355 nm

3C.1 (a) Absorption transition of $^4I_{15/2} \rightarrow ^4I_{13/2}$ in Cs$_2$NaErF$_6$ at 10 K, 77 K and 300 K

3C.1 (b) Absorption transition of $^4I_{15/2} \rightarrow ^4I_{11/2}$ in Cs$_2$NaErF$_6$ at 10 K

3C.1 (c) Absorption transition of $^4I_{15/2} \rightarrow ^4I_{9/2}$ in Cs$_2$NaErF$_6$ at 10 K

3C.1 (d) Absorption transition of $^4I_{15/2} \rightarrow ^4F_{11/2}$ in Cs$_2$NaErF$_6$ at 10 K

3C.1 (e) Absorption transition of $^4I_{15/2} \rightarrow ^4S_{3/2}$ in Cs$_2$NaErF$_6$ at 10 K

3C.1 (f) Absorption transition of $^4I_{15/2} \rightarrow ^2H_{11/2}$ in Cs$_2$NaErF$_6$ at 10 K
3C.1(g) Absorption transition of $^4I_{15/2} \rightarrow ^4F_{7/2}$ in Cs$_2$NaErF$_6$ at 10 K.................................111
3C.1(h) Absorption transition of $^4I_{15/2} \rightarrow ^4G_{11/2}$ in Cs$_2$NaErF$_6$ at 10 K.................................111
3C.2(a) Transition of $^4S_{3/2} \rightarrow ^4I_{15/2}$ in Cs$_2$NaErF$_6$ at 15 K..113
3C.2(b) Transition of $^4S_{3/2} \rightarrow ^4I_{13/2}$ in Cs$_2$NaErF$_6$ at 15 K..114
3C.2(c) Transition of $^4F_{9/2} \rightarrow ^4I_{15/2}$ in Cs$_2$NaErF$_6$ at 15 K..115
3C.2(d) Transition of $^4I_{11/2} \rightarrow ^4I_{15/2}$ in Cs$_2$NaErF$_6$ at 15 K..115
3C.3 Variation of Slater parameters in Cs$_2$NaLnF$_6$ (Ln=Eu, Tb and Er)...121

3D.1 $^2F_{7/2} \rightarrow ^2F_{5/2}$ electronic absorption spectrum of Cs$_2$NaYbF$_6$ at various temperatures
between 10 K and 300 K...124
3D.2 Energy level diagrams of the f13 configuration in Cs$_2$NaYbX$_6$ (X = F, Cl, Br).................126
3D.3 Absorption spectra of Cs$_2$NaYbF$_6$ at 10 K. a: the spectrum of $^2F_{7/2} \Gamma_6$ to $^2F_{5/2} \Gamma_8$;
 b: transition of $^2F_{7/2} \Gamma_6$ to $^2F_{5/2} \Gamma_8$ -720cm$^{-1}$; c: b times 5 in that range..............127
3D.4 The splitting of zero phonon line of $^2F_{7/2} \Gamma_6 \rightarrow \Gamma_8 \rightarrow ^2F_{5/2}$ in the absorption spectrum
of Cs$_2$NaYbCl$_6$ at 10 K...127
3D.5 10 K emission spectra of Yb$^{3+}$ in elpasolite hosts: (a), (b) Cs$_2$NaY$_{0.9}$Yb$_{0.1}$F$_6$ under
476 nm and 355 nm excitation, respectively; (c) Cs$_2$NaYbF$_6$ excited at 477 nm.................129
3D.6 Lattice parameters of Cs$_2$NaYbX$_6$ (X=F, Cl, Br) against zeta obtained from
model of Schwartz, 1976..130
3D.7 Comparison of experimental and calculated energy levels of Cs$_2$NaYbCl$_6$.......................132
3D.8 Change in calculated energies of Cs$_2$NaYbCl$_6$ as a function of B_0^6 and B_0^{13}
for 4f13 energy level fits...133
3D.9 Parameters of Cs$_2$NaYbX$_6$ (X=F, Cl, Br) obtained from Reid’s f-shell program.............135
3D.10 Variation of $B_0^6(f,f)$, $B_0^6(f,f)$ and $B_0^4(f,p)$ in Cs$_2$NaLnCl$_6$ for Ln = Er, Tm, Yb
from the energy fits including configuration interaction...137

4A.1 The Schematic molecular structures of complexes 1 to 4..140
4A.2a ORTEP drawing of cation of 1..142
4A.2b ORTEP drawing of cation of 4..142
4A.3 Infrared spectra of complex 1 to 4 and ligand (KBr discs, room temperature)...................143

xv
4A.4 UV-Visible absorption spectra of 1-4 and ligand in 10^{-5} M aqueous solutions at R.T. 144
4A.5 325 nm excited emission spectra of 1-4 in the solid state and in various solvents (10^{-5} M) at room temperature ... 145
4A.6a Emission spectrum of 1 at 10 K with the excitation of 355 nm the solid state 148
4A.6b Emission spectrum of 2 at 10 K with the excitation of 355 nm the solid state 148
4A.6c Emission spectrum of 3 at 10 K with the excitation of 355 nm in solid state 149
4A.6d Emission spectrum of 4 at 10 K with the excitation of 355 nm in solid state 149

4B.1(a) The ORTEP plot of Tb[Au(CN)]_3·3H_2O showing the coordination around the Tb^{3+} atom with the atom labelling scheme. (b), (c) The packing diagram of Tb[Au(CN)]_3·3H_2O projected down the b and c axes, respectively 156
4B.2 ν(C≡N) and δ(AuCNLn) vibration energies in the 300 K. Raman spectra of Ln[Au(CN)]_3·3H_2O plotted against ionic radius of Ln^{3+} ... 157
4B.3 Infrared absorption spectra of Tb[Au(CN)]_3·3H_2O: KBr disc at (a) 300 K and (b) 10 K; (c) fluorolube mull at 10 K ... 159
4B.4 Transitions from ^5D_0 to ^7F_6, ^7F_4, ^7F_3 and ^7F_1 terminal terms in the 488 nm excited emission spectrum of Eu[Au(CN)]_3·3H_2O ... 163
4B.5 Electronic transitions in the 488 nm excited room temperature emission spectrum of Tb[Au(CN)]_3·3H_2O. Terminal multiplet terms are identified ... 164
4B.6 (a) 10 K absorption spectrum; (b) excitation spectrum (monitoring ^5D_4 → ^7F_5 emission); and (c) temperature dependence of ^5D_4 → ^7F_6 emission (not to scale for clarity), from the bottom the four curves are 1.5, 15, 40, 50 K respectively for Tb[Au(CN)]_3·3H_2O ... 166
4B.7 Vibronic structure in the 10 K emission spectra of Tb[Au(CN)]_3·3H_2O ... 169
4B.8 Water stretching vibration structure based upon ^3D_4 → ^7F_J (J = 2,1,0) transitions 170
4C.1 Ortep plot of compound 1 (OCH₃w) in the crystal with thermal ellipsoids at the 50% probability level………………………………………………………………………………175

4C.2 Ortep plot of compound 2 (Hw) in the crystal with thermal ellipsoids at the 50% probability level. All hydrogen atoms have been omitted for clarity………………..177

4C.3 Crystal structure of compound 2' (H). (a) A portion of the linear polymeric structure. Symmetry code: A 1-x, 1-y, 1-z; B 1-x, 1-y, 2-z. (b) Packing of polymeric chains viewed parallel to the c axis…………………………………………………………179

4C.4 The coordination geometry of Pr³⁺ metal centre in 3 (Clw) and 4 (NO₂)…………….…180

4C.5 Structure of dimeric compound 3 (Clw) in the crystal (a) Ortep plot with thermal ellipsoids at the 50% probability level, (b) showing the packing modes along a axis….181

4C.6 Crystal structure of 4 (NO₂). (a) Ortep plot with thermal ellipsoids at the 50% probability level. (b) A portion of the polymeric structure parallel to the b axis.

Symmetry transformation: A 1-x, -½+y, ½-z; B 1-x, ½+y, ½-z..182

4C.7 Crystal structure of 5 (OHw). (a) Dimeric structure, showing the DMF solvent molecules are hydrogen bonded to the dimer or existing separately.

Symmetry transformation: A 1-x, 1-y, 1-z. (b) Two-dimensional layer formed by hydrogen bonded one-dimensional chains along a and b axis and

(c) packing of hydrogen bonded three-dimensional network……………………………185

4C.8 IR spectra of complex 1-7 in the range of 400 to 2000 cm⁻¹…………………………186

4C.9 Raman spectra of compounds 1 – 4 in the range of 1275 to 1700 cm⁻¹. ………………188

4C.10 UV absorption spectra of (a) ligands XC₆H₄COOH, with the concentration of 5*10⁻⁵ M; (b) complexes, with the concentration of 1*10⁻⁴ M at room temperature in hexane solution…………………………………………………………192

4C.11 Emission spectra in solid state of complex 1-7 at 10 K. The unit of the abscissa is 10³cm⁻¹. (a) Transition of ^3P₀→^3H₄ between 19800 and 20800 cm⁻¹.

(b) Transition of ^3P₀→^3H₆ between 15800 and 16650 cm⁻¹.

(c) Transition of ^3P₀→^3F₂ between 15300 and 15700 cm⁻¹……………………………………193

4C.12 The transitions from ^3P₀ of complex 2 (Hw) at 10 K……………………………………194

4C.13 The absorption spectra of complex 2 (Hw) between 20200 and 21400 cm⁻¹

at nominal 10 K in nujol mull (a) and KBr disc (b)………………………………………………196

4C.14 The absorption spectra of complex 2 (Hw) between 20200 and 21400 cm⁻¹
4C.15 Electronic absorption spectra of the transitions from ground state $^3\text{H}_4$ to $^3\text{P}_0$ at 10 K…197

4C.16 Electronic absorption spectra of the transitions from ground state $^3\text{H}_4$ to $^1\text{D}_2$ at 10 K…198

4C.17 The comparison of the absorption spectra of $\mathbf{2}$ (Hw) and $\mathbf{2}'$ (H) in optical visible range at 10K………………………………………………………………………………200

4C.18 The plot of σ_p values against the energy of $^3\text{P}_0$……202