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Abstract: 

 

There are many similarities in the responses of animals to hypoxia and 

starvation such as depressed metabolism, reduced locomotion and impaired 

reproductive ability. We hypothesize that there are similarities in the gene expression 

profile during starvation and hypoxia, in both cases directed towards energy 

conservation. Common carp, Cyprinus carpio, a hypoxia-tolerant fish, is able to 

survive prolonged periods of food deprivation. Carp were exposed to prolonged (six 

weeks) exposure to hypoxia or starvation. All fish survived these treatments. Liver 

and kidney gene expression profiles reflected the metabolic depression observed in 

both starved and hypoxic carp, however, the responses were somewhat different, 

with a different time frame between starvation and hypoxia and between tissues.  

Carp kidney genes respond to starvation much faster than liver. In the kidney, 

many genes involved in ATP generating pathways (glycolysis, tricarboxylic (TCA) 

cycle, and oxidative phosphorylation); as well as ATP-consuming pathways 

(ubiquitin-proteasome degradation pathway, protein biosynthesis) were 

down-regulated. On the contrary, liver only showed altered gene expression after 16 

days and up-regulation of glycolytic genes were observed after 42 days of starvation, 

which coincided with decreased in hepatic glycogen content. Interestingly, no 

change in hepatic lipid and protein was observed. Other genes involved in processes 

such as signaling, transcriptional regulation, stress responses were also identified to 

respond to starvation in carp. In addition, starvation-induced gene expression in 

common carp was found to be very different from that observed in mammals and the 



general metabolic changes associated with starvation in mammals are not applicable 

to fish.  

Unlike starvation, carp liver and kidney responded to hypoxia similarly and 

more acutely. Anaerobic respiration genes and some gluconeogenic genes were 

induced during hypoxia, whereas expressions of genes involved in other metabolic 

pathways were virtually all suppressed. The degree of induction or suppression of 

these genes declined or leveled off with prolonged hypoxia. Surprisingly, myoglobin, 

a known muscle-specific gene, was found to be induced strongly in both hypoxic 

carp liver and kidney. In this study, uncoupling protein 2 which limits free radicals 

production by mitochondria, was greatly enhanced during hypoxia in carp. The 

gradual reduction of hypoxia-induced gene expression as hypoxia was prolonged 

probably reflects the re-establishment of homeostasis in these hypoxic carp.  
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