METHOD DEVELOPMENT AND MONITORING OF PERFLUORINATED COMPOUNDS IN COASTAL WATERS, BIOTA, AND HUMAN BREAST MILK SAMPLES FROM ASIAN COUNTRIES

SO MAN KA

DOCTOR OF PHILOSOPHY

CITY UNIVERSITY OF HONG KONG

AUGUST 2006
Method Development and Monitoring of Perfluorinated Compounds in Coastal Waters, Biota, and Human Breast Milk Samples from Asian Countries

Submit to
Department of Biology and Chemistry

For the degree of Doctor of Philosophy

by

So Man Ka

August 2006
Abstract

The increased awareness of global distribution of perfluorinated compounds (PFCs) in the environment has initiated a cooperative study between Japan and Hong Kong. This joint cooperation targeted the development of new methods for the analysis of PFCs in various matrices at low concentrations, and the subsequent monitoring of PFCs in different environmental matrices and human population in Asian countries.

An accurate and reliable analysis of PFCs has been impeded by the problems of procedural blanks and the lack of well-developed analytical methods. In the present study, the concentrations of PFCs in various laboratory equipment and parts of the analytical instruments were measured, and subsequent modifications were made to reduce the blank levels as necessary. New methods were also developed for the analysis of PFCs in water samples, mussel and oyster tissues, and human breast milk samples. Coastal and open ocean water samples were extracted by solid phase extraction (SPE) employing hydrophilic-lipophilic balance (HLB) cartridge. This method allows the measurement of perfluorooctane sulfonamide (PFOSA), perfluorooctansulfonate (PFOS), perfluorohexanesulfonate (PFHS) and perfluorobutanesulfonate (PFBS), 1H, 1H, 2H, 2H-perfluorooctanesulfonic acid (THPFOS), perfluorononanoic acid (PFNA) and perfluorooctanoic acid (PFOA) at pg/L levels. A combination of alkaline digestion and SPE was developed for the extraction of PFCs from soft tissues of mussels and oysters. This method is rapid and robust with acceptable recoveries for most of the target analytes. However, trace levels of certain PFCs in the procedural blanks restricted the applicability of this method to highly-contaminated samples. New extraction method by SPE employing weak-anion exchange (WAX) cartridge was developed for the analysis of human
breast milk. The achievement of low limits of quantifications (LOQs) for various PFCs makes this new method suitable for the analysis of milk samples with comparatively low PFC concentrations.

The newly developed methods were applied to the analysis of water, mussel, oyster, and human breast milk samples collected from Asian countries. Seawater samples were collected from Hong Kong (6 locations for both summer and winter seasons), China (8 and 6 locations for summer and winter locations, respectively), and Korea (11 locations). PFOS and PFOA were the two dominant chemicals found in all water samples. Ranges of concentrations of PFOS in coastal seawaters of Hong Kong, Pearl River Delta (PRD), including South China Sea, and Korea were 0.09 – 3.1, 0.02 – 12 and 0.04 – 730 pg/mL, respectively while those of PFOA were 0.73 – 5.5, 0.24 – 16 and 0.24 – 320 pg/mL, respectively. Seasonal variations of PFC concentrations were observed in surface seawaters in PRD and South China Sea indicating the influence of the Pearl River discharge on the extent of PFC pollution in China and, to a lesser extent, Hong Kong. In this study, maximum PFOS and PFOA concentrations were detected in a location within Kyeonngi Bay in Korea, which is heavily influenced by wastewater discharged from a number of local industries. The high PFHS concentration (52 pg/mL) in this location indicated a local source of this chemical around Kyeonngi Bay. Apart from this specific location, the PFC concentrations from other locations in Korea were comparable to those in Hong Kong and China.

This pioneer study indicated the potential discharges of PFCs in the environment of Hong Kong and China. As part of the continual monitoring survey, biota and human breast milk samples were collected in order to elucidate the distribution of PFCs in another environmental matrix as well as the human population. Mussel samples were
collected from six locations along the east coast of China and oyster samples were collected from Tokyo Bay in Japan. Concentrations of individual PFCs in mussels and oysters from south China and Japan ranged from 113.6 to 586.0 pg/g, wet weight (ww) for PFOS, 63.1 to 511.6 pg/g, ww for PFHS, <12.0 to 30.1 pg/g, ww for PFBS and 37.8 to 2,957.0 pg/g, ww for PFOSA. The analysis of perfluoroalkyl carboxylates was compromised by the presence of certain carboxylates in the procedural blank. The maximum PFOA concentrations (660.5 pg/g, ww) were detected in oyster samples from Tokyo Bay, while that of perfluoroheptanoic acid (PFHpA) (507.1 pg/g, ww) and perfluorohexanoic acid (PFHxA) (346.9 pg/g, ww) were detected in mussel samples from Bei Hai in China. Different composition profiles between mussel (from China) and oyster samples (from Japan) indicated clear differences in the pollution sources between China and Japan.

The extent of human exposure to PFCs in China was evaluated by the measurement of PFC concentrations in human breast milk samples collected from 19 primiparas mothers from Zhoushan, China. PFOS and PFOA were the two dominant PFCs in the breast milk samples. The maximum concentrations of PFOS and PFOA were 360 ng/L and 210 ng/L, respectively, which were much less than average concentrations detected in human blood or serum samples. No statistically significant correlation was found between concentrations of either PFOS or PFOA and maternal age, weight or infant weight. Although perfluoroundecanoic acid (PFUnDA), perfluorodecanoic acid (PFDA) and PFNA were found to have a significant positive correlation with fish consumption data, a definitive conclusion could not be drawn due to the small sample size in the present study. Future studies will be necessary to elucidate the possible exposure pathways of PFCs to human population.
The occurrence of various PFCs in water and biological samples from Hong Kong, China, Korea, and Japan indicated the contamination of PFCs in these areas. Different composition profiles in the samples suggested the existence of independent pollution sources of PFCs in each country. The comparatively smaller PFC concentrations in water and mussel samples from Hong Kong and China indicated that these regions are probably not heavily polluted by PFCs. The concentrations of PFOS in all the water samples from Hong Kong and China were less than those that would be expected to cause adverse effects to aquatic organisms and their predators. PFOS concentration in water samples from Kyeonngi Bay, Korea, nevertheless, was higher than the guideline value that is protective of avian wildlife. The PFOS concentration in this location is likely to pose adverse effects on aquatic animals and avian wildlife, and a more refined risk assessment is necessary in this area. The detection of PFCs in human breast milk suggested the possibility that various PFCs could accumulate in breast milk, and the subsequent maternal transfer to infants through breast-feeding. One out of 19 milk samples had a PFOS concentration greater than the safety guideline value. However, it should be noted that uncertainty factors were applied in the risk assessment process, and thus the actual risk may have been overestimated. Overall, there is generally a low risk for infants from PFCs through breast-feeding. It is recommended that future studies should be carried out to elucidate the possible exposure pathways of PFCs to human population.
Lists of publications

Papers published in conference proceedings

Falandysz, J., Jecek, L., Rostkowski, P., Gulkowska, A., Taniyasu, S., So, M.K., Yamashita, N. Concentration of perfluorinated carboxylic acids in river waters supply to the city of Gdansk, Poland. Proceedings of International Symposium on...

Table of contents

<table>
<thead>
<tr>
<th>Content</th>
<th>Page no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>i</td>
</tr>
<tr>
<td>List of publications</td>
<td>v</td>
</tr>
<tr>
<td>Papers published in conference proceedings</td>
<td>vii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>ix</td>
</tr>
<tr>
<td>Table of contents</td>
<td>x</td>
</tr>
<tr>
<td>List of figures</td>
<td>xv</td>
</tr>
<tr>
<td>List of tables</td>
<td>xviii</td>
</tr>
</tbody>
</table>

Chapter 1 – Perfluoroalkyl substances and other related chemicals

1.1 Introduction | 1 |
1.2 Physiochemical properties of PFCs | 2 |
 1.2.1 Strength of carbon-fluorine bond | 10 |
 1.2.2 Surface active property | 12 |
 1.2.3 Phase-partitioning behavior | 13 |
1.3 Environmental fate of PFCs | 13 |
 1.3.1 Volatilization | 13 |
 1.3.2 Photolysis | 14 |
 1.3.3 Biodegradation | 15 |
1.4 Manufacturing processes of PFCs | 15 |
 1.4.1 Electrochemical fluorination | 16 |
 1.4.2 Telomerization | 17 |
1.5 Sources of perfluoroalkyl substances | 18 |
1.6 Occurrence of PFCs in the environment | 20 |
1.7 Toxicity of PFCs | 22 |

Chapter 2 – Overall objectives

2.1 Method development | 24 |
2.2 Monitoring survey | 24 |
Chapter 3 – General methodology

3.1 Chemicals and standards

3.2 Extraction of PFCs from water and biological samples

3.2.1 Water samples

3.2.1.1 SPE-HLB extraction

3.2.1.2 SPE-WAX extraction

3.2.2 Biological samples

3.3 Instrumental analysis and data quantification

Chapter 4 – Trace level analysis of per- and poly-fluorinated compounds in the environment

4.1 Introduction

4.2 Materials and methods

4.2.1 Experimental appliances for blank level measurement

4.2.2 Extraction procedures

4.2.3 Instrumental analysis and quantification

4.3 Results and discussion

4.3.1 Procedural blank

4.3.2 Instrumental blank

Chapter 5 – Environmental exposure monitoring – Monitoring of PFCs in Asian countries

5.1 Review of global levels and distribution of PFCs in biota and aquatic environment

5.1.1 Environmental distribution of PFCs in biota

5.1.2 Environmental distribution of PFCs in aquatic environment

5.2 Perfluorinated compounds in coastal waters of Hong Kong, south China and Korea

5.2.1 Introduction

5.2.1.1 Environment of Pearl River Estuary, China

5.2.1.2 Marine environment of Hong Kong

5.2.2 Materials and methods

5.2.2.1 Chemicals and standards
5.2.2.2 Water sample collection .. 85
5.2.2.3 Sample extraction .. 86
5.2.2.4 Instrumental analysis and data quantification 89
5.2.2.5 Statistical analysis ... 89

5.2.3 Results and discussion
5.2.3.1 Accuracy and precision .. 90
5.2.3.2 Concentrations of PFOS and other PFCs in coastal waters of China and Hong Kong .. 93
5.2.3.3 Seasonal variations in the concentrations of PFOS and PFOA in coastal waters in Hong Kong and China 99
5.2.3.4 Pearl River Delta as a source of PFCs 100
5.2.3.5 Comparison of PFC concentrations among Hong Kong, China and south Korea ... 101
5.2.3.6 Comparison of PFC concentrations in Hong Kong and China to those in other areas .. 104
5.2.3.7 Hazard assessment of PFOS exposure to aquatic species ... 104

5.2.4 Conclusion ... 110

5.3 Alkaline digestion and solid phase extraction method for perfluorinated compounds in mussels and oysters from south China and Japan
5.3.1 Introduction ... 111

5.3.2 Materials and methods
5.3.2.1 Chemicals and standards ... 117
5.3.2.2 Sample collection ... 117
5.3.2.3 Sample preparation ... 118
5.3.2.4 Sample extraction by solid phase extraction cartridge 119
5.3.2.5 Instrumental analysis and data quantification 120

5.3.3 Results and discussion
5.3.3.1 Optimization of alkaline digestion 121
5.3.3.2 Quality assurance and control 123
5.3.3.2.1 Blank analysis .. 123
5.3.3.2.2 Spike recovery analysis .. 125
5.3.3.2.2.1 Alkaline digestion ... 125
5.3.3.2.2.2 Matrix effect ... 128
5.3.3.3 Linearity
5.3.3.4 Modification and finalization of solid phase extraction method
5.3.3.5 Application of the technique to mussel and oyster samples from China and Japan
5.3.4 Conclusion

5.4 Analysis of fluorotelomer alcohols, fluorotelomer acids, and short- and long-chain perfluorinated acids in water and biota
5.4.1 Introduction
5.4.2 Materials and methods
 5.4.2.1 Materials and chemicals
 5.4.2.2 Extraction and purification
 5.4.2.3 Instrumental analysis and data quantification
5.4.3 Results and discussion
 5.4.3.1 SPE method development
 5.4.3.2 Procedural recoveries
 5.4.3.3 KOH digestion – WAX extraction for biological samples
 5.4.3.4 Procedural blanks and detection limits
 5.4.3.5 Analysis of water and biota samples
5.4.4 Conclusion

Chapter 6 – Human exposure monitoring – Health risks in infants associated with exposure to perfluorinated compounds in human breast milk from Zhoushan, China

6.1 Human exposure to PFCs
 6.1.1 Occupational exposure
 6.1.2 Non-occupational exposure
 6.1.3 Factors affecting PFC concentrations in human
 6.1.4 Human exposure pathways to PFCs
6.2 Objectives
6.3 Materials and methods
 6.3.1 Sample collection
6.3.2 Chemicals and standards 173
6.3.3 Sample preparation 173
6.3.4 Sample extraction 174
6.3.5 Instrumental analysis and quantification 174
6.3.6 Daily intake estimation and risk assessment 174
6.3.7 Statistical analysis 175

6.4 Results and discussion
 6.4.1 Quality assurance and control 176
 6.4.2 PFC concentration in human breast milk 178
 6.4.3 Composition profile of various PFCs 182
 6.4.4 Correlations among PFCs 184
 6.4.5 Correlations between PFCs and characteristics of donors 186
 6.4.6 Correlations between PFCs and diet consumption pattern 186
 6.4.7 Hazard assessment of PFOS and PFOA exposure to infant 189

6.5 Conclusion 190

Chapter 7 – Concluding remarks 192

Chapter 8 – References 197
Appendix I 215
Appendix II 216
List of figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Number of publications on PFCs from 1980 to 2002.</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Potential sources of perfluorocarboxylic acids (PFCAs):</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>APFO: ammonium perfluorooctanoate; APFN: ammonium perfluorononanoate; AFFF:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>aqueous fire-fighting foam; POSF: perfluorooctylsulfonyl fluoride.</td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>Stylized schematic of postulated steps leading to the production of</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>telomer-based polymers using 8:2 FTOH as an example.</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Typical HPLC-MS/MS chromatogram of standard mixtures containing PFOcDA,</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>PFHxDA, PFTeDA, PFUnDA, PFDoDA, PFDA, PFOSA, N-EtFOSA, 10:1 FTOH and 7:1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FTOH.</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>Typical HPLC-MS/MS chromatogram of standard mixtures containing PFOS, PFHS,</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>PFBS, THPFOS, PFNA, PFOA, PFHpA, PFHxA, PFPeA, PFBA, 13C-PFOA, 8:2 FTCA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and 8:2 FTUCA.</td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>Calibration curve for PFOS (upper) and PFOA (lower) quantifications.</td>
<td>47</td>
</tr>
<tr>
<td>4.1</td>
<td>Chromatograms showing PFOS, PFHS, PFBS, PFNA, PFOA and PFOSA in various</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>vial septa and standards. (a) Snap cap with PP polyethylene septum, (b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>crimp cap with Teflon/silicon/Teflon septum, (c) Screw cap with Teflon/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>silicon/Teflon septum, (d) Screw cap with Teflon/rubber/septum, (e) Crimp</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cap with Viton septum, and (f) 10µL of standard (10 ng/L). The number on</td>
<td></td>
</tr>
<tr>
<td></td>
<td>each chromatogram represents the intensity relative to figure a.</td>
<td>50</td>
</tr>
<tr>
<td>4.2</td>
<td>PFOS, PFOA, PFHS and PFBS in HPLC-MS/MS instrumental blanks, before and</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>after modifications.</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>Chromatograms of PFOA obtained by successive injection of pesticide-grade</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>methanol.</td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>Instrumental blanks from pump seals.</td>
<td>60</td>
</tr>
</tbody>
</table>
Figure 4.5: Modification of HPLC-MS/MS for trace level analysis of PFCs.

Figure 5.1: Proposed biodegradation pathway and products of 8:2 FTOH based on laboratory experiments.

Figure 5.2: Proposed biotransformation pathways of N-EtFOSE.

Figure 5.3: Possible biotransformation pathways of N-EtFOSA to PFOS.

Figure 5.4: The map of Pearl River Delta showing the eight outlet through which the Pearl River enters the South China Sea (HM: Hu-Men, JM: Jiao-Men, HQM: Hong-Qi-Men, HNM: Heng-Men, MDM: Mo-Dao-Men, JTM: Ji-Ti-Men, HTM: Hu-Tiao-Men, YM: Ya-Men).

Figure 5.5: Seasonal variation of current flow in Pearl River Estuary and South China Sea.

Figure 5.6: A map of Hong Kong showing the three hydrographic zones.

Figure 5.7: Sampling locations in Hong Kong waters, Pearl River Delta and South China Sea.

Figure 5.8: A map of South Korea showing the 11 sampling locations along the west and south coast.

Figure 5.9: Concentrations of PFCs in coastal waters collected from Hong Kong in the summer and winter (PO: PFOSA; PS: PFOS; PN: PFNA; PA: PFOA; PH: PFHS; PB: PFBS).

Figure 5.10: Concentrations of PFCs in coastal waters collected from the Pearl River Delta and South China Sea in the summer (PO: PFOSA; PS: PFOS; PN: PFNA; PA: PFOA; PH: PFHS; PB: PFBS).

Figure 5.11: Concentrations of PFCs in coastal waters collected from the Pearl River Delta and South China Sea in the winter (PO: PFOSA; PS: PFOS; PN: PFNA; PA: PFOA; PH: PFHS; PB: PFBS).

Figure 5.12: The sampling locations along the East Coast of China and in Japan: Qinzhou (QZ), Fang Cheng (FC), Bei Hai (BH), Xiamen (XI), Fuzhou (FZ), SengSi Dao (SS), Tokyo Bay (TB).
Figure 5.13: Composition of perfluorinated sulfonic acid and sulfonamide in mussel and oyster samples from different sampling locations.

Figure 5.14: The comparison of total concentration of perfluorinated carboxylic and sulfonic compounds in mussel and oyster samples from individual sampling location.

Figure 5.15: Recoveries of poly- and perfluorinated acids, telomer alcohols, and telomer acids through Oasis® HLB and Oasis® WAX cartridges.

Figure 5.16: Effect of pH of acetate buffer on the recoveries of poly- and perfluorinated acids, telomer alcohols, and telomer acids through Oasis® WAX cartridge.

Figure 5.17: Recoveries of poly- and perfluorinated acids, telomer alcohols, and telomer acids through WAX cartridges as a factor of the concentration of NH₄OH in methanol.

Figure 5.18: Recoveries of poly- and perfluorinated acids, telomer alcohols, and telomer acids through WAX cartridges as a factor of elution volume of NH₄OH in methanol.

Figure 5.19: Recoveries of poly- and perfluorinated acids, telomer alcohols, and telomer acids spiked into water and extracted, using HLB and WAX cartridges.

Figure 5.20: Recoveries of poly- and perfluorinated acids, telomer alcohols, and telomer acids, analyzed by KOH digestion-WAX extraction and by the ion-pair extraction method.

Figure 6.1: (a) Composition profile of various PFCs (PFOS, PFHS, PFUnDA, PFDA, PFNA and PFOA) in human breast milk (data from the present study) from Zhoushan population; (b) Comparison of composition profile of various PFCs (PFOS, PFHS, PFUnDA, PFDA and PFNA) between human breast milk (data from the present study) and blood samples (data from Yeung et al., 2006) from Zhoushan population.
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>List of perfluorinated-related chemicals with various carbon chain lengths and functional groups.</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>The physiochemical properties of the potassium salt of PFOS.</td>
<td>10</td>
</tr>
<tr>
<td>1.3</td>
<td>The physiochemical properties of the free acid of PFOA.</td>
<td>10</td>
</tr>
<tr>
<td>1.4</td>
<td>Ionization energies, electron affinities and electronegativities of some selected elements</td>
<td>11</td>
</tr>
<tr>
<td>1.5</td>
<td>Bond dissociation energies of some selected C-X compounds.</td>
<td>12</td>
</tr>
<tr>
<td>1.6</td>
<td>Physiochemical properties of PFOS, PFOA, N-EtFOSE, 6:2 FTOH and 8:2 FTOH.</td>
<td>14</td>
</tr>
<tr>
<td>3.1</td>
<td>Multiple-Reaction-Monitoring analysis of PFCs indicating precursor and product negative ion masses and MSMS conditions.</td>
<td>30</td>
</tr>
<tr>
<td>4.1</td>
<td>List of experimental appliances and parts of HPLC-MS/MS for the measurement of levels of blanks for PFCs.</td>
<td>44</td>
</tr>
<tr>
<td>4.2</td>
<td>Background contamination of PFCs (ng/L of methanol) in various experimental appliances.</td>
<td>62</td>
</tr>
<tr>
<td>5.1</td>
<td>Summary of concentrations of PFHS, PFOS, PFOSA and PFOA in various tissues (blood, plasma, egg yolk and liver) of birds from different sampling locations.</td>
<td>68</td>
</tr>
<tr>
<td>5.2</td>
<td>Summary of concentrations of PFHS, PFOS, PFOSA and PFOA in various tissues of aquatic animals from different sampling locations.</td>
<td>76</td>
</tr>
<tr>
<td>5.3</td>
<td>Summary of concentrations of various PFCs in aquatic environment.</td>
<td>92</td>
</tr>
<tr>
<td>5.4</td>
<td>Recoveries (%) and level of blank (pg/mL) for individual PFC.</td>
<td>102</td>
</tr>
<tr>
<td>5.5</td>
<td>Concentrations (Mean ± Standard Deviation) of PFCs in waters in south Korea</td>
<td>103</td>
</tr>
<tr>
<td>5.6</td>
<td>PFOS to PFOA ratios in coastal waters in Hong Kong, China, and South Korea</td>
<td>107</td>
</tr>
<tr>
<td>5.7</td>
<td>Preliminary estimation of risk due to exposure to PFOS in coastal waters in Hong Kong, Pearl River Delta, South China</td>
<td></td>
</tr>
</tbody>
</table>
Sea, and Korea using an HQ analysis.

Table 5.8: Comparison of recoveries of various PFCs spiked into different biological matrix species.

Table 5.9: The effect of concentration of KOH/methanol on the recoveries of PFCs.

Table 5.10: Background level of perfluorinated compounds (pg) in the whole procedures.

Table 5.11: Recoveries (%) for individual PFCs with and without alkaline digestion. The values are mean ± standard deviations.

Table 5.12: Recoveries (%) for individual PFCs with and without oyster samples. The values are mean ± standard deviations.

Table 5.13: Linearity test between amounts of tissue weights and concentration of PFCs

Table 5.14: Recoveries (%) and level of blank (pg) for individual PFCs.

Table 5.15: Concentrations of PFCs (pg/g, wet weight and dry weight) in mussel and oyster samples collected from East Chinese Coast and Tokyo Bay in Japan. The values are mean ± standard deviations.

Table 5.16: Levels of poly- and perfluorinated acids in procedural blanks, and instrumental detection limits.

Table 5.17: Comparison of concentration (ng/L) of poly- and perfluorinated acids in water samples from Tokyo Bay and from Tomakomai Bay, analyzed using Oasis® HLB and Oasis® WAX cartridges.

Table 5.18: Concentration of poly- and perfluorinated acids in human blood (ng/mL) and beaver liver (ng/g, wet weight) samples from Poland analyzed using ion-pair extraction and KOH digestion-WAX methods.

Table 6.1: Review of PFCs in blood, serum and plasma samples in human population.

Table 6.2: Recoveries (%), Blank (ng/L) and LOQs (ng/L) for individual PFCs.

Table 6.3: Concentrations of individual PFC in human breast milk
samples.

Table 6.4: Correlation coefficient of Pearson correlation analysis of perfluorosulfonates and perfluorocarboxylates.

Table 6.5: Correlation between PFOS, PFOA, PFNA, PFDA and PFUnDA, and individual food items.

Table 6.6: Daily exposure of infant to PFOS and PFOA through consumption of mother’s breast milk and the corresponding hazard indices.