CITY UNIVERSITY OF HONG KONG 香港城市大學

Studies of the Enzymes Involved in Unsaturated Fatty Acid Oxidation

參與不飽和脂肪酸氧化的酶的研究

Submitted to Department of Biology and Chemistry 生物及化學系 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy 哲學博士學位

by

Yu Wenhua 俞文華

November 2005

二零零五年十一月

Studies of the Enzymes involved in Unsaturated Fatty Acid Oxidation

Abstract

Polyunsaturated fatty acids (PUFA) are important component of mammalian diets, and its beneficial effects on human development, cardiovascular health and diabetes have been well documented. To further understand the mechanism of the unsaturated fatty acids metabolism may provide useful information for learning the relationship between PUFA and diseases, and might give further information for the treatment. There are three auxiliary enzymes required for unsaturated fatty acids oxidation in mammals, including Δ^3 - Δ^2 -enoyl-CoA isomerase (ECI), $\Delta^{3,5}$ - $\Delta^{2,4}$ -dienoyl-CoA isomerase (DECI), and 2,4-dienoyl-CoA reductase (DECR). Since ECI and DECI belong to the same mechanistically diverse family, crotonase-like family, they were grouped together for the structure and function study, with another member of this family, 2-enoyl-CoA hydratase (ECH). Human mitochondrial DECR (mDECR) was studied separately.

A highly conserved salt bridge between the N-terminal core domain and the C-terminal domain exists in the members of the crotonase-like family. The mutagenesis study of this salt bridge was carried out in ECI, ECH and DECI. It is interesting that a single mutation of the salt bridge residue would introduce ECH activity in ECI which is absent in the wild type ECI and enhance the residual ECH activity of DECI. It is the first report in crotonaselike family that a single substitution resulted in occurring of promiscuous activity. Further structure studies showed the assembly modes of the three enzymes are different, especially at the subunit-subunit interfaces, which is closely related with some active site residues. The salt bridge residues, although far away from the active site, plays an important role in maintaining the interface contacts of ECI, and indirectly related with the active site of the adjacent subunit. ECI mutant K242 (ECIm_K242) mutants showed much

iii

although far away from the active site, plays an important role in maintaining the interface contacts of ECI, and indirectly related with the active site of the adjacent subunit. ECI mutant K242 (ECIm K242) mutants showed much higher affinity for the isomerization product, 2-hexenoyl-CoA, than for its original substrate, 3-hexenoyl-CoA.Therefore, 2-enoyl-CoA could not be released from the active site very quickly. Once the catalytic residue deprotonates the water molecule that is positioned just right for nuleophilic attack at the C α of the product, the hydration reaction might occur before its release into the solution. The study of DECI also supports that the interface contact plays an important role in maintaining the substrate binding pocket and/or active site conformation. Quaternary structure of protein has not been an hot field for the protein function study, however, reports showed that alterations in subunit interactions will influence protein structure or dynamics and, thereby, affect catalysis. Therefore, the inter-subunit interactions might also be a quick regulation position for the in vivo metabolic control, thereby might also be a potential target position for drug and other small molecules.

Another part of the present study was the mutagenesis study of human mitochondrial dienoyl-CoA reductase. Human mDECR belongs to the Shortchain Dehydrogenase/Reductase (SDR) superfamily. Six active site residues, which might be directly involved in the catalysis based on comparison with the structure of other members of SDR superfamily, were chosen for mutagenesis study. The results showed DECR, though similar, is distinct from other enoyl-thiolester reductases. Five highly conserved acidic residues were also mutated to alanine to study their possible roles in human mDECR. The mutation of different position affected either the binding of the cofactor and the substrate or the catalytic efficiency of the enzyme. It might suggest that the interface contacts between subunit A and B play an important role for the catalysis, while the interface contacts of other side, between subunit A and C, might be involved in the binding for the substrate and the cofactor.

Several substrate analogs of 2,4-dienoyl-CoA reductase were synthesized as mechanistic probes for the purpose of understanding enzymatic reactions. The result showed that mDECR not only catalyze the reduction of substrates with chain lengths from 6-14 carbons with different double bond configurations, but also catalyze the conversion of the substrate analogs with the substitutions at C2 and C5 or with introduction of one more conjugated double bond between C6 and C7, however, with decreased catalytic efficiency. The effects of different substitutions supported a stepwise mechanism containing a dienolate intermediate. Our study also showed that 3-furan-2-yl-acrylyl-CoA is a competitive inhibitor of human mDECR.

iv

LIST OF ABBREVIATIONS

AA	Arachidonic Acid
ACS	Acyl-CoA Synthetase
ALA	Alpha-Linolei Acid
CD	Circular Dichroism
CHD	Coronary Heart Diease
DBP	D-Bifunctional Protein, or Peroxisomal Multifunctional 2-
	Enoyl-CoA Hydratase/(3 <i>R</i>)-Hydroxyacyl-CoA Dehydrogenase
	also called MEF2
DECI	$\Delta^{3,5}$ - $\Delta^{2,4}$ -Dienoyl-CoA Isomerase
DECR	NADPH-Dependent 2,4-Dienoyl-CoA Reductase
ECH	2-Enoyl-CoA Hydratase
ECI	Δ^3 - Δ^2 -Enoyl-CoA Isomerase
ER	Endoplasmic Reticulum
FA	Fatty Acid
FCHL	Feruloyl-CoA Hydratase-lyase
FAD	Flavin Adenine Dinucleotide
FADH ₂	Flavin Adenine Dinucleotide (reduced)
mFABP	membrane-associated Fatty Acid Binding Protein
cFABP	cytoplasmic Fatty Acid Binding Protein
H1/I	Hydratase1/Isomerase
HPLC	High Performance Liquid Chromatography
IC ₅₀	lethal concentration to kill 50% of a population

K _M	Michaelis-Menten Constant
LA	Linoleic Acid
LCFA	Long Chain Fatty Acid
LBP	L-Bifunctional Protein, or Peroxisomal Multifunctional Δ^3 - Δ^2 -
	Enoyl-CoA Isomerase/2-Enoyl-CoA Hydratase1/(3S)-
Hydroxyacyl-CoA Dehydrogenase, also called MEF1	
MFE	Multi Functional Enzyme
MTF	Mitochondrial Trifunctional Enzyme

- NAD⁺ Nicotinamide Adenine Dinucleotide (oxidized)
- NADH Nicotinamide Adenine Dinucleotide (reduced)
- NADPH Nicotinamide Adenine Dinucleotide Phosphate (reduced)
- NMR Nuclear magnetic resonance
- PUFA Poly Unsaturated Fatty Acid
- SCOP Structure Classification Of Protein
- SCPx Sterol Carrier Protein X
- SDR Short-chain Dehydrogenase/Reductase
- SDS-PAGE SDS-Polyacrylamide Gel Electrophoresis
- V_{max} Maximum velocity the enzyme can attain
- VLCFA Very Long Chain Fatty Acid

LIST OF FIGURES AND TABLES

Figure 1.1	Schematic structures of the fatty acid molecules	3
Figure 1.2	Hydrolysis of triacylglycerol by lipase	4
Figure 1.3	Fatty acids are activated by reaction with coenzyme A (CoA) and ATP to yield fatty acyl-CoA	10
Figure 1.4	Omega-oxidation pathway	13
Figure 1.5	Transport of long chain fatty acids from cytoplam to the inner mitochondrial space for oxidation	16
Figure 1.6	Model of the functional and physical organization of the β -oxidation enzymes in mitochondria	19
Figure 1.7	β -Oxidation of linoleoyl-CoA (fatty acid with even numbered double bond)	22
Figure 1.8	β -Oxidation of oleoyl-CoA (fatty acid with odd numbered double bond) in rat mitochondria	25
Figure 1.9	Enzymology of the peroxisomal fatty acid β -oxidation system	30
Figure 1.10	Reactions catalyzed by the auxiliary enzymes of unsaturated fatty acid β -oxidation	34
Figure 1.11	The amino acid sequence of the truncated hmDECR with the assignment of the secondary structures	39
Figure 1.12	Ribbon diagram of subunit A	39
Figure 1.13	The homotetramer with individual subunits colored separately, substrate and cofactor shown as stick models	40
Figure 1.14	The mechanism of mDECR catalyzed reaction	41
Figure 1.15	The sequences of peroxisomal and mitochondrial enoyl-CoA isomerases	52
Figure 1.16	ECH catalyzes the reversible <i>syn</i> -hydration of <i>trans</i> -2- enoyl-CoA thioesters to the corresponding (<i>S</i>)-3- hydroxyacyl-CoA thioesters	58

Figure 1.17	The fold of the rat 2-enoyl-CoA hydratase-1 (pdb- entry code 1DUB) monomer	60
Figure 1.18	Stereo view of the hmEci trimer	61
Figure 1.19	(A) Stereoview of the active site of ECH with DAC- CoA (4-(N,N-dimethylamino) cinnamoyl-CoA) bound (B) Schematic of hydrogen bonding which displays the placement of hydrogens and free lone pairs of the catalytic water	63
Figure 1.20	Stereo views of the liganded subunit of human mitochondrial ECI	66
Figure 1.21	Contact distances in the active-site pocket of rat DECI	69
Figure 1.22	ECH mechanism with Glu164 initially protonated	71
Figure 1.23	ECH mechanisms with both carboxylates deprotonated	72
Figure 1.24	Proposed reaction mechanism for mECI, with Glu165 acting as both the general base and conjugate acid	73
Figure 1.25	The proposed mechanism for DECI catalyzed reaction	74
Figure 3.1	pH dependent curve of catalytic activity of rat liver mitochondrial ECI WT for <i>trans</i> -3-hexenoyl-CoA	90
Figure 3.2	Catalytic activity of rat liver mitochondrial ECI WT for 3-enoyl-CoA isomers with different chain length	93
Figure 3.3	pH dependent curve of catalytic activity of bovine liver ECH WT for <i>trans</i> -2-hexenoyl-CoA	94
Figure 3.4	Catalytic activity (k_{cat} , k_{cat}/K_M) of bovine liver ECH WT for crotonyl-CoA, 2-hexenoyl-CoA and 2-octenoyl-CoA	96
Figure 3.5	The structure diagram of 2-trans/cis-octenoyl-CoA	97
Figure 3.6	pH dependent curve of catalytic activity of rat liver DECI WT for 3- <i>trans</i> , 5- <i>cis</i> -octadienoyl-CoA	99
Figure 3.7	Catalytic efficiency and specificity $(k_{cat}, k_{cat}/K_M)$ of human DECR WT for 2- <i>trans</i> , 4- <i>trans</i> -dienoyl-CoAs with different chain length	101

xii

Figure 3.8	k_{cat}/K_M of Human DECR WT for substrates (C8 and C14 series) with different conformations	102
Figure 3.9	The structure diagram of 2- <i>trans/cis</i> , 4- <i>trans</i> -octadienoyl-CoA	102
Figure 4.1	Sequence alignment of the members of the crotonase- like family	109
Figure 4.2	H-bonds around Asp149 of rat ECI (PDB ID: 1XX4)	111
Figure 4.3	H-bonds around Lys242 of rat ECI (PDB ID: 1XX4)	112
Figure 4.4	3D structures of ECH (PDB ID: 2DUB), ECI (PDB ID: 1XX4) and DECI (PDB ID: 1DCI) with the conserved salt bridge residues	113
Figure 4.5	HPLC analysis of products formed from 3-hexenoyl- CoA by ECI, or/and ECH, or ECIm_K242C	116
Figure 4.6	HPLC analysis of the conversion of 2-hexenoyl-CoA by ECH, ECI, or ECIm_K242C	117
Figure 4.7	The reactions catalyzed by $\Delta^3 - \Delta^2$ -enoyl-CoA isomerase mutants and hydroxyacyl-CoA dehydrogenase	118
Figure 4.8	HPLC analysis of metabolites formed through incubation of ECH salt bridge mutants with ECI substrate, 3-hexenoyl-CoA	119
Figure 4.9	HPLC analysis of metabolites formed through incubation of DECI salt bridge mutants with 3,5-octadienoyl-CoA	121
Figure 4.10	HPLC analysis of metabolites formed through incubation of DECI salt bridge mutants with ECH substrate, crotonyl-CoA	122
Figure 4.11	H-bonds around Asp182 and Lys275 of DECI (PDB ID: 1DCI)	122
Figure 4.12	HPLC analysis of metabolites formed by enzymatic conversions of 3-hexenoyl-CoA	127
Figure 4.13	HPLC analysis of metabolites formed by enzymatic conversions of 2-hexenoyl-CoA	127

xiii

Figure 4.14	The hydrogen bonding of Leu143 of rat ECI (PDB ID: 1XX4) and the secondary structure nearby	128
Figure 4.15	Time dependent inhibition of ECIm_K242C activities by 2-octynoyl-CoA	134
Figure 4.16	Human ECI trimer	139
Figure 4.17	Hydrogen bonds of the salt bridge residues of human ECI subunit B (PDB ID: 1SG4)	140
Figure 4.18	Hydrogen bonding of Arg209, Lys213, Arg217 of helix H8 of human ECI subunit B (PDB ID: 1SG4)	142
Figure 4.19	Hydrogen bonding of between helix H5 and helix 310 of human ECI subunit B (PDB ID: 1SG4)	144
Figure 4.20	Rat ECH trimer (PDB ID: 2DUB)	145
Figure 4.21	Structure alignment of one subunit of human ECI (PDB ID: 1SG4, in red) and rat ECH (PDB ID: 2DUB, in blue)	145
Figure 4.22	Hydrogen bonding of the salt bridge residues, Asp150 and Lys213 of rat ECH subunit B (PDB ID: 2DUB)	148
Figure 4.23	Rat DECI trimer (PDB ID: 1DCI)	149
Figure 4.24	Structure alignment of one subunit of rat DECI (PDB ID: 1DCI, in red) and rat ECH (PDB ID: 2DUB, in blue)	150
Figure 4.25	Hydrogen bonding of the salt bridge residues, Asp182 and Lys275 of rat DECI subunit A (PDB ID: 1DCI)	150
Figure 4.26	Alignment of rat ECI wild type (PDB ID: 1XX4) and the ECIm_K242 mutants	152
Figure 4.27	Structure alignment of helix H2A and H2B of rat DECI (PDB ID: 1DCI, in red) and rat ECH (PDB ID: 2DUB, in blue)	160
Figure 5.1	Ribbon diagram of subunit A	166
Figure 5.2	The sequences of 2,4-dienoyl-CoA reductase from various sources	170
Figure 5.3	The homotetramer with individual subunits colored separately, substrate and cofactor shown as stick	173

models

Figure 5.4	The catalytic center of human mDECR	176
Figure 5.5	The mechanism of mDECR catalyzed reaction	181
Figure 5.6	2-Fluoro-2,4-octadienoyl-CoA has a fluorine atom at C-2, which may prevent the formation of a dienolate anion	183
Table 1.1	The ClpP/crotonase superfamily members with known sequences and functions	45
Table 3.1	Kinetic parameter of rat mitochondrial ECI for the isomers of substrates with different chain length	92
Table 3.2	Kinetic parameters of bovine liver ECH for the substrates with different chain length	95
Table 3.3	Kinetic parameter of human DECR for the various of 2,4-dienoyl-CoA with different chain length	100
Table 4.1	Kinetic constants of recombinant wild-type and mutant rat liver ECI for trans-3-hexenoyl-CoA and trans-2-hexenoyl-CoA	125
Table 4.2	Kinetic constants of recombinant wild-type and mutant bovine liver ECH for crotonyl-CoA	130
Table 4.3	Kinetic constants of recombinant wild-type and mutant rat liver DECI for <i>trans-3-cis-5</i> -octadienoyl-CoA and <i>trans-2</i> -octenoyl-CoA	131
Table 4.4	Kinetic constants of recombinant wild-type and mutant rat liver ECI for <i>trans</i> -3-hexenoyl-CoA and <i>cis</i> -3-hexenoyl-CoA	136
Table 5.1	Comparison of apparent kinetic parameters of human mitochondrial 2,4-dienoyl-CoA reductase wild-type and mutant proteins	174
Table 5.2	Kinetic data for human mDECR and the mutants of the active site residues	179
Table 5.3	Kinetic data of human mDECR for the substrates and analogs	180

LIST OF PUBLICATIONS DERIVED FROM THIS STUDY

- Yu,W.; Chu,X.; Chen,G.; Li,D. Studies of human mitochondrial 2,4-dienoyl-CoA reductase. *Arch. Biochem. Biophys.* 2005; 434(1):195-200.
- Alphey,M.S.; Yu,W.; Byres,E.; Li,D.; Hunter,W.N. Structure and reactivity of human mitochondrial 2,4-dienoyl-CoA reductase: enzyme-ligand interactions in a distinctive short-chain reductase active site. *J. Biol. Chem.* 2005; 280(4):3068-3077

TABLE OF CONTENTS

Abstra	ct	ii
Certifi	cation of approval by the panel of examiners	V
Declara	ation	vi
Acknow	wledgement	vii
List of	abbreviations	ix
List of	figures and tables	xi
List of	publications derived from this study	xvi
Table of	of contents	xvii
Chapte	er I Introduction and Background	
1.1	Fatty Acid	1
1.1.1	Fatty Acid Classification	1
1.1.2	The Importance of Unsaturated Fatty Acids	5
1.2	Uptake, Transport and Activation of Fatty Acids in Mammalian	Cell
		8
1.3	Pathway for Fatty Acid Oxidation	10
1.4	β-Oxidation	13
1.4.1	β-Oxidation in Mitochondria	14
1.4.1.1	Uptake of Fatty Acids by Mitochondria	15
1.4.1.2	Mitochondrial β -Oxidation Cycle for Saturated Fatty Acids	17
1.4.1.3	Mitochondrial β -Oxidation of Unsaturated Fatty Acids	19
1.4.2	β-Oxidation in Peroxisomes	26
1.4.2.1	Peroxisomal β-Oxidation Cycle of Saturated Fatty Acids	28

1.4.2.2	Peroxisomal β -Oxidation of Unsaturated Fatty Acids	31
1.4.3	The Auxiliary Enzyme Required in Unsaturated Fatty Acids	5β-
	Oxidation	33
1.4.3.1	NADPH-Dependent 2,4-Dienoyl-CoA Reductase (DECR)	35
1.5	Crotonase Superfamily of Enzymes	41
1.5.1	Members with Hydratase or Isomerase Activity	47
1.5.1.1	Δ^3 , Δ^2 -Enoyl-CoA Isomerase	47
1.5.1.2	$\Delta^{3,5}$, $\Delta^{2,4}$ -Dienoyl-CoA Isomerase	53
1.5.1.3	2-Enoyl-CoA Hydratase	56
1.5.2	Structure and Reaction Mechanism of the Hydratase and Isomer	ases
		59
1.5.2.1	Crystal Structures	59
1.5.2.2	Reaction Mechanisms	69
Chapte	r II Materials and Methods	
2.1	Materials	76
2.2	Cloning of Bovine Liver Mitochondrial Enoyl-CoA Hydratase and	Rat
	Liver Dienoyl-CoA Isomerase	76
2.2.1	Subcloning of Bovine Liver Enoyl-CoA Hydratase	76
2.2.2	cDNA Cloning of Rat Liver Dienoyl-CoA Isomerase	78
2.3	Site-directed Mutagenesis	78
2.4	Sequencing of DNA Fragment	79
2.5	Production of Recombinant Proteins and Their Mutants	80
2.6	Purification of the Wild Type Enzymes and Their Mutants	80

Chapte	er IV Comparative Mutagenesis Study of the Members of	the
3.2.4	Characterization of Human mDECR Wild Type (EC 1.3.1.34)	99
3.2.3	Characterization of Rat Liver DECI Wild Type	98
3.2.2	Characterization of Bovine Liver ECH Wild Type (EC 4.2.1.17)	93
3.2.1	Characterization of Rat mECI Wild Type (EC 5.3.3.8)	90
3.2	Characterization of the Wild Type Enzymes	89
3.1	Subcloning, Protein Expression and Purification	89
Chapte	er III Characterization of the Wile Type Enzymes	
		87
2.14	Software Analysis of the 3D Structures of the Enzymes and Mut	tants
2.13	Test for the Reversibility of the Inactivation	87
2.12	Determination of IC ₅₀	86
2.11	Kinetic Analysis of Inactivation	86
2.10	HPLC Analysis of Enzymatic Incubation Mixture	85
2.9	Circular Dichroism (CD) Spectroscopy	85
2.8.4	Assay of Dienoyl-CoA Reductase Activity	84
2.8.3	Assay of $\Delta^{3,5}$, $\Delta^{2,4}$ -Dienoyl-CoA Isomerase Activity	84
2.8.2	Assay of Enoyl-CoA Hydratase Activity	83
2.8.1	Assay of Δ^3 , Δ^2 -Enoyl-CoA Isomerase Activity	83
2.8	Enzyme Assays	83
2.7	Synthesis of the Substrates and Analogs	81

xix

4.1	Introduction	103

4.2	Mutations, Mutant Protein Expression and Purification	and CD
	Spectroscopy	110
4.2.1	Mutations, Mutant Protein Expression and Purification	110
4.2.2	CD Spectroscopy	113
4.3	HPLC Analysis of Enzymatic Incubation Mixtures	114
4.3.1	HPLC Analysis of the Enzymatic Incubation Mixture of E	CI and Its
	Salt Bridge Mutants	114
4.3.2	HPLC Analysis of the Enzymatic Incubation Mixture of EC	H and Its
	Salt Bridge Mutants	118
4.3.3	HPLC Analysis of the Enzymatic Incubation Mixture of DE	CI and Its
	Salt Bridge Mutants	120
4.4	Kinetic Studies of the Soluble Mutants of the Salt Bridge	123
4.4.1	Kinetic Studies of the Soluble Mutants of ECI and Its Sa	lt Bridge
	Mutants	123
4.4.2	Kinetic Studies of the Soluble Mutants of ECH and Its Sa	alt Bridge
	Mutants	128
4.4.3	Kinetic Studies of the Soluble Mutants of DECI and Its Sa	alt Bridge
	Mutants	130
4.5	Analogs and the Mutants	132
4.5.1	Incubation Studies of Methylenecyclopropylformyl-CoA	132
4.5.2	Inhibition Effect of 2-Octynoyl-CoA on ECI and ECH Ac	tivities of
	the Mutants	133

XX

		134
4.6	Structure Analysis	136
4.6.1	Comparison of the 3D Structures of the Wild Type Enzymes	136
4.6.1.1	Assemble Mode of Rat mECI (PDB ID: 1SG4)	137
4.6.1.2	Assemble Mode of Rat ECH (PDB ID: 2DUB)	144
4.6.1.3	Assemble Mode of Rat DECI (PDB ID: 1DCI)	148
4.6.2	Salt Bridge Mutants and the Structures	152
4.6.2.1	Salt Bridge Mutants of Rat mECI	153
4.6.2.2	Salt Bridge Mutants of ECH and DECI	158
Chapter V Mechanistic Study of Human Mitochondrial 2,4-Dienoyl-		
	CoA Reductase (DECR)	
5.1	Introduction	162
5.2	Construction of Mutant Plasmids, Expression and Purificat	tion of
	Proteins in E. Coli	166
5.3	Kinetic Study of the Soluble Mutants	170
5.3.1	Kinetic Study of the Mutants of the Conserved Acidic Residue	s 171
5.3.2	Kinetic Study of the Mutants of the Active Site Residues	175
5.4	Substrate Analogs and Their Enzymatic Studies	179
Chapter VI Summary and Perspectives		184
References		
	nces	189

4.5.3 Substrate Stereo-selectivity Introduced by the Salt Bridge Mutation